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Abstract

Over the past decade, medical robotics has continued to gain
significant traction in a variety of surgical contexts. It has also
enabled previously impractical procedures, such as stereo-
electro-encephalography, to be performed at a speed and pre-
cision that improves upon current standards of care. The
commercial robotics systems that exist to support this pro-
cedure, however, are typically difficult to interface with for
research purposes. This limits the ability of Al researchers
to explore promising new robotics paradigms, such as the
application of automated planning within robotic motion
planning. With the introduction of low-cost research-grade
robotics platforms, such as MyCobot’s 6 Degrees of Free-
dom Collaborative Robotic Arm, as well as new software
bridges between Robot Operating System and popular medi-
cal research platforms, there is an emerging interest in using
lower-cost robotic development platforms to research proce-
dures like stereo-electro-encephalography placement. In this
paper, we demonstrate the use of automated planning tech-
niques to perform motion planning on a low-cost 6 Degrees
of Freedom robotic arm for the purposes of stereo-electro-
encephalography placement. We use Hybrid Planning via the
Expressive Numeric Heuristic Search Planner to model the
individual joints of a MyCobot arm that has a needle as an
end effector. Each joint has functions that describe the [X,y,z]
coordinates, angle and length of the joint, with two core ac-
tions for moving the joint and one for stopping its motion.
The problem setting includes information about the location
of the target entry point as a goal state, as well as the position
of the patient’s head as a forbidden region. The performance
of the planner was then tested in different scenarios and con-
figurations to understand how it performs under a variety of
problem settings. Further optimizations were performed to
the problem and domain specification to improve the quality
and safety of the plans that were generated.

Introduction

Surgical navigation broadly refers to the practice of utiliz-
ing information beyond that which is immediately accessi-
ble to the surgeon’s senses to provide spatial information
during a procedure. This can range in sophistication from
viewing static medical images during a procedure, akin to
a sailor reading a paper map, to the use of an external 3D
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measurement system for real-time tool localization, like a
modern ship equipped with GPS. Recent advances in medi-
cal robotics and Al have made surgical navigation platforms
that utilize robotics increasingly popular, favoured for their
improved ergonomics, speed, and precision over some tra-
ditional approaches (Goh and Ali 2022). One such example
of a procedure that has benefited from the recent develop-
ment of novel surgical robotics solutions is stereo-electro-
encephalography (SEEG).

SEEG is a neurosurgical procedure that involves the
placement of electrodes at precise 3D coordinates within
the brain in order to record epileptic seizure activity and lo-
calize potential targets for surgery (Chassoux et al. 2018).
While this method has considerable advantages over other
less invasive monitoring techniques which suffer from sub-
stantially reduced spatial accuracy, it requires a high degree
of precision to place the electrodes deep within the brain
safely. Until recently, the only spatial measurement tech-
nique with sufficient accuracy for the procedure was the use
of mechanical guides manually configured for each elec-
trode during the procedure. Over the course of between 12-
15 electrodes, this method resulted in prohibitively long op-
erative times. With the introduction of robotic navigation
for SEEG, the transition between electrode insertion sites
can be significantly reduced while achieving similar or im-
proved electrode placement accuracy (Mullin, Smithason,
and Gonzalez-Martinez 2016).

Over the past two decades there have been several robotics
platforms introduced to support neurosurgical procedures
like SEEG (Faraji, Remick, and Abel 2020), including the
ROSA stereotactic robot (Lefranc et al. 2014), the Neuro-
mate Robot (Kajita et al. 2015), and the Mazor Renaissance
system (Liang et al. 2022). These systems include a vari-
ety of safety mechanisms and fail-safes to ensure that they
do not deviate from their planned trajectories, and come
equipped with planning software to specify no-go zones and
areas where the arm must reduce speed. The clinicians are
required to specify their target point and trajectory, as well
as forbidden regions, and the robotic platforms utilize their
own planning software to specify the kinematics of the arm.
While the specifics of these motion planning algorithms are
proprietary, they would need to account for the unique state
space that includes the current tool, the electrode trajecto-
ries and the regions specified by the user. They might also



include additional objective functions to minimize the time
for a given motion or improve motion accuracy by favouring
smaller motions, just as the Neuromate system reported to
account for the optimal working range of the joint encoders
for a given platform (Kajita et al. 2015).

