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Abstract

Cost-to-go, i.e., the length of the shortest path, is the stan-
dard metric for computing distance between configurations
in robotics. In this work we propose an alternative metric for
measuring distance between configurations for the decision
version of the problem, in which the goal is to find any path
between configurations, if one exists. We show intuitively and
experimentally that if one aims to find any path, and not just
the shortest, then our visibility based metric is a more suitable
measure than cost-to-go. Moreover, we show that unlike other
visibility based measures, ours can be approximated easily in
higher dimensions using the same techniques as in random-
ized sampling algorithms.

Introduction
In the motion planning problem we are given a robot r, an
environment (workspace) E, and two configurations s and
t of r in E, and are tasked with finding a valid sequence of
movements, i.e. actions that can be executed by the robot and
do not cause any collisions, that take r from configuration s
to t.

By defining the configuration space (Lozano-Pérez and
Wesley 1979) as the implicit space of all configurations of r
in E, and partitioning it into free space, the set of configura-
tions where r is fully within the boundary of E and does not
collide with any obstacle (or with itself in the case of artic-
ulated robots), and obstacle space which is the complement
of free space, we can reduce the motion planning problem to
the (s, t)-connectivity problem (STCON) in c-space.

Much research effort has been dedicated to solving the
optimization version of this problem, where the required
output is the shortest path (according to some metric) be-
tween s and t or some approximation of it, see e.g. (Amato
et al. 2000; Kuffner 2004). The algorithmic distinction be-
tween these problems can be seen by considering the well
known RRT algorithm (Lavalle 1998) designed to solve the
STCON problem, and its shortest path adaptation variant
RRT* (Karaman and Frazzoli 2010). In this paper we only
consider the STCON problem in c-spaces.

The metric we use to define the optimal distance (i.e.,
problem difficulty) between states has large implications for
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planning. For example, learning based methods often at-
tempt to learn estimates of such metrics (Bhardwaj, Choud-
hury, and Scherer 2017; Chiang et al. 2020). Note that such
methods almost universally attempt to learn cost-to-go based
quantities even if they are not interested necessarily in find-
ing the shortest path. Recent work (Attali et al. 2024) has
formalized the notion of guidance in sampling based motion
planning (SBMP) algorithms, which moves the discussion
beyond metrics in c-space to how they are used by planning
algorithms during search. This formal definition isolates the
guidance component of SBMP algorithms by measuring the
quality of the guidance with respect to some underlying tar-
get metric. However, most of these results are only for the
shortest path variant of the motion planning problem, as can
be seen by their definition of guidance quality based on cost-
to-go.

In this paper we extend the results of (Attali et al. 2024)
to the STCON problem by defining a geometric-visibility
based distance metric as a building block for the evaluation
of guidance quality.

We start by defining the visibility based distance metric,
and then move on to show that it better correlates to the
hardness of STCON motion planning problems than other
reasonable metrics such as cost-to-go (C2G) and Euclidean
distance. We use the runtime of RRT queries as a proxy to
the hardness of an STCON instance.

Related work
Sampling Based Motion planning SBMP algorithms
create geometric graphs in c-space by randomly sampling
configurations as graph nodes, and connecting pairs of con-
figurations by edges representing movements of the robot
from the source node configuration to the target node’s con-
figuration. Most SBMP algorithms use only valid nodes,
which are fully inside the environment’s boundary and
collision-free, and edges, where the validity of an edge is de-
termined by the validity of intermediate configurations along
the continuous motion represented by it.

In the RRT algorithm (Lavalle 1998) the c-space graph is
a tree rooted at the start configuration node, and nodes and
edges are added by a process of randomly sampling a config-
uration v, finding its nearest neighbor on the tree u, and ex-
tending an edge from u in direction u⃗v until a predetermined
maximum distance is travelled or a collision is detected. In



contrast to RRT, Probabilistic Roadmap (PRM) algorithms
are used for a multi-query motion planning scenario. PRMs
randomly sample configurations to serve as graph nodes, and
connect close-by pairs of nodes with edges. Given an (s, t)
query, an attempt is made to connect s and t to some of
their nearest neighbors, and then find an (s, t)-path in the
roadmap graph.

