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Abstract

Modeling and understanding the spread of disease has been a
topic of much focus for epidemiological researchers in recent
years due to the effects of the COVID-19 pandemic. High
levels of global attention and an abundance of recently col-
lected data have created an environment for epidemiological5

models to be highly detailed and impactful. The best of these
models incorporate ideas and research from a range of do-
mains, with clarity and ease of consumption being key fo-
cuses so that they have the highest chance of impacting pub-
lic policy. Here, probabilistic planning is leveraged to under-10

stand the spread of COVID-19 at a regional level in the city
of Kingston, Ontario, through an agent-based model imple-
mented in RDDL. This data-driven model operates with the
functionality of introducing mask and vaccine mandates as
sparingly as possible, as per policies created by JaxPlanner,15

while attempting to ensure that hospitals are operating below
capacity. Mimicking the variability of real data, a variety of
model configurations are experimented with, and the result-
ing simulation differences are noted. The observed dynamics
are well in line with the theoretical models, and the interven-20

tion methods utilized proved to be successful at the task of
mitigating hospital burden, though the policies decided upon
were inconsistent at times.

Introduction
Understanding how a disease spreads is necessary when at-25

tempting to minimize the damage done to a population. The
intricacies of exactly how a disease spreads are often quite
difficult to identify, and it requires significant effort to truly
capture minute details. However, this type of work is essen-
tial for knowing when and how certain intervention methods30

should be deployed in a population. The basis for these deci-
sions lies in model forecasts made by researchers; forecasts
that are founded in whatever data is available. Oftentimes,
the parameters comprising a model have their values based
on insufficient or inferred data. These vague parameter es-35

timates can result in stochastic model simulations having
large variability, causing optimal intervention policies to be
inconsistent. An important result of this is related to the eco-
nomic burden that can arise from intervention methods. Em-
ploying intervention methods sub-optimally can cause the40

population to incur not only a significant economic loss but
can also lead to a reduced quality of mental health for af-
fected citizens (Liu et al. 2020). So, it is crucial for policy-

makers to intervene only when necessary - a task that is only
possible through reliable data-driven models. It is also very 45

important that the capacity of hospitals is not exceeded to en-
sure that new patients are able to receive the treatment they
require. Thus, optimal intervention implementation would
be to minimize intervention while continually keeping hos-
pitals operating below capacity. 50

Due to the complex nature of epidemics, the models that
describe them are oftentimes rather complicated - decreas-
ing generalizability and risking poor adaptation to new dis-
coveries or data. These disease models are typically con-
structed with the functionality of intervention techniques 55

in order to see how spread can slowed or stopped (Adiga
et al. 2020). From this, policymakers have been able to
incorporate strategies based on many such models, prov-
ing their viability in handling these kinds of highly com-
plex scenarios (Kerr et al. 2021). However, even among the 60

most successful and detailed of models, there are still lim-
itations that can cause significant differences in behaviour
to emerge between the model’s predictions and real-world
outcomes. While general data availability and quality issues
are common throughout these models, many of these limita- 65

tions have to do with location and location-based data such
as regional population, organization, and infrastructure. This
work presents a model using RDDL and JaxPlanner, which
aims to minimize intervention uptime while keeping hospi-
tals operating below capacity through the use of real geo- 70

graphical and regional data from the city of Kingston, On-
tario, as an exploration of the power of RDDL in model-
ing disease dynamics and intervention, and as an avenue to
demonstrate the necessity for accurate data in producing re-
liable models of this kind. This not only serves as a baseline 75

for future work in modeling disease spread in RDDL, but
it also examines JaxPlanner’s effectiveness at solving prob-
lems of this nature.

Background
Understanding SIR modeling is fundamental in the field of 80

epidemiology. The basic SIR model has many variations,
and this agent-based model is built on the SEIRS model. The
SEIRS model splits a population into four classes, which are
used to track and simulate the spread of disease. All individ-
uals in a population are in exactly one of these classes at a 85

time:



1. Susceptible: Individuals who may contract the disease at
any given point

2. Exposed: Individuals who have contracted the disease but
are not symptomatic and are not able to spread the dis-90

ease
3. Infectious: The individuals in this class may or may not

be showing symptoms but are now able to spread the dis-
ease

4. Recovered: Here, individuals are fully recovered from95

the disease, meaning that they cannot spread it and they
cannot contract it

Figure 1: The classes that an individual moves through in an
SEIRS model

As shown in Figure 1, an individual begins in the suscep-
tible class and may move through the classes linearly until
reaching the recovered class, where they become suscepti-100

ble after a given period of time. These periods of time are
not constant from person to person and can vary due to an
individual’s genetics and the severity of infection, amongst
other factors.

