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Abstract

Many data-driven planning methods are trained on data gen-
erated by planners. It is well known that many statistical
learning methods are sensitive to sampling bias, and yet there
has been little or no attention to planning as a sampling
method and its role in introducing sampling bias into planner-
generated training data. Recently, it has been demonstrated
that A*, in the presence of problems with variable heuristic
error, prefers some solutions over other equally cost-optimal
solutions. But, as we discuss in this paper, mitigation may not
be as simple as resolving arbitrary tie-breaking by sampling
from ties uniformly at random. In this paper, we formalize an
intuition of planning bias. We focus on problems which re-
quire a single solution. Diverse planning only complicates the
problem by generalizing it to bias in the set of sets; we show
how it is subject to bias in the single solution. We make some
useful observations about deterministic algorithms in contrast
to non-deterministic algorithms. We explain how information
entropy may be a good way to measure planning bias, and dis-
cuss some issues in evaluating practical approaches to mea-
surement. We address the intuition that uniform random tie-
breaking should mitigate bias, and sketch a novel approach to
constructing an appropriate random distribution for duplicate
detection during forward search for unbiased A*. Finally, we
suggest directions for future work.

Introduction
The presence of planning bias has implications for a number
of applications of automated planning, wherever planner-
generated data are used as input to statistical models. Appli-
cations include training a neural network to iteratively im-
prove a heuristic (Arfaee, Zilles, and Holte 2010; Ernandes
and Gori 2004). Planner-generated examples may be used
for automatic (Callanan et al. 2022; Mordoch et al. 2023)
or assisted model elicitation (Feblowitz et al. 2021; Sohrabi
et al. 2016). It has also been hypothesized that plan valida-
tion may benefit from statistical analysis of related plans for
more robust validation via simulation (Benton et al. 2018).

Though it is generally well-understood that planning
models may include biases—“All models are wrong, some
are useful.” (George Box)—a less understood source of bias
is that which is introduced by the process of plan synthesis.
Recently, it has been shown that A* favors some solutions
among other equally cost-optimal solutions when heuris-
tic error varies (Paredes 2023). However much work is still

needed.
In this paper, we invite the planning community to look

at planning as a source of sampling bias. Toward this end,
we introduce the idea of planning bias. We believe that up
until now data-driven planning and scheduling has assumed
that planners are somehow a neutral source of examples. For
some planning technology, that may indeed be the case. A
brute force search may be a good sampling methodology for
robust data-driven planning, assuming a planning model that
we believe in. Faster methods, however, like A*, for exam-
ple, are not necessarily unbiased sampling technology (Pare-
des 2023). We propose that robust data-driven planning and
scheduling will require a much better understanding of plan-
ning bias. In the worst case, there may be an unavoidable
trade-off between planning speed and planning bias. The
topic has applications outside of planning such as in schedul-
ing, constraint satisfaction, combinatorial design problems,
and reinforcement learning (Trinh et al. 2024) and (Sartoretti
et al. 2019). Below we attempt to formalize our intuition of
planning bias, identify some major challenges, and present
some initial results to stimulate discussion.

Preliminaries
We will use satisficing planning to develop some key ideas
toward an intuition of planning bias.

Definition 1 (A Planning Task). Let M = 〈V, O〉 be a set
of variables and planning operators. Let I be an initial state
consisting of a complete assignment to the variables. Let G
be a set of goal states implicitly defined by an incomplete
assignment to the variables. An operator is a function which
transforms one state to another. Let Π = 〈M, I, G〉 be a plan-
ning problem instance. A solution s is a sequence of opera-
tors which transforms the initial state to a goal state.

A critical idea in the proceeding discussion is that of the
solution space of the particular planning instance.

Definition 2 (Solution Space of a Planning Task). Let S(Π)
be the space of solutions to Π. A plan is a solution s if and
only if it is ∈ S(Π). (To be clear, a sequence of operators
which does not successfully transform the initial state into
a goal state may never be an element of S(Π)). Thus S(Π)
contains all solutions s to Π and no invalid plans. This will
be an important distinction for our purposes.