Dense roadmaps can be used to approximate shortest
paths between many (s, t) pairs, but the basic PRM algo-
rithm can also be used to solve a single STCON instance.
Given an (s, t) query first add s and t to the roadmap, then
iteratively add uniformly sampled nodes to the graph, con-
nect them to some of their nearest nodes, and return once s
and t are in the same connected component.

Visibility Based Motion planning A PRM variant called
Visibility-based PRM (Simeon, Laumond, and Nissoux
2000) (VBPRM) is an attempt at a “pure” STCON multi-
query algorithm. Sampled nodes are only retained by the al-
gorithm if they are not only valid, but also either not “visi-
ble” to any other node previously added, or visible to nodes
that do not see each other. This geometric notion of of visi-
bility, which we also use in this paper, defines the symmet-
ric “seeing” relationship, i.e. two configurations c and c′ in
some space see each other if the line segment cc′ does not
intersect any interior point of an obstacle. In c-space the ob-
stacle set is the set of connected components of the obstacle
space.

It is also important to mention that the notion of visibility
has been used in shortest path motion planning algorithms as
well, mostly due to the fact that the shortest path for a point
robot in a 2D environment is a path in the visibility graph of
the environment’s nodes. Many motion planning algorithms
have therefore used visibility graphs as a tool (Vegter 1990;
Wein, van den Berg, and Halperin 2005; You, Cai, and Wu
2019).

Guidance in Motion Planning The intuitive notion of
guidance can be found in almost every motion planning
algorithm in the form of human knowledge that has been
“baked” into the different algorithms. Some obvious exam-
ples are DR-RRT (Denny et al. 2020) which samples close
to a workspace skeleton, e.g. the workspace medial axis,
and Lazy PRM (Bohlin and Kavraki 2000) which attempts
unvalidated paths based on their length, which is initially
equivalent to using the Euclidean distance as guidance.

Some algorithms have a less clear underlying guidance. In
RRT, for example, we extend the node closest to a randomly
sampled point. Upon closer inspection we can see this means
that the node chosen to be expanded is chosen with proba-
bility equal to the measure of its Voronoi cell in c-space, a
bias known as Voronoi Bias.

In recent work (Attali et al. 2024) there has been an at-
tempt at formalizing this notion of motion planning guid-
ance as the sampling bias of the algorithm, and measuring
an algorithm’s guidance quality by defining a target sam-
pling distribution and computing the distance of the empiric
distribution generated by the algorithm, i.e. the distribution
that emerges from the sampling performed by the algorithm,
to that target distribution.
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Figure 1: An illustration of the window partitioning of a 2D
c-space of a rectangular robot (axis aligned rectangle with
no rotational DOF) with respect to a configuration t. The
levels of the hierarchy are denoted with Pi, where P0 = {t},
and the boundaries between levels are the windows. Notice
that the 3rd and 4th levels of the hierarchy are composed of
disjoint polygons. The black upside down T-shapes are the
workspace obstacles, and the white areas are obstacle space
computed by performing a Minkowski sum of the robot r
with the obstacles.

Preliminaries

The geometric notion of visibility is very intuitive when con-
sidering polyhedrons in Euclidean space. Given a polyhe-
dron P ⊆ Rd, we say that two points p, q ∈ P see each
other if the line segment pq lies completely within P , or
formally, pq ∩ P = pq, and the visibility polyhedron of p,
denoted V (p), is the set {q ∈ P : p sees q}. Translating
this to the motion planning landscape, we consider the free
space as our polyhedron. Two configurations see each other
if the local planner is able to connect them with a valid mo-
tion, and the visibility polyhedron of a configuration is the
set of all points that are reachable by such local plans. We
similarly define the visibility polyhedron of a set S ⊆ P of
points to be V (S) =

⋃
p∈S V (p).

The visibility graph of a polyhedron P usually refers to
the graph over the nodes of P , where two nodes are con-
nected by an edge if they see each other. This definition can
be extended to include all of the points of P , meaning we
get an infinite graph. We call the shortest path between two
points p, q in the unweighted visibility graph the link dis-
tance between them, and denote it by LD(p, q).