We must also define the R0 value here, which represents105

the average number of susceptible individuals that an infec-
tious individual will spread disease to. The R0 value is cal-
culated as R0 = β/γ, where β represents the number of
individuals the infection is spread to per time step, and γ
represents the rate of recovery.110

Related Work
Mathematical Modeling Often serving as the basis for
more complex agent-based models, mathematical models
seek to explain the spread of disease from a compartmental
standpoint. The states a person can be in (SEIR) relative to115

the disease and the rates of change of each of these states in
a given population over time are modeled and can be readily
tweaked to account for a variety of situations. Individuals
themselves are not tracked in these models, but rather the
population as a whole is estimated on each time step. Sig-120

nificant work was done early into the pandemic in Sweden,
furthering our understanding of the disease behaviour in a
population with real, up-to-date data (Britton 2020; Sjödin
et al. 2020; Kamerlin and Kasson 2020). While these mod-
els performed well for certain tasks, the simplicity and gen-125

eralizations made by the models produced results that were
often not in line with observed data.

Agent-Based Modeling Built from strong foundations in
mathematical modeling, agent-based modeling has seen in-
creased usage in recent years; specifically with respect130

to disease modeling. Early into the COVID-19 pandemic,
many older agent-based models were adapted to model

COVID-19’s spread and resistance to intervention methods
(Ferguson et al. 2020). While these sorts of models were ar-
guably the most advanced at the time, they often had lim- 135

itations with regard to population behaviour and the im-
plementation of intervention methods (Adiga et al. 2020).
Building on these ideas, popular models such as OpenABM-
Covid19 and Covasim emerged, which have been used by
public health officials worldwide to aid in decision support, 140

taking detailed population behaviour into account and track-
ing how a variety of intervention methods affect the spread
of COVID-19 (Kerr et al. 2021; Hinch et al. 2021). These
are seen as state-of-the-art COVID-19 models and are be-
ing consistently improved upon. GSAM is another powerful 145

model with very high scalability, allowing billions of agents
to act distinctly at the cost of specificity with regard to their
environments. This type of model is good for understand-
ing broad disease dynamics but does not perform well when
trying to understand fine details such as the effects of re- 150

gional population distributions (Parker and Epstein 2011).
There are also models like BioWar, where nefarious agents
are introduced who act to intentionally spread disease, giv-
ing way to some interesting dynamics (Carley et al. 2006).
In addition to these, there are a plethora of other models that 155

exist, which specialize in different tasks (Balcan et al. 2009;
Venkatramanan et al. 2019; Silva et al. 2020; Mahmood et al.
2022) - many of them being open source and regularly up-
dated.

Automated Planning Modeling the spread of disease is a 160

long-standing exercise and problem in the field of Planning.
New strategies for handling probabilistic settings are regu-
larly emerging, opening the door for more complex and re-
alistic models. Specifically, RDDL is beginning to see use as
a tool for developing intervention plans to hinder the spread 165

of disease, with Harmanani modeling COVID-19 spread in
enclosed spaces, grounded in real data (Harmanani 2023).
By allowing the planner to intervene by way of masking
and vaccinating, the results produced by the model were
found to quite accurately reflect real-world data. While this 170

attempt was successful at describing behaviour in enclosed
spaces, there has been little attempt to model this kind of be-
haviour on a large scale such that the impact of disease on
regional population dynamics could be analyzed in a mean-
ingful way. 175

Methods
Modeling the environment
Space Initialization It was important that the space that
the agents were to move around in represented Kingston,
Ontario as closely as possible. By utilizing the OSMnx 180

Python package (Boeing 2017), accurate geographical data
was ingested via a simple script. This package grants access
to the coordinates of all registered buildings and the types of
buildings that they are, breaking them down into the follow-
ing categories: 185

• Residential: “House”, “Apartment”, “Dormitory”, or
“Residential”, encapsulating the leftover residential
buildings



• Work: “Office”, “Commercial”, “Industrial”, “Retail”, or
“Warehouse”190

• Commercial“Commercial” or “Retail”
• Education: “School”, “College”, or “University”

It is important to note that no building can belong to more
than one building type. By running a simple Python script
to retrieve this building data, the information was able to195

be stored and ingested into the problem files that fueled the
disease simulations.