We can use this understanding of the solution space of a
task to develop an idea of the probability of a solution, which
we would like to be able to compare between algorithms.

Definition 3 (Probability Distribution Over the Solution
Set). Let PΠ(s) be the probability of solution s to Π. Let
PAi,Π(s) be the probability that algorithm Ai generates so-
lution s to Π. Let PAqi,Π be the probability distribution of
overall solutions s ∈ S(π).

A useful idea is the algorithm that outputs any valid solu-
tion with equal probability:

Definition 4 (Uniform Distribution Over the Solution Set).
Let PA0,Π(s) = 1

|S(Π)| , for all s. Then PA0,Π is a uniform
distribution over a planning task’s solution space.

We can now measure the distance ∆(PAi,Π, PAj ,Π) ⇒
R≥0 between the uniform distribution over solutions and the
distribution of solutions produced by planning algorithms.
Different distance measures over distributions will give dif-
ferent answers, but this is not important for the development
of our definition of bias in the next section.

A Formal Definition of Planning Bias
Our intuitive definition of algorithm bias is: if an algorithm
does not produce valid solutions to a planning problem in-
stance with uniform probability, it is biased. We formalize
this as follows:

Definition 5 (Planning Bias). Let Ap be a planning al-
gorithm. PA0,Π is a uniform distribution over a planning
task’s solution space (Definition 4). Then Ap is biased if
∆(PA0,Π, PAp,Π) > 0.

Some useful results will help us more precisely describe
our intuition of what planning bias looks like.

Theorem 1. Let Ai be a deterministic planning algorithm.
Then Ai is biased if and only if |S(Π)| > 1.

Proof. A deterministic algorithm Ai returns the same solu-
tion si given the same inputs; equivalently, PAi,Π(si) = 1
for some s ∈ S(Π) and PAi,Π(sj) = 0, where si ̸= sj .
Therefore, |S(Π)| > 1 ⇒ ∆(PA0,Π, PAi,Π) > 0. Other-
wise, ∆(PA0,Π, PAi,Π) = 0.

Theorem 2. Let Ae be the (EXPTIME)1 algorithm that enu-
merates all solutions in S(Π) and samples from among them
uniform at random. Then Ae is unbiased.

Proof. Trivial.

Algorithm Aϵ provides a theoretical upper bound on plan-
ning bias. We know such an algorithm is intractable given
existing theoretical results. We defer readers to our sister
paper (Frank et al. 2024) for a detailed discussion of the
complexity of Aϵ. The proof follows from the result that
planning itself is PSPACE-complete except under extreme

1The algorithm is EXPTIME and not EXPSPACE because we
can count the number of solutions without saving them, decide
which should be returned, then generate them again and count so-
lutions, returning the proper one when it is generated.

restrictions (Bylander 1994). If, in general, finding one so-
lution is intractable, then, in general, finding all solutions is
intractable. This result encourages us to turn our attention
to the space of algorithms which work in practice. However,
as an upper bound on planning bias, Aϵ demonstrates the
best we can hope for is indeed an unbiased algorithm. Where
there is more work to be done is in answering the question,
under what conditions may practical planning methods ap-
proach this ideal?

Theorem 3. Let Ai be a deterministic algorithm and Aj be a
non-deterministic algorithm. PA0,Π is a uniform distribution
over a planning task’s solution space (Definition 4). Then
∆(PA0,Π, PAi,Π) ≥ ∆(PA0,Π, PAj ,Π).

Proof. Trivial because any non-deterministic algorithm
must return at least one plan.

Deterministic algorithms must often make some arbi-
trary choices (e.g. tie-breaking). Non-deterministic algo-
rithms make up a non-trivial class to consider, which in-
cludes many superficially deterministic algorithms. In prac-
tice, we might resolve random tie-breaking with a random
seed to force determinism. In some cases, we hope through
some judicious use of tie-breakers we can gain efficiency
(Asai and Fukunaga 2016; Corrêa, Pereira, and Ritt 2018;
Heusner, Keller, and Helmert 2018; Ferber et al. 2022).