The Window partitioning (Suri 1986) of a polyhedron
P with respect to a point t ∈ P is a hierarchical parti-
tioning of P that captures the link distances from every
point of P to t. We define P1 to be V (t), and Pi+1 to be
{p ∈ P | p ∈ V (Pi) \

⋃i−1
j=1 Pj}. Simply put, this is the par-

tition of P into sub-polyhedrons based on the link distance
from t. The surfaces in the interior of P separating levels of
the hierarchy are called windows. See Figure 1 for an exam-
ple.



Method
In (Attali et al. 2024) sampling efficiency is defined as the
negative log likelihood of an empirical sample with respect
to some target distribution. Specifically, the target distribu-
tion (over nodes v of some search tree T ) used for shortest
path problems is

QT (v) =
exp(−τv/τ)∑

u∈T exp(−τu/τ)

where τv is the cost-to-go from v to the goal state. In other
words, a softmin of cost-to-go values over nodes of the tree
with temperature parameter τ .

Our goal is to define a target distribution which we can
use to measure sampling efficiency (quality of guidance) for
the STCON problem, by proposing a new metric to replace
cost-to-go in the above computation.

In the shortest path problem, C2G provides a very con-
venient metric for deciding which node to expand as it is
continuous and most pairs of nodes have different C2G val-
ues such that movement in any direction affects the distance
to the goal configuration in some distinct way.

This, however, is not the case in the STCON problem. If
two configurations s and t are in the same connected com-
ponent of free space, then any other point in that component
and any continuous movement of s will never be “better”
or “worse” than s itself, as all of these configurations reside
within the same connected component. In other words, we
are attempting to give different meaningful values to data
points selected from a binary distribution.

In the rest of this section we describe the distance metric
we have developed, and provide the reasoning behind it as
well as algorithmic details. The metric is a function of two
components, the link distance and visible window measure.

Link Distance
Consider the 2D environment illustrated in Figure 2. Topo-
logically s, t1, and t2 are all inside the same region, and even
though the distances of the shortest curves connecting them
have a very similar length, our intuition says that s is some-
how “more connected” to t1 than to t2. It is this intuition
that stands at the core of the visibility based metric, and has
motivated us to use the link distances captured by window
partitioning.

Another natural candidate for a visibility based metric is
the shortest path link distance (SP -LD), which is the num-
ber of edges in the shortest (s, t)-path. However, this metric,
as exemplified by the (s, t3)-path shown in Figure 2, does
not match intuition in some relatively simple scenes. We can
replace the octagon in the figure with an arbitrary polygon,
and get (s, t3)-paths of very similar lengths with an increas-
ing number of line segments, while the intuitive connectivity
of s and t3 remains exactly the same.

Computing the window partitioning described in the pre-
vious section is a non-trivial operation in 2D, and pro-
hibitively complicated in arbitrary dimensions. As such we
propose using a simple discrete approximation. We use a c-
space graph and iteratively compute the graph nodes that be-
long to the next level of the window partition hierarchy, as
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Figure 2: Illustration of the relevance of link distance to the
STCON problem guidance. t1 is intuitively more connected
to s than t2 (due to visibility, or link distance). At the same
time, the exact shape of the convex obstacle between s and
t3 should intuitively not affect their visibility, showing that
shortest path link distance is not a good metric.

opposed to creating this partition for the entire continuous
space. Algorithm 1 describes our basic method for comput-
ing this hierarchy, though note we have employed some sim-
ple heuristics and parallelized collision detection between
segments and obstacles in order to improve the runtime, e.g.,
by batching edge detection calls for “p sees q” queries.