Agent Initialization Agents are created with a set of at-
tributes, and they have the ability to move between the de-
fined locations. Each agent is assigned to an age bracket200

based on the Kingston age distribution (Government of
Canada 2021). The age brackets are defined as 0, represent-
ing ages 0-9, 1, representing ages 10-19, and so on until 8,
which represents the 80+ age range. These age brackets de-
termine how agents interact with COVID-19, how they move205

around the space on each time step, and how they react to in-
terventions (planner actions).

Every step in the simulation represents half a day. On the
first step of each day, agents move about the problem space,
interacting with other agents and potentially spreading dis-210

ease. On a day’s second step, they return to their homes and
interact with the agents they live with. This notion of time
is tracked via a simple counter that flips between 0 and 1 on
each step. We also incorporate days of the week, with agent
behaviour varying depending on what day of the week it is.215

This is tracked by a similar counter, ranging from 1 to 14 (as
each day consists of two time-steps).

As hinted at, agents are all assigned homes, picked from
the extracted list of residential buildings at random. Each
home contains 1-5 agents, filled per the probabilities derived220

from Kingston data (Government of Canada 2021). This will
be where agents go on the second time step of every day.
With respect to disease interaction, if an agent enters the in-
fectious class, they have a chance to self-isolate, and they
will stay at home for their entire infectious period. If they225

are hospitalized, they will not go home or to work/school
until they move into the recovered state.

Agents are also assigned a place they go during the week-
days. If an agent is aged 0-19, they attend school. The school
they attend is chosen such that the Euclidian distance be-230

tween their home and the school is as small as possible (ge-
ographically, the closest school to their home). Some agents
in the 20-29 age range will attend post-secondary school,
whereas other agents in the 20-29 range and all agents 30-69
will attend work during the day (proximity not being a factor235

here). Agents aged 70 and above are assigned a commercial
building that they visit during the day, which is chosen to be
closest geographically in the same way schools are selected.

The agents in the 20-29 range who attend post-secondary
institutions in Kingston are placed according to each institu-240

tion’s user-defined populations. Agents are sequentially as-
signed to each institution until their prescribed population
numbers are reached. The homes of these agents are selected
based on their proximity to their given school, placing them
in the closest residential buildings possible such that they245

are not above capacity. By this algorithm, dormitories will

Parameter Value
R0 - Basic Reproduc-
tive Ratio 3.32 1

β - Average number
of agents infected on
each time step

R0γ

1/σ - Time spent in
exposed class Normal(9, 2) 2

1/γ - Time spent in
infectious class

Mild: Normal(16, 4) 3

Severe: Normal(36.2, 8) 4

Critical: Normal(36.2, 8) 5

1/ω - Time spent in
recovered class Varied

Probability of mild,
severe, or critical case Age Dependent 6

Probability of self-
isolation Varied

Probability of mask-
ing 0.7 7

Probability of vacci-
nating Age Dependent 8

Table 1: Parameters comprising the main disease dynamics.

be filled up first, followed by other accommodations. The
location these agents visit during the day is set to be a ran-
dom building belonging to the institution they are attending.

Finally, each agent is given a place they go during the 250

weekends. If the agent is aged 0-9, they will remain at home.
Otherwise, the agent will go to two of the geographically
closest commercial buildings throughout the weekend.

Transit between locations will not be accounted for in this
model, with agents instantly moving from location to loca- 255

tion.

Disease Mechanics Agents in this model flow through the
SEIRS chain whenever they are exposed to COVID-19. The
most involved dynamics here surround the movement of
agents from the susceptible class to the exposed class. At 260

each location, agents have a probabilistic chance of con-
tracting disease from any given agent who is at the same
location and in the infectious state. We define the chance of
the chance of one infectious agent passing COVID-19 to one
susceptible agent to be equal to 265

(R0 / (time spent in infectious class))
(number of susceptible agents at the location)

1(Ontario 2020)
2(Pung et al. 2020; Nishiura, Linton, and Akhmetzhanov 2020)
3(Wölfel et al. 2020)
4(Verity et al. 2020)
5(Verity et al. 2020)
6(Verity et al. 2020; Ferguson et al. 2020)
7(Ontario 2022)
8(of Canada 2023)



where R0 is defined per the value in Table 1. This will re-
sult in each infectious agent spreading COVID-19 to a total
number of agents equal to R0 on average. So, on each time
step, a susceptible agent at a location contracts the disease
equal to the above probability, calculated and checked for270

all infectious agents at their location. Once an agent is out
of the susceptible class, they move through the other classes
linearly, remaining in each class for the lengths of time out-
lined in Table 1.