Of non-deterministic algorithms, we should ask under
what conditions they perform more like Ae (Theorem 2). We
propose there are several challenges to answering this ques-
tion. Some of them we go into more detail about below. For
instance, there are challenges in practically computing bias
without knowledge of the set of all solutions. How we might
take advantage of existing ideas from information entropy?
Such as addressing the intuition that all non-deterministic
algorithms are unbiased at least in the long run.

What Planning Bias is Not That is not to say that planner-
generated data cannot be biased due to biases in the model.
A domain model that omits right turns will never output a so-
lution containing right turns. The above discussion assumes
a model we believe in. In other words, we are confident that
the model is as accurate as it is ever going to get. Given that
”all models are wrong but some are useful (George Box),”
we assume a maximally useful model. Model elicitation is
an important but different challenge.

It is tempting to think the proper approach to mitigating
planning bias is to design the appropriate diversity metric.
Diverse planning takes as input a planning task, a diversity
metric, and an integer k, and returns a size-k set of solu-
tions which conforms to the diversity metric. Diverse plan-
ning, however, only complicates the problem. We can easily
generalize our definition of bias to diverse planning, where
the solution to a diverse planning problem is not a single
plan but a set of plans. The set of all solutions to the diverse
planning problem is a set of sets. A diverse planning algo-
rithm that will never output a particular set, a solution sD,i,
within the set of sets, all solutions to the diverse planning
task, S(ΠD), is biased.



Some Thoughts on Estimating Bias
The previous section provides some notation which helps
us think about bias but does not provide much guidance on
how to practically identify it. We may be able to assume that
most deterministic algorithms are biased. Per Theorem 1, a
deterministic algorithm is biased if |S(Π)| > 1. If we knew
the size of the solution space then we could easily determine
the existence of planning bias. We may be able to approx-
imate or infer the size of the solution space from features
of the domain. For example, if a minimal cost solution is
composed of more than one communitive action then there
must be at least one other minimal cost solution. Many more
restrictions on the domain model may be necessary to en-
sure the size of the solution set is at most one. It is hard to
imagine planning could be very difficult under these kinds of
restrictions. Fortunately, it is not necessary to know exactly
the size of the solution space in the case of a deterministic
algorithm.

Unfortunately, we are more interested in non-
deterministic algorithms. It may be difficult to be sure
of the existence of planning bias, as we have defined it. One
way to identify if a non-deterministic algorithm is biased
if we could analytically prove that algorithm A can never
output some s ∈ S(Π). If the probability of some solution
via A is 0, then ∆(PA0,Π, PA,Π) ̸= 0. In the absence of such
a proof, experimental techniques may still be unsatisfying.
We would need to find a solution that algorithm A will not
produce. To experimentally show that some solution can
never be output is undecidable.

Even if a planner can find all plans then we still can-
not be confident it is not biased without additional work.
Our definition of planning bias claims that any divergence
from a uniform distribution over S(Π) indicates bias, i.e.
∆(PAi,Π, PA0,Π) > 0. A solution which is over-represented
should indicate the existence of planning bias. Proving this
empirically with any confidence will require appropriate
tools.

Our intuition is to look to the entropy of PAi,Π. Recall
that PA0,Π represents the uniform distribution over S(Π).
Recall entropy is a measure of the uncertainty of the random
variable. Let X be a discrete random variable with alphabet
X and probability mass function p(x) = Pr(X = x), x ∈
X .

H(X) = −
∑
x∈X

p(x)log(p(x)) (1)

Entropy H(X) is maximized when the probability dis-
tribution p(x) is uniform. For our purposes, we claim that
entropy would be maximized when Ai is unbiased, i.e.
∆(PA0,Π, PAi,Π) = 0.
Definition 6 (Entropy of a planning algorithm). Let S be
a discrete random variable with alphabet S(Π), the solu-
tion space of a particular planning task, and probability mass
function p(s) = Pr(S = s), s ∈ S(Π).