Robotic motion planning is a complex problem, with a
well-established field built over the past several decades ded-
icated to solving it. With the rapid pace of Al advancement
over the past few years there has been increasing interest in
the applications of Al to robotic motion planning, typically
through the field of automated planning. A major develop-
ment was the introduction of ROSPlan in 2016 (Cashmore
et al. 2015), enabling the direct application of Planning Do-
main Definition Language (PDDL) to robotic motion plan-
ning. In this project, we aim to explore the applications of
automated planning to medical robotics by implementing a
domain and problem in PDDL to simulate SEEG placement
with MyCobot’s 6 Degrees of Freedom (DOF) Collaborative
Robotic Arm.

By considering a needle attached to the robotic arm’s end,
our goal is to find a sequence of joint rotations that take
the tip of the needle to a specified target location without
hitting the patient’s head during the trajectory, either with
the needle or the arm itself. Using Hybrid Planning, we
employ the Expressive Numeric Heuristic Search Planner
(ENHSP) (Scala et al. 2016) with movement actions happen-
ing through time and states representing the 3D positioning
of each of the joints of the robot. The following sections will
detail related works in this space, the implementation of our
planning model, evaluation of the model within a custom 3D
Slicer simulation (Kikinis, Pieper, and Vosburgh 2014), and
a discussion of the limitations and next steps for this project.

Related Work

Robotic motion planning refers broadly to the problem of
determining the series of movements or trajectories that a
robot must take to achieve a goal or perform a specific
task (Masehian and Sedighizadeh 2007). The planning tools
used to solve robotic motion problems can range from tra-
ditional graph and path planning algorithms, such as A* or
Dijkstra’s algorithm, to supervised learning techniques like
Monte Carlo search tree and recurrent neural networks, to
more recent advancements in reinforcement learning (Zhou,
Huang, and Frinti 2022). Given the wide range of robotic
motion planning applications, robotic platforms and agent
embodiments that exist, frequently motion planning strate-
gies are not developed to be widely generalizable.

In the field of robotic motion planning for multi-link
robotic manipulator arms, the focus of this paper, this trend
is especially true. The specific geometry and applications of
a given robotic platform, at least at a commercial level, tend
to be built into the motion planning solution the platform
employs, limiting the scalability and generalizability of a
given motion planning solution (Bertolucci et al. 2019). The
prospect of using a universal planning language to articulate
a given problem and domain in robotic motion planning, and
apply state-of-the-art planners to the problem at hand, has
driven increasing interest in applications of automated plan-
ning within the field. An early project in this domain was

ROSPIlan, a framework for using planning tools and Plan-
ning Domain Definition Language (PDDL) in combination
with the Robot Operating System (ROS) library (Cashmore
et al. 2015). While this project opened up the tools of plan-
ning to the wider ROS community, some limitations of the
base language (PDDL) may have reduced its wider applica-
bility. Garrett et al. extended the functionality of PDDL for
robotic motion planning in their paper PDDLStream, where
streaming objects add sampling procedures to help robots
with sensing capabilities (Garrett, Lozano-Pérez, and Kael-
bling 2018), while Castro et al. built the Task and Motion
Planning framework around an extended version of PDDL
(Castro 2022). Both of these frameworks are well suited to
straddling levels of abstraction in higher-level task planning
and lower-level robotic motion planning but still suffer from
the numerical calculation limitations of PDDL. The continu-
ous processes and events introduced in PDDL+ tend to sim-
plify the modelling of temporal planning domains and have
gained traction in recent years for robotic manipulation and
path planning. Along these lines, Thomas et al. found that
PDDL+ was better suited than using PDDL for their hybrid
planning framework for task and motion planning (Thomas
et al. 2019), and Belolucci et al. demonstrated the applica-
tion of exogenous events triggered by the environment to
help model a dual-arm robot (Bertolucci et al. 2019).

While there have been significant advances in open-
source solutions to robotic motion planning, and numerous
commercial surgical robotics solutions that have been in-
troduced over the past decade, there still does not exist, to
the best of our knowledge, an accessible platform for open-
source development of robotic navigation solutions using
automated planning techniques. Moreover, we are unaware
of any papers to date that explore the application of planners
for path planning in surgical robotics. The fields of image-
guided therapy and medical robotics have historically suf-
fered from siloed approaches, exacerbated by differences in
standard programming tools and challenges related to cross-
platform compatibility of ROS and IGT tools. The recent
introduction of Slicer-ROS2, however, combined with ad-
vancements in accessible robotics platforms, such as My-
Cobot, has made the concept of accessible open-source med-
ical robotics development more feasible than ever (Connolly
et al. 2022). In this paper, we demonstrate the application of
automated planning in the context of robotic SEEG place-
ment, and in doing so hope to highlight the emerging capac-
ity for accessible robotic image-guided therapy research.