As previously mentioned, agents have a chance of self-275

isolating, but they are also hospitalized depending on the
severity of their infection. If the case is mild, they are not
hospitalized and either self-isolate or continue to go about
their routine. If the case is severe or critical, then the agent
is hospitalized in a regular or ICU hospital bed respectively.280

In both hospitalization cases, they are effectively removed
from the simulation and cannot infect any other agents.

Agents can also be masked or vaccinated based on ac-
tions taken by the planner. The effectiveness of masks and
vaccines against COVID-19 is something that is constantly285

being studied and debated, and as such, there is no single
correct number reflecting this. So, we decided to approx-
imate these values based on data describing the generally
observed phenomena. We let an agent being masked multi-
ply the chance of transmission by 0.8 (Gibson et al. 2023) in290

both directions (multiplying by 0.8 if the susceptible agent
is wearing a mask and also multiplying by 0.8 if the infec-
tious agent is wearing a mask), and we let an agent being
vaccinated multiply the chance of transmission by 0.4 (CDC
2023) in the receiving direction (multiplies by 0.4 if the sus-295

ceptible agent is vaccinated, but does not affect the rate at
which the infectious spreads disease).

Putting this all together, the following snippet from the
RDDL domain, which is a portion of the calculation deter-
mining whether or not an agent (denoted ?a here) is in the300

exposed class, shows exactly how one agent is put into con-
tact with all other contacts at its current location, and how
the agent may contract COVID-19:

sum_{?a2 : agent} [305

if ((AGENT_JOB(?a) == AGENT_JOB(?a2)) ˆ

infectious(?a2) ˆ is_working(?a2))

then

Bernoulli(

((if (masked(?a)) then MASK_FACT else 1) *310

(if (masked(?a2)) then MASK_FACT else 1) *
(if (vaccinated(?a)) then VACCINE_FACT else 1)) *
(

R_NAUGHT / infectious_total_time(?a2) /

(315

1 + (sum_{?a3 : agent} [

(AGENT_JOB(?a) == AGENT_JOB(?a3)) ˆ

susceptible(?a3) ])

)

)320

)

else

false ]

This snippet looks at the case when the agent, ?a, is at325

their job, hence the AGENT JOB(agent) fluent. The code
for when an agent is at home or a store is the exact
same as the above, but AGENT JOB(agent) is changed to
AGENT HOME(agent) or AGENT STORE(agent) respec-
tively. First, all other agents in the simulation are iterated 330

over, using summation to aggregate them. For each agent
that is at the same location as our target agent, if the agent
is infectious, then the Bernoulli function is used to calculate
the probability of the target agent contracting COVID-19,
per the previously outlined infection contraction equation. 335

An agent being masked or vaccinated simply multiplies this
probability by some number between 0 and 1 (0.8 and 0.4,
respectively, for our setup). If this summation is greater than
or equal to 1, then the initial agent is said to have contracted
the infection. 340

Planner Actions and Goal
Mask Intervention One set of actions the planner can take
has to do with mask implementation. The two actions in this
category are to enforce a mask mandate among all agents,
or to only enforce it among post-secondary students. When 345

either of these actions is taken, the affected agents apply a
mask at a rate of 0.7 (Ontario 2022). When a mask action is
taken, it must be active for a minimum of 14 time steps, at
which point the planner can re-apply the mandate or remove
it. This forces the mask intervention methods to be applied 350

on a “per week” basis, more closely mimicking real inter-
vention when compared to the possibility of switching it on
and off on any time step.