H(S) = −
∑

s∈S(Π)

p(s)log(p(s)) (2)

The theory of entropy provides some other useful proper-
ties for describing planning bias. Entropy is a convex func-
tion of the probability mass and monotonically decreases as

the probability of an event increases, allowing us to compare
whether an algorithm is more or less biased. When entropy
equals zero, there is no uncertainty in the random variable;
therefore, Ai is unbiased. Additionally, relative entropy be-
tween two random variables permits some level of compari-
son among algorithms. Relative entropy is zero if and only if
two probability masses are equivalent, e.g. PAi,Π = PAj ,Π.

Practically, however, it can be difficult to efficiently com-
pute a good estimate of entropy, when the true distribution
is unknown. There are many different ways to estimate en-
tropy. Some of the most well-known include the naive esti-
mator.

Definition 7 (A naive estimator as described in (Valiant and
Valiant 2017)). Let S be a multiset representing a sample
of solutions of size n. A sample could be generated by any
non-deterministic planning algorithm by running it n times.
Let F represent the fingerprint of S. A fingerprint is a vector
whose ith component, Fi, is the number of elements that
occur exactly i times in S. Then the entropy of PAi,Π can be
estimated from a sample of solutions as follows:

Hnaive(F ) := −
∑
i

ni
i

n
|log i

n
| (3)

One of the limitations of the naive estimator is in the
number of samples it requires to get a good estimate. Re-
cent work has shown that entropy can be estimated without
a priori assumptions about the target distribution in only a
sublinear-size sample, O(k/logk), where k is the number
of distinct elements in the target distribution (Valiant and
Valiant 2017).

Randomized Approaches to Deterministic
Algorithms
Since deterministic algorithms are almost certainly biased,
we could replace any arbitrary choices in any deterministic
algorithm with a random choice. But it may not be obvious
what distribution to use in a randomization strategy that will
ensure bias-free planning. Consider an example.

It was recently discovered that A* as originally de-
fined with FIFO duplicate detection in (Hart, Nilsson, and
Raphael 1968) may some equally cost-optimal solutions
over others under realistic conditions (Paredes 2023). We
show below that we cannot just replace FIFO duplicate de-
tection with uniform random duplicate selection strategy;
and we sketch an explanation of why.

In conventional A* (Hart, Nilsson, and Raphael 1968),
search proceeds by expanding the node from open with the
minimum f value until a goal node is reached. When the
heuristic is admissible, the path it finds is guaranteed to be
an optimal cost path. When the heuristic is also consistent,
a closed list can improve time-efficiency. In this case, we
can be sure, during search, when search expands a state for
the first time it has found a minimal cost path to that state.
First-in-first-out (FIFO) duplicate detection preserves only
the first minimal cost path encountered during search.

The problem with FIFO duplicate selection is that the
minimum cost path that is preserved for solution recovery
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Figure 1: Adapted from (Paredes, 2023). The subgraph Gs

of the state space under a admissible heuristic h. In this ex-
ample, the true cost-to-go h∗(ni) and h∗(nj) are identical,
however estimates h(ni) < h(nj). The effect on solution
recovery is that A* will always prefer the path through ni.
Randomized tie-breaking has no effect.

is influenced by the character of heuristic error in the prob-
lem. The result is a bias toward paths with poorer heuristic
estimates.

Consider the search space illustrated in Figure 1. There
are two minimal length solutions from the ns to ng , passing
through nk. Let solution si be the path through nk via ni,
and solution sj be the path through nk via nj . In this ex-
ample, although the true cost-to-go h∗(ni) and h∗(nj) are
identical, estimates h(ni) ̸= h(nj). This could happen for
many reasons. Consider the effect on solution recovery.

Although states ni and nj both fall along minimal cost
paths to ng , A* will always prefer the path through ni

for solution recovery. Expansion will proceed as follows:
< ns, ni, nk, nj , ng >. Because A* will expand every node
on open with f < f*, it will expand nj and generate nk a
second time. But nk will be discarded this time. A minimal
cost path to nk has already been found. And the solution sj
will never be recoverable.