Model Description

A hybrid planning approach was selected for this problem
given the need to keep track of numeric variables that change
over time. These numeric variables must be updated over
time to reflect the position of each joint of the robot as it
moves, and the movements themselves must be updated to
avoid collisions.

Then, to track the position of each of the joints of My-
Cobot’s 6 DOF Collaborative Robotic Arm (which we will
be referring to as “the robot” from now on) and simulate the
effects of its movements, we created the model presented in
Figure 1. Joints are named .J;, with ¢ ranging from 0 to 9, and



movements are named M}, with j being equal to the number
of the first joint that will be affected by its movement (e.g.
M5 is so called because neither Jy nor J; would change
their positions due to its movement, but all the joints with
1 > 2 would). In this model, segment J8J9 corresponds to
the needle. Even though a direction is shown for each move-
ment in Figure 1, all of the movements can happen in any
rotational direction: clockwise or counterclockwise.

Figure 1: MyCobot’s 6 DOF Collaborative Robotic Arm and
the model created to simulate the movement of its joints.
Movements are shown in a single direction to avoid clutter-
ing the representation, but they all happen bi-directionally.
Source of MyCobot’s image: (ElephantRobotics 2023).

Since each M; movement is angular, it’s paramount to
keep track of the angles between joints. For that matter, we
consider that each movable joint (J2, Js, J5, J7, Jg and
Jg) starts in the configuration presented in Figure 1, with
all angles set to 0. Clockwise movements reduce the value
of the angle, while counterclockwise movements increase it.
As such, Figure 2 presents an example of a movement in
which # = 7 (180°) and also the aforementioned considera-
tion that, for a movement M}, only joints .J; with ¢ > j will
move.

In order to decrease the computational cost required to
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Figure 2: Partial representation of the robot, modelling an
angular movement of +180 degrees.

calculate the positions of the joints during movements, we
follow a mixed angle representation, in which some of the
joints have absolute angles and some of them have relative
angles (Capitanelli et al. 2018). Js, J3, J5 and J7 have ab-
solute angles (i.e. if J3 increases its angle by 6, J7 will also
do so) while Jg and Jg have relative angles (i.e. only their
own movement will change the value of their angles).

Our real-world problem has the robot move the needle to-
wards a target while avoiding the head. Therefore, besides
the robot, our model also has an obstacle which, for the
sake of simplifying collision calculations, is described as a
sphere.

The model implementation is available on GitHub !.

Initial state

The initial state is comprised of a set of fluents that describe
the positions and configurations of all the objects in the
problem. Thus, for every movable joint J;, there are 5 func-
tions set to initial values, shown in Code 1 (non-movable
joints have the same functions, except for angle). While
ji_x, ji_y and ji_z describe the initial x, y and z po-
sitions of joint J;, ji_angle describes its angle, and 11
refers to the length of this segment.

1 (= (ji-x) 5.0)

2 (= (ji-y) 0.0)

3 (= (ji-z) 3.0)

4 (= (ji-angle) 0.0)
5 (= (li) 5.0)

Code 1: Example of joint functions for a joint .J;.

Besides the joint functions, there are global functions that
are used to describe the problem setting, shown in Code 2

"https://github.com/MahatKC/6DOP



target_x, target_y and target_z are related to the
target’s 3D position.

(= (target_x) -5.0)
(= (target_y) 5.0)

(= (target_z) 3.0)

= (sphere_center_x) 4.0)

(= (sphere_center-y) 4.0)

(= (sphere_center_-z) 3.0)

(= (squared_sphere_radius) 9.0)

O 00 1O\ W W —
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10 (no_movement)

11 (= (lambda) 100)

12 (= (w) 0.0174533)

13 (= (updating_positions) 0)

14 (= (squared_joint_radius) 4)

Code 2: Global functions related to the problem setting with
arbitrary values.