The following snippet shows exactly how this masking is
tracked for an agent, ?a: 355

if ((all_mask ˆ (˜mask-implemented)) |

(student_mask ˆ AGENT_STUDENT(?a) ˆ

(˜mask-implemented-students)))

then Bernoulli(MASK_CHANCE) 360

else if (mask-implemented | mask-implemented-students)

then masked(?a)

else 365

false

Here, the boolean fluents all mask and student mask de-
note the planner actions to mask all agents or only stu-
dents, and the boolean fluents mask-implemented and mask- 370

implemented-students denote whether or not a mask man-
date has been applied in the previous 14 time-steps for both
groups. So, agents apply masks at some probability (0.7
here) when a mask action is first introduced, and that choice
is held constant throughout the 14 time steps. 375

Vaccine Intervention The other set of actions the plan-
ner can take revolves around vaccine mandates. In a very
similar fashion to the mask intervention implementation, a
vaccine mandate can be implemented for all agents or only
for post-secondary students. When the planner takes one of 380

these actions, agents become vaccinated at a given rate based
on their age bracket (of Canada 2023). Once an agent is vac-
cinated, they remain so for the entire duration of the simu-



Figure 2: Each graph shows agent numbers observed in a specific class at each time step over 1000 trials - each trial initialized
with 93 susceptible and 12 infectious agents. The maximum and minimum values observed at each time step are shown in a
dark colour along with a random sample of 100 trials in a lighter colour. Each graph has a black line corresponding to the
agent numbers at each time step predicted by solving the system of differential equations sharing the same initial configuration.
The initial jump in agents on the bottom two graphs has to do with the 12 infectious agents having the same infectious period,
causing them to move out of the class at the same time.

lation. In reality, vaccination effectiveness wanes over time,
but since our experiments examine a relatively short period385

of time, this is not something that is considered.

Planner Goal The goal of the planner is to maximize a
reward function, defined by the following equation:
Reward = (Students Masked * Student Mask Penalty) +

(Others Masked * General Mask Penalty) +390

(Students Vacc * Student Vacc Penalty) +

(Others Vacc * General Vacc Penalty) +

(Hospital Beds Exceeded * Regular Bed Penalty) +

(ICU Beds Exceeded * ICU Bed Penalty)

Each penalty is a negative value, meaning that this equa-395

tion has a maximum 0, which the planner will try to be as
close as possible to. On each time step, the number of agents
who are masked or vaccinated is multiplied by the respective
penalty value, with post-secondary student penalties being
lower than general population penalties. In the problem file,400

a number of regular and ICU hospital beds that mark the
“hospital capacity” are defined. If either of these capacities
is exceeded, then a penalty is incurred per bed over the limit

on every time step this holds. The penalty values were de-
fined in a way to elicit realistic behaviour from the planner. 405

They can be modified based on what is deemed to be impor-
tant.

Evaluation
Base Model A base model was first established, where
planner actions have no effect, and agents do not self-isolate 410

or become hospitalized. Stochasticity was removed where
reasonable, having time spent in the exposed class equal to 9,
time in the infectious class equal to 16, and time in the recov-
ered class equal to 14. One problem file was created, which
was used to run 1000 randomly seeded trials, and ranges 415

for the number of agents in each SEIR class at a given time
were identified. Figure 2 shows the dynamics of each class
of this model with 105 (initially with 93 susceptible and 12
infectious) agents over 300 time-steps with a black line su-
perimposed representing theoretical agent numbers created 420

through solving a system of ordinary differential equations
(ODEs) over time. This system of ODEs was initialized with



the same parameters as with the base model in RDDL. It is
important to note that this ODE model assumes that the pop-
ulation in question is evenly distributed in the space, and it425

does not operate on the agent level. Therefore, it is a rather
crude estimate but can be used as a starting point to com-
pare the quality of an agent-based model. While the theoret-
ical values are within the maximum and minimum observed
values from the agent-based model at each time step, they430

seem to reach equilibrium values that do not exactly line
up with the output of the agent-based simulations - this is
likely due to the agent-based model being built on the spe-
cific geography of Kingston, leading to unique simulation
behaviours. For example, higher concentration areas (such435

as post-secondary institutions) will cause disease to spread
faster and more effectively, leading to a larger population
becoming infected compared to a population that is evenly
distributed about some space. These two models being gen-
erally similar in behaviour indicates that the RDDL model440

accurately simulates disease dynamics, with the four SEIR
classes generally oscillating towards a reasonable equilib-
rium. It is also important to note that even with the same
parameter configuration, the ranges observed for each SEIR
class are quite large. This is likely due to the parameter val-445

ues driving these simulations being imprecise, having been
configured based directly on the available data, which is typ-
ically incomplete or lacking in quality.