Algorithm 1: Window Partitioning
Input: A goal configuration t ∈ C (c-space)
P ← A set of c-space points
LD ← 1
prev level← {t}
hierarchy ← {(prev level)}
while P ̸= ∅ do

new level← {}
if prev level = ∅ then

new level← P
new level.ld←∞
P = ∅

end
else

new level.ld← LD
for q ∈ prev level do

if p sees q then
new level← new level ∪ {p}
P ← P \ {p}

end
end

end
hierarchy.insert(new level)
LD ← LD + 1
prev level← new level

end
return hierarchy
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Figure 3: The left three images illustrate the relevance of the window “angle” component - even though c2 is closer to the
lower level of the hierarchy than c1, it is a worse candidate for expansion since exploration through narrow passages is difficult.
The rightmost image demonstrates the importance of monotonicity along a path, the relative value of having a large window
measure (as does c3) should be less than the value of moving down a level in the hierarchy. The directions leading to windows
to the lower level of the hierarchy are colored green, obstructed directions are colored red.

t

p

Figure 4: An illustration of the approximation algorithm for
computing the window visibility measure in a 2D space for a
given point p. The two level window partition contains three
windows composed of several window nodes each. Line seg-
ments are drawn from each such node which is visible from
p. A set of points on the 2D sphere centered at p are also
shown, and four out of the 16 nodes are marked as a nearest
neighbor of one of the segments giving the result 1/4.

Algorithm 2: Visible Window Measure
Input: A configuration c ∈ C (c-space),
A set S of points on the unit sphere,
A set of windows W = {wi}ki=1

S ← S + c
dirs← ∅
for window ∈W do

for p ∈ window do
if is valid(cp) then

dirs← dirs ∪ S.NearestNeighbor(cp)
end

end
end
S ← S − c

return |dirs|
|S|

Visible Window Measure

How should we differentiate between the value of expand-
ing two nodes in the same level of the hierarchy? Figure 3
provides intuition for why distance to the closest window of
the lower level of the hierarchy does not imply a point is a
better candidate for expansion. This intuition is addressed by
the visible window measure component of our metric which
takes into account the measure of directions that “lead” to
a window in a lower level of the hierarchy. In 2D this cor-
responds to the measure of angles from which the first visi-
ble point outside the current level of the hierarchy is on the
lower level. In other words, if a point is at level i, what is the
percentage of angles such that a ray shot from that point at
that angle leave level i directly to level i− 1?

Computing the measure of directions leading to a win-
dow in a high dimensional space is non-trivial, but can be
approximated using the graph nodes which separate consec-
utive levels of the hierarchy. We call these separating nodes
window nodes, and can easily compute the window nodes of
a level by running a multi-source search from the nodes of
that level which terminates upon finding nodes in a different
level. Algorithm 2 describes how we use such nodes to com-
pute the visible window measure. Namely, we maintain a set
of uniformly sampled points on the unit sphere S. When re-
quired to compute the measure of directions for some point
p we can translate S to be centered at p, and then for every
window node v, such that p sees v, find the nearest neighbor
of the line pu on the sphere, and at the end of the process
return the ratio of marked to overall sphere points. Figure 4
demonstrates this approximation visually.

Given that the link distance is a discrete function, we set
the effect of the visible window measure component on the
metric as a normalized value between 0 and 1. This ensures
that the distance to the goal from configurations along a
topological path to the goal would decrease monotonically.
For example, configuration c3 in Figure 3 has most of its
“field of vision” occupied by a window leading to the lower
level in the hierarchy. If the metric were to attribute a signif-
icant reduction in distance based on this large field of vision,
then nearby states in the lower level of the hierarchy would



be assigned a larger distance to the goal (due to their com-
paratively small visibility window measure). Consequently,
a search algorithm using such a metric to explore would get
stuck in the local minima around c3.

Finally, since in most practical cases having a constant
fraction of the directions lead to a desired expansion is suffi-
cient for exploration, we do not reward visible window mea-
sures of more than 1/4 the maximum field of view (e.g. π/2
in 2D). The visible window measure for a d-dimensional c-
space with a goal configuration t is therefore defined as

wvmt(c) =
min(µd−1(WVD(c), µd−1(Sd)/4)

µd(Sd)/4
(1)

Where WVD(c) is the set of directions, µd−1 is some
(d − 1)-dimensional measure, and Sd is the d-dimensional
unit sphere. Notice that wvmt(c) is a value in the interval
[0, 1].