Then, sphere_center_x, sphere_center_y and
sphere_center_z refer to the obstacle’s center, with
squared_sphere_radius being the square of the
sphere’s radius. Since the sphere will always have the same
dimension throughout the execution of the plan, its radius is
described as the square radius to avoid having to calculate it
for every single collision verification.

The no_movement fluent is set to True since no
movement is initially happening, 1ambda is the acceptable
squared error (which will be better described in Subsection
) and w is the angular velocity of the joints’ movements (in
radians), which is set to 0.0174533 to allow for better visu-
alization of the plan, since 0.0174533 radians are equal to
1° (i.e. if a joint moves for 90 seconds, it has moved 90°).

Finally, updating_positions is a flag used to force
the planner to first update the angles and then the positions
of the joints (Subsection describes its related event) and
squared_joint_radius is used to model collisions
between joints.

Varying experimental conditions may be mod-
elled by changing the values of the target position
(target_x, target_y and target_z), head po-
sition  (sphere_center_x, sphere_center_y
and sphere_center_z) and head size
(squared_sphere_radius), considering a fixed
initial position for the robot. However, some experimental
conditions might lead to unsolvable problems (e.g. target
outside of the reach of the robot), for which the value of
lambda may be increased leading to a viable solution.

Actions

In a broad sense, only two actions are used in the do-
main: move and stop. However, as can be seen in
Figure 1, there are 6 different move actions, which
have accompanying stop actions, and each move is
actually broken down in two: move_clockwise and
move_counterclockwise.

Therefore, a move_clockwise action for a joint J;
happens as shown in Code 3. Here, some boolean fluents

related to the movements are used so that a few restrictions
are imposed:

1. no two joints are moving simultaneously,

2. ajoint only moves in a single direction at a time,

3. ajoint J; will only move after the previous joint J;_; has
finished moving.

1 (:action move_ji_counterclockwise
2 :parameters ()

3 :precondition (and

4 (no_movement)

5 (not (joint_i_moving))

6 (not (joint_i_finished))

7 (joint_i—1_finished)

8

9 ceffect (and

10 (joint_i_moving)

11 (joint_i_moving _counterclockwise)
12 (not (no_movement))

13))

Code 3: Move action for a joint .J;.

The third restriction is necessary due to the limitations of
ENHSP and PDDL+. For a joint J; to move after a joint Jj,
with k£ > 4, it would be necessary to calculate the angle be-
tween Ji and J;_1, which is only possible with the arcsin()
and arccos() functions, which are currently not available in
these tools.

The stop action then, shown in Code 4, will only change
the boolean fluents that direct movement in the system. A
single stop action is used for both movement directions. By
working only with the boolean fluents, the actual numeric
fluents (functions) can be manipulated exclusively by pro-
cesses and events.

(:action stop_ji
:parameters ()
:precondition (and
(joint_i_moving)
(not (no_movement))
)
:effect (and
(not (joint_i_moving))
(not (joint_i_moving_clockwise))
(not (
joint_i_moving_counterclockwise))
11 (no_movement)
12 (joint_i_finished)
13 1))
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Code 4: Stop action for a joint .J;.

Processes

The actual angular movement of the robot’s joints only hap-
pens with processes. Each move action has a corresponding
moving process and the processes only start after their cor-
responding actions are performed. Any process for a joint
J; will cease its execution when a st op action for the joint
J; is performed. In Code 5, the movement booleans set up



by the move action are preconditions for the process, which
then updates the relevant angles according to the angular ve-
locity defined in the problem.

1 (:process moving_ji_clockwise

2 :parameters ()

3 :precondition (and

4 (joint_i_moving)

5 (joint_i_moving_clockwise)

6 (not (no_movement))

7 (<= updating_positions 0)

8 )

9 ceffect (and

10 (decrease (ji_angle) (x #t w))
11 (assign (updating_positions) 1.0)
12.))

Code 5: Moving process for a joint .J;.

After updating the angles, the updating_positions
flag is raised, so the update_positions event will oc-
cur and the process will only resume after the event has had
its effect. In an initial implementation, we updated the posi-
tions of the joints within processes, however that led to ma-
jor issues regarding the order of operations performed by the
planner. Since all of the calculations for the positions require
the updated angle value, we left the angle update within the
processes and moved the position updates to events, which
solved those issues.