One might think that this situation could easily be re-
solved with a random duplicate selection. The challenge
here is in what distribution to use and how to compute it.
Consider the naive approach: During duplicate detection,
choose between the first node to close and the newly gen-
erated duplicate uniformly at random. More formally, let the
incumbent be the first node closed. During duplicate detec-
tion, choose between the incumbent and the newly gener-
ated node with probability 0.5 and 0.5. Unfortunately, this
approach selects the most recently generated duplicate.

The sequence of decisions, to keep the incumbent node
or replace it with the newly discovered duplicate, form a
Markov chain M. Each node in M represents a decision to
keep the incumbent or replace it with the newly discovered
duplicate. A directed edge from node A and B in M with la-
bel p denotes the probability of transition from A to B, the
probability that the incumbent survives or the candidate re-
places it. The probability that the first node put on closed
survives to termination is the joint probability of surviving
all previous decision points.

Our first intuition is to adjust the weight of the edges be-
tween decision points in proportion to the number of du-
plicates discovered so far. For example, when the first du-
plicate is discovered, the number of duplicates discovered
so far is 2, therefore the probability that the incumbent sur-
vives or the candidate survives are weighted equally 0.5 and
0.5. When the second duplicate is discovered, the number
of duplicates discovered so far is 3, and the probability that
the incumbent survives is weighted 0.66 and 0.33. But this
does not quite work because search will not discover all du-
plicates before termination. Each decision point effectively
prunes the subtree rooted at the losing duplicate search node.
This saves time in conventional A*. These efficiency gains
come at the expense of bias-free search. It may take some
careful bookkeeping to compute the number of duplicates
for each decision point for the appropriate distribution to
preserve the theoretical efficiency gains of conventional du-
plicate detection for A*.

Randomization even with the appropriate probability dis-
tribution may not be able to mitigate bias everywhere.
Distance-guided heuristics for example in may be intrinsi-
cally biased toward shorter plans, their efficiency gains com-
ing from an implicit restriction on the planning problem,
making them more difficult to correct.

Discussion
Initial results in Paredes (2023) suggest that planning bias
could be a bigger problem in generalizing methods using
planner-generated data to real-world problems than we had
realized. In this paper, we have defined planning bias more
precisely to make some important distinctions from existing
work in diverse planning and to explain our intuition that
there may be a useful relationship between planning bias and
information entropy for practically computing planning bias.

One of the limitations of our definition of planning bias
is it assumes a finite solution set. A more general definition
would allow for an infinite solution set, such as created when
allowing any number of loops in the plan. The idea of a uni-
form distribution over an infinite (countable) set however is
poorly defined. Further, the existence of a uniform distribu-
tion over the solution set plays a critical role in our results.
Future work may develop a more general definition of plan-
ning bias and set of theoretical tools.

Practical tools to measure bias might generate a sam-
ple set of plans from a “time-limited planner” and measure
entropy. Future work should compare the entropy estimate
and bias estimates in an empirical study. We hope to show
whether entropy works as a surrogate measure for bias in
practice. For example, increasing the amount of time given
to the planner (allowing us to find more plans) may change
entropy for varying domains. Set-up may forbid finding the
same plan twice.

We hope to investigate the landscape of bias in plan opti-
mization algorithms further, especially those tackling prob-
lems in higher complexity classes (e.g., EXPTIME), to de-
termine whether they exhibit bias both theoretically and em-
pirically. For such complex problems, practitioners often use
approximation algorithms and we hope to also examine how
approximation approaches may express their (likely) biases.
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Corrêa, A. B.; Pereira, A. G.; and Ritt, M. 2018. Analyzing
Tie-Breaking Strategies for the A* Algorithm. In Lang, J.,
ed., Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, IJCAI 2018, July 13-
19, 2018, Stockholm, Sweden, 4715–4721. ijcai.org.
Ernandes, M.; and Gori, M. 2004. Likely-Admissible and
Sub-Symbolic Heuristics. In de Mántaras, R. L.; and
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