STCON Metric Given a goal configuration t, our metric
using the link distance and the visible window measure is
defined as

LD+
t (c) = LD(c, t)− wvmt(c) (2)

It is evident that our metric is unhelpful for STCON “No”
instances, namely instances where s and t are in different
connected components. This is another place where we see
the challenges encountered by the binary nature of the prob-
lem, but as the main purpose of this metric is to measure the
guidance of motion planning algorithms that almost always
assume they are given a “Yes” instance, one can argue that
in “No” instances every sample is equally useful, as in not
at all useful, since it does not make any progress towards a
solution.

Experiments
We show that the value given to (s, t) configuration pairs by
visibility based metrics better correlates to the “hardness”
of the STCON problem than the value generated by the Eu-
clidean distance between s and t or the C2G metric, i.e. the
length of the shortest (s, t)-path. We do so by experimentally
computing the correlation between five different metrics and
an estimate for the difficulty of an STCON problem. We test
three visibility based metrics, LD, LD+, and shortest path
link distance (SP−LD), and two widely used distance met-
rics C2G, and Euclidean distance. We use the runtime of
RRT as a proxy for estimating the difficulty of an STCON
problem.

We use a 2D environment with two mostly open spaces
connected by two passages, one simple and relatively wide,
and another jagged and relatively narrow (through which is
the shortest path in the environment between the two rooms
for most configurations). See Figure 5. While we purpose-
fully chose this problem to highlight the suitability of our
metric for the problem, we maintain that the existence of
several homotopy classes of c-space curves with very differ-
ent geometric properties, e.g. clearance and number of turns,
between two points, is not a rare or pathological example.

Figure 5: The environment (and also the c-space) for the ex-
periment and its window partitioning. Obstacle space points
are shown with a value of −1. Other colors indicate the (es-
timated) level in the window partition hierarchy of each state
relative to a goal in the upper right region. This visualization
was created by creating the point set in Algorithm1 as points
on grid

We computed the (linear regression) correlation between
the five metrics’ values for a set of 500 (s, t) pairs, and the
runtime of RRT for those tasks. We use RRT runtime as a
proxy to the hardness of STCON problems since, to the best
of our knowledge, other attempts to quantify this hardness
have not been done.

Our results are shown in Table 1 and Figure 6. Notice
that the r2 values (explained variance) of the visibility based
metrics SP -LD, LD, and LD+ is significantly better than
that of Euclidean distance, and while the values of C2G and
LD are very similar, LD+ produces better results than both
and about the same as SP -LD which does not generalize to
higher dimensions and, as shown in Figure 2, can be rather
easily manipulated. We have removed a very small number
of outliers with respect to RRT runtime (whose inclusion
only strengthened the results provided here).

Metric r2 Value
C2G 0.178
SP -LD 0.253
LD+ 0.252
LD 0.175
Euclidean 0.088

Table 1: r2 Values of the linear regression models of cost-to-
go (C2G), shortest path link distance (SP -LD), the direc-
tion measure enhanced link distance (LD+), link distance
(LD), and Euclidean distance.



Figure 6: A plot of ≈2500 data points matching 500 RRT
queries measured by 5 different metrics gathered in our ex-
periment, and their linear regression models. The x-axis cor-
responds to the normalized metric value, and the y-axis cor-
responds to the runtime of an RRT query in seconds.

Discussion and Future Work
In this paper we have defined a new visibility based met-
ric, which can be easily approximated in higher dimensions,
for the decision variant of the motion planning problem, and
provided evidence in support of the claim that it measures a
relatively large portion of the hardness of the STCON mo-
tion planning problem.

We hope in future work to explore the effects of defin-
ing a sampling efficiency metric (one that is tree-relative
rather than purely environment-relative) using LD+ (instead
of C2G). For example we could test the intuition that more
effective STCON algorithms, while failing to explore the
shortest path, do efficiently select nodes from which the goal
is more visible. Finally, we also wish to test the hypothesis
that our metric (and sampling efficiency based on our met-
ric) could be more effective than cost-to-go for learning al-
gorithms for motion planning problems.
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