Events

As mentioned at the end of the previous section,
the actual update of positions happens with the
update_positions event, shown in Code 5. Given
the characteristics of the robot, any M; movement will
change the 3D position of all joints .J; with ¢ > j, so that
the update_positions event for a joint will update the
position of all joints after it (and including itself). Positions
are only updated after the angle of joint .J; has been properly
updated in the moving process. Then, after all positions
are updated, the flag is set to zero so that the process may
resume.

Collisions are handled by events, for which three
collision events are considered: head_collision,
joint_collision and floor_collision. If any
collision happens, the effect is that all movement is stopped,
taking the planner to a dead-end, since it is within the goal
(described in Subsection ) to not have any collisions what-
soever.

The head_collision event, as shown in Code 7, cal-
culates, for a joint J;, if the joint’s 3D position is within
the boundaries of the sphere. Here, the choice of setting the
squared radius of the sphere instead of the radius becomes
clear: calculations would get costly if done otherwise.

The joint_collision event checks, for a joint J;, if
it is colliding with all the other joints .J;, that it might collide
with while moving. The verification for collision is done in
a similar fashion as the head collision, but instead of using
the squared_sphere_radius,joint collision considers
the squared_joint_radius, as can be seen in Code 8.

(:event update_positions_ji_moving
:parameters ()

:precondition (and
(joint_i_-moving)

(= updating_positions 1.0)

:effect (and

1
2
3
4
5
6 )
7
8 (assign (ji-x)
9
0

(+ jk_x

1 srcalculated relative position in x
axis

11 )

12 )

13 (assign (ji-y)

14 (+ jk.y

15 sycalculated relative position in y
axis

16 )

17 )

18 (assign (ji-z)

19 (+ jk-z

20 ;ycalculated relative position in z
axis

21 )

22 )

23 ;s Updates all joints until the last
one

24

25 (assign updating_positions 0.0)

26 1))

Code 6: Update positions event for a joint .J;. The positions
of the previous joint, Ji, (k = % — 1) are used as reference to
calculate the positions of the succeeding joints.

1 (:event head_collision_ji

2 :parameters ()

3 :precondition (and

4 (not (no_movement))

5 (or

6 (<=

7 (+

8 (" (- ji_x sphere_center_x) 2)

9 (+ (* (- ji-y sphere_center_y)
2)

10 (" (- ji-z sphere_center_z) 2)

11

12 )

13 (squared_sphere_radius)

14 )

15 )

16 )

17 :effect (and

18 (no_movement)

19 ;For k in {2,3,5,7,8,9}

20 (not (joint_k_moving))

21 (head_hit)

22 )

Code 7: Head collision event for a joint .J;.

Having a much simpler math behind it, the
floor_collision event is presented in Code 9



1 (:event joint_collision_ji

2 :parameters ()

3 :precondition (and

4 (not (no_movement))

5 ;Ji&kJk Collision

6 (<=

7 (+

8 (" (- ji-x jkox) 2)

9 (+ (" (= jiiy jkoy) 2)
10 (" (- ji-z jk.z) 2)

11

12 )

13 (squared_joint_radius)
14 )

15 ; Check for all other Jk joints
16 sthat Ji might collide with
17 )

18 :effect (and

19 (no_movement)

20 ;For k in {2,3,5,7,8,9}

21 (not (joint_k_moving))

22 (joint_hit)

23 )

Code 8: Joint collision event for a joint .J;

and just forbids any of the moving joints to have a negative
value of z.

1 (:event floor_collision
2 :parameters ()

3 :precondition (and

4 (not (no_movement))
5 (or

6 (<= j2-z 0.0)

7 (<= j3.z 0.0)

8 (<= j4_z 0.0)

9 (<= j5-z 0.0)

10 (<= j6_.z 0.0)

11 (<= j7-z 0.0)

12 (<= j8.z 0.0)

13 (<= j9-z 0.0)

14 )

15 )

16 ceffect (and

17 (no_movement)

18 ;For k in {2,3,5,7,8,9}
19 (not (joint_k_moving))
20 (floor_hit)

21 )

Code 9: Floor collision event.

In addition to collision events, there are also the angle re-
set events. Presented in Code 10 for any joint J;, the angle
reset sets the value of the angle back to 0 if it becomes 27
or —2m. This was created to reduce the search space of the
planner to the set of angles between (—27, 27) and help it
converge to a solution in a finite length of time.