Generating Results A series of simulations were run, and
data was extracted from the outcomes. Each simulation op-450

erated in a world with around 100 agents (varies slightly
depending on random initialization of agents in each prob-
lem file) and was run for 100 time-steps. Due to this scale,
the regular hospital bed capacity was set to be 2, and the
ICU bed capacity was set to be 1. With this configuration,455

dynamics were observed that are consistent with the theory
backing up the creation of the model, and we were able to
draw meaningful conclusions from the actions taken by Jax-
Planner.

To understand the model’s performance in depth, a num-460

ber of configurations were compared with each other. With
actual COVID-19 dynamics, time spent in the recovered
class can be several months (Diani et al. 2022). However,
seeing as how our model only runs for 100 time steps, this
value was varied between 2, 14, and 28 time steps. Another465

parameter that was varied was the rate of self-isolation. The
rate of self-isolation is a parameter that is particularly diffi-
cult to estimate due to a lack of reliable data, and it is often
the case that individuals may continue their day-to-day ac-
tivities unaware that they are infected at all. For this reason,470

we vary the values of this parameter between 0, 0.3, 0.5, and
0.7. With respect to the actions that JaxPlanner can take, we
looked at cases where the planner did not have masking/vac-
cinating capabilities in addition to the cases where it did to
see how much of an impact it actually had on the reward cal-475

culation. Simulations were run for every possible parameter
configuration from the options listed above (i.e. the cross-
product of all parameter combinations).

For every configuration, simulations were run several
times over, and their results were aggregated. First, only480

the time spent in the recovered class was varied, with the
model having no self-isolation or intervention. For each of
these three configurations, 20 problem files were generated
that the simulations drew from. 20 simulations were run per
problem file, with the simulation seeds being tracked along 485

with the relevant data produced. The other configurations
were then incorporated, where self-isolation rates and plan-
ner actions vary, with simulations drawing upon the previ-
ously generated problem files with respect to time spent in
the recovered class. Using the saved seeds, simulations for 490

these configurations were run 20 times on each of their re-
spective 20 problem files.

Figure 3 and figure 4 are examples of how typical sim-
ulations played out, and they both have the exact same pa-
rameter, agent, and geography configuration. The only dif- 495

ference is the seed used for each trial. In figure 3, we see
that the planner elected to vaccinate students around time
step 30, coinciding with increasing cases and agents becom-
ing hospitalized. As soon as this action was taken, the ac-
tive cases began to diminish, showcasing the effectiveness 500

of agent vaccination in this model. Around time step 40, the
planner masked students, lining up with a spike in hospital-
izations. Note that, like most behaviours in this model, hos-
pitalization is stochastic. So, even though the planner may
have performed the optimal actions at a given time, the num- 505

ber of regular hospitalizations reached 5, which is 250% of
the specified capacity of 2. On a larger scale, this stochastic-
ity would not have such a pronounced effect. Now, in figure
4, we do not see the same actions taking place, and in fact, no
actions are taken at all over the course of the simulation. This 510

is quite significant because it implies that even under the ex-
act same conditions, the planner policy (determined at the
outset of the simulation) can vary quite substantially. In the
case of disease models, this means the difference between
masking and/or vaccinating a population, and not doing so. 515

This variability can be attributed to a number of reasons such
as the simulation length, and agent numbers and distribution.
However, it is likely that the primary reason for this variabil-
ity is the high level of uncertainty associated with param-
eter values, which can greatly affect simulation outcomes. 520

Though, in order to say this concretely, extensive sensitivity
analysis would need to be performed on this model.

Evaluating JaxPlanner Performance Once all simula-
tions were run, the resulting data was compared for each
configuration. Focusing on the total reward gives an idea 525

of how well each configuration performed relative to each
other. To visualize the rewards for all configurations, figure 5
shows a series of box plot graphs - one for each recovery rate
that was chosen. Each configuration’s box plot is built using
the average total reward for each of the 20 problem files, 530

for which 20 simulations were run. We can visually deduce
from this that self-isolation and intervention improved the
model performance, with a combination of both generally
leading to the best total reward. Table 2 summarizes this in a
different way, showing the average percent improvement of 535

different configurations when compared to the base model
with no intervention or self-isolation. This implies that the
goal of the model was reached. By implementing interven-



Figure 3: Outcome for a typical simulation, with planner action on the left, an SEIR graph in the middle, and hospitalizations
on the right.