Goal

Our goal then is to take the last joint (Jg) to the target,
which can be seen in Code 11. Here, we consider the square

1 (:event reset_ji_angle

2 :parameters ()

3 :precondition (and

4 (or

5 (>= (ji-angle) 6.283)
6 (<= (ji-angle) -6.283)
7 )

8 )

9 ceffect (and

0 (assign (ji-angle) 0.0)
L))

Code 10: Reset angle event for a joint J;.

of the distance of the last joint to the target and define
the goal as having that square distance below a threshold
value 1lambda. Even having 6 degrees of freedom, the robot
would not be able to get the needle to every single point in
space within its reach, but it would be able to get the needle
extremely close to a target point, and that amount is deter-
mined by lambda. If the target can be reached, it is still
useful to have a Lambda value greater than 0 to reduce the
search space of the planner and allow it to arrive at a viable
plan within a reasonable time.

1 (:goal

2 (and

3 (<=

4 (+ ( (- j9-x target_x) 2)

5 (+ (C (= j9.y target.y) 2)
6 (" (- j9.z target_z) 2)
7 )

8 )

9 (lambda)

10 )

11 (no_movement)

12 (not (head_hit))

13 (not (floor_hit))

14 (not (joint_hit))

15 )

Code 11: Goal of the plan.

Besides getting the last joint to the target, the goal
specifies that no collisions are allowed (head_hit,
floor_hit and joint_hit), which makes the planner
avoid the obstacle at all costs. Lastly, it is required that
no movement must be happening, which in turn requires a
stop action to be performed so that the plan can be suc-
cessful.

Results

We managed to successfully implement and model the do-
main problem in PDDL+ so that, for a given problem, the
ENHSP planner is capable of generating a sequence of angle
rotations that should be performed by the MyCobot robot.
In order to optimize the performance of the planner and
measure the quality of the planned motion, we performed
a series of experiments. These included testing a series of
planner heuristics, variants, and search strategies to mini-
mize the number of states explored, evaluating the quality of



the planner in 5 simulated planning domains, and visualizing
the plan embodied in a physical MyCobot robot.

Planner Optimization

Since we are only using a single planner, ENHSP (Scala
et al. 2016), we explored a variety of different planner con-
figurations and monitored the changes in the number of
states explored by the planner. The tested configurations,
with their descriptions taken from ENHSP’s website (Scala
et al. 2016), were:

¢ Heuristics:

— aibr: Additive Interval-Based Relaxation;
— hadd: Additive version of sub-goaling heuristic;

— hradd: Additive version of sub-goaling heuristic plus
redundant constraints;

— hmax: Hmax for Numeric Planning;

hrmax: Hmax for Numeric Planning with redundant
constraints;

hmrp: heuristic based on MRP extraction;

blcost: goal sensitive heuristic;
¢ Planner configurations:

— sat-hmrp: Sat planning with Greedy Best First Search
plus MRP heuristic;

— sat-hmrph: Sat planning with Greedy Best First Search
plus MRP heuristic with helpful actions;

— sat-hmrphj: Sat planning with Greedy Best First
Search plus MRP heuristic with helpful actions and
helpful transitions;

— sat-hadd: Sat planning with Greedy Best First Search
with numeric hadd;

— opt-blind: baseline blind heuristic (gives 1 to state
where goal is not satisfied and 0 otherwise) with A*
search;

¢ Search strategy:

— gbfs: Greedy Best First Search (f(n) = h(n));
— WAStar: WA* (f(n) = g(n) + hy * h(n));
— wa stard: WA* (f(n) = g(n) + 4 * h(n)).

The problem setting for these experiments was a single
target coordinate for the end-effector that required only 3
joint movements but was qualitatively found to require sub-
stantial search from the planner to reach a solution. Since
the runtime can vary based on CPU load at the time of plan-
ner execution, the number of nodes and states explored for
a given configuration was reported as a compute-agnostic
search metric.

Table 1 details the experiments performed to compare
different heuristic methods available in the ENHSP imple-
mentation. Note that planner execution time was generally
cut off after 5 minutes of computation, and values that in-
clude a > indicate that a given configuration did not fin-
ish executing. This experiment indicated that many of the
tested heuristics performed identically, including the default
heuristic.

Heuristics Nodes States
aibr 623,730 1,245,663
hadd 623,730 1,245,663

hradd 623,730 1,245,663
hmax >8,736,907 | >17,449,625
hrmax >8,731,711 >17,439,248
hmrp 623,730 1,245,663
blcost >10,378,528 | >10,378,620

Table 1: All heuristics that are available for use with ENHSP,
and the corresponding number of nodes and states explored
in trying to find a solution.

In Table 2, the results from testing distinct planner config-
urations on the same base problem setting are shown. These
planners’ configurations combine various heuristics with ei-
ther SAT planning, which uses greedy best-first search, or
optimal planning using A*, as indicated by the “sat” or “opt”
prefix. Note that in general all planning configurations per-
formed similarly, with the exception of two that were unable
to find a solution within 5 minutes of execution.

Planner Nodes States
sat-hmrp 623,730 1,245,663
sat-hmrph 623,730 1,245,663
sat-hmrphj 623,730 1,245,663
sat-hadd >5,742,012 | >11,464,556
opt-blind | >6,909,179 | >9,439,545

Table 2: The nodes and states explored using various
ENHSP planner configurations.

Table 3 shows the results of testing out different search
strategies available in ENHSP. The default search strategy,
“gbfs”, was the only tested strategy that was able to converge
on a solution within the aforementioned time constraint.

Search strategy Nodes States
gbfs 623,730 1,245,663
WAStar >6,600,941 | >13,213,731
wa_star_4 >6,633,001 | >13,208,743

Table 3: The number of explored nodes and states when
ENHSP is used for planning the same problem setting us-
ing different search strategies.

Simulation Testing

In order to better model the planning context and visualize
the output of the planner, a custom 3D Slicer extension was
developed that enables users to define the patient position,
forbidden region around the patient, and target point for the
end effector. This extension also can be used to run the plan-
ner, visualize the resulting robotic path, and load the indi-
vidual joint angles to physically test the plan using the My-
Cobot platform. Using this extension, we designed and ran
a case study for a particular patient position and target loca-
tion, with the objective of moving the end effector as close



as possible to the target position. Across a series of lambda
values, we found the closest the end effector was able to get
to the target was 3.5 mm. Figure 3 shows a visualization of
the generated plan in 3D Slicer, with the forbidden region
around the patient displayed as a wireframe sphere and the
target position visible in green.

e

Figure 3: A visualization of the generated plan in the 3D
Slicer extension, with the robot geometry received from
Slicer-ROS2 visible in white, the target point in green, and
the forbidden region around the patient’s head as a wire-
frame sphere. Note that the end effector of the robot is mod-
elled as a line and is shown in red.

Summary

In this paper, we demonstrated the application of auto-
mated planning for robotic motion planning in the context
of neurosurgical robotics, using ENHSP for planning and
3D Slicer for problem simulation. Path planning of the My-
Cobot 6DOF robot platform was modelled as a hybrid plan-
ning problem using PDDL+, with the objective of moving
the tip of a linear instrument to a prescribed target loca-
tion without colliding with the patient’s head. This planning
model was integrated into a custom 3D Slicer application to
simulate the problem, execute the planner and visualize the
resulting robot path.

Future Work

There are several immediate next steps required to fully
model the problem of robotic motion planning using the My-
Cobot 6DOF platform. These include modelling link colli-
sions during planning, enabling simultaneous movement of
separate joints, and allowing more complex paths that in-
volve multiple movements of the same joint over time. An-
other simplification we added is that joints must move in
order of closest to further from the base, which could be re-
moved through additional modelling.

Another area of exploration would be to develop custom
heuristics to be used with the ENHSP planner. These could

be specifically tailored to the context of robotic motion plan-
ning and help simplify the search space for the planner, po-
tentially improving runtime performance. In regards to the
planner, an extension of ENHSP and PDDL+ would also be
a possible avenue for future work, integrating the mathemat-
ical operators currently unavailable and modifying the goal
definition to optimize safety constraints and resource usage.

Besides these improvements, further experiments could
be performed comparing our approach to search-based mo-
tion planning methods, as well as an inverse kinematics
solver combined with a continuous collision checker. Fi-
nally, equipping the custom 3D Slicer application to send
joint positions to the robot following user previewing and
approval would help make this system an end-to-end demon-
stration of executing an automated robotic surgical plan us-
ing 3D Slicer, a significant achievement for a low-cost con-
figuration.
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