Figure 4: Another outcome for a simulation with the exact same configuration that produced the output seen in figure 3

tion methods, the planner was able to reduce the severity at
which hospitals operated above capacity, all while activating540

these interventions as little as possible. The improvement of
the reward function for all configurations when compared to
the base model is evidence of this.

Table 2: The percent improvement for each configuration
over the base model.

Discussion
Limitations The most stand-out limitation of this research545

was the operating capacity of JaxPlanner. When JaxPlanner
is searching for a plan, there is a maximum memory allot-
ment that cannot be exceeded. This is acceptable for most
small-scale models, but with a model as complex as this one,
the memory limit was quickly reached. It is for this reason550

that the simulations were run with around 100 agents - sig-
nificantly lower than the population of Kingston, which is
around 100,000. This number was the most that JaxPlan-
ner would allow for, given 100 time-steps (50 days). Despite

this, meaningful results were obtained, with dynamics mim- 555

icking that which is found in the real world.
Another limitation was the lack of high quality data that

was available. Much of the data with respect to disease dy-
namics is being actively researched, with results varying
quite significantly between publications. Rough estimates 560

were obtained, but these are often based on studies that op-
erate all around the world - far from Kingston, Ontario. It is
believed that this lack of specificity resulted in the majority
of the model and policy variation. With nearly all parame-
ters having quite a wide value of ranges it may take on, it is 565

no surprise that simulations varied quite dramatically from
each other, even with identical configurations.

There were also assumptions made with regard to the dis-
ease dynamics themselves. In reality, people have a chance
of dying due to COVID-19 complications. A more realis- 570

tic model would incorporate births and deaths and may even
see individuals in the population moving through age brack-
ets. The rate of transmission also acts differently in the real
world, being affected by age and the type of infection (symp-
tomatic or asymptomatic), amongst many other factors. 575

Future Work Aside from collecting and refining the data
driving model simulations, future work may add more com-
plex disease mechanics, noting the subtle differences that
would emerge. There are near endless possibilities for mod-
ifications in disease models, and the model described in this 580

paper was kept relatively simple in order to clearly demon-
strate the capabilities of RDDL in solving this type of prob-
lem. Fine-tuning on this existing model could also be at-
tempted, utilizing optimization techniques to improve the



Figure 5: Each graph shows box plots for each configuration based on the total reward for a whole simulation (a number smaller
in magnitude is better). Each configuration was run on 20 times on 20 problem files (identical problem files and simulation
seeds per graph), and the average total rewards for each problem file are the values that comprise each box plot. The following
configurations are in each graph: no intervention and a self-isolation rate of 0 (Base), no intervention and a self-isolation rate
of 0.3 (OSI 0.3), no intervention and a self-isolation rate of 0.5 (OSI 0.5), no intervention and a self-isolation rate of 0.7 (OSI
0.7), intervention and a self-isolation rate of 0 (OIn), intervention and a self-isolation rate of 0.3 (InSI 0.3), intervention and a
self-isolation rate of 0.5 (InSI 0.5), and intervention and a self-isolation rate of 0.7 (InSI 0.7).

performance and scale allowable via JaxPlanner. As an alter-585

native, other planners may be tested to see how performance
and results may differ. It may be the case that some plan-
ners perform better than others, and that should be explored
to get a better understanding of the problem space. Finally,
given that data is almost never perfect, one may attempt to590

verify the quality of existing data and identify which param-
eters affect the outcome of simulations the most via modern
sensitivity analysis techniques in conjunction with different
planners. This has the possibility to assist data collectors in
terms of what to focus on in order to improve the quality of595

disease models.

Conclusion
This paper describes an agent-based COVID-19 model im-
plemented in RDDL based on the geography of Kingston,
Ontario, incorporating complex disease mechanics. Through600

the use of JaxPlanner, intervention methods were added in
the form of masking and vaccination actions, which were
successfully executed to ensure that hospitals were operat-
ing at or below capacity as often as possible while mini-
mizing the time that these intervention methods were active.605

Primarily, this is both an exploration into the power of Jax-
Planner in complex multi-agent domains, and of the versa-
tility of RDDL in large-scale simulations. This model also
underscores the greater issue of data quality, highlighting an
important domain that is strongly affected.610
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Sjödin, H.; Johansson, A. F.; Brännström, Å.; Farooq, Z.;
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