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Abstract

This paper extends a constraint-based planning approach to
deal with mixed-initiative for complex multi-robot missions.
Operators in the loop with multi-robot systems may have
to interact intensively: explicitly considering their cognitive
load while planning the missions is a critical problem to ad-
dress. The purpose of this work is to take into account at mis-
sion planning time the operator capacity to supervise the mis-
sion execution, to ensure efficient and safe operations. We
introduce new mental load related metrics in an automatic
constraint-based planner. The optimization of these metrics
yields better quality plans for the operators to supervise and
interact during execution. The planning feasibility and per-
formances are evaluated on realistic scenarios.

Introduction
Mixed-Initiative Planning and Acting
Mixed-initiative, as described by Jiang and Arkin (2015),
refers to collaborative frameworks in which both human op-
erators and robotic agents possess the autonomy to initiate,
modify, or discontinue tasks based on a dynamic assessment
of the situational context. It improves operational efficiency,
ensuring that both human and robotic agents can proactively
contribute to achieving common objectives. For instance,
mixed-initiative can be used with purely reactive systems
that simply suggest to the user the best choice to make.
It can also be part of a deliberative approach to mission
planning and execution.

In planning activities, mixed-initiative refers to an ap-
proach in which humans and automated planning systems
contribute actively to the creation or modification of plans.
Examples are the SHERPA project (Bevacqua et al. 2015),
where an operator find plans with the help of an exploration
system to search for missing people in the mountains, or
in the context of Mars exploration (Bresina et al. 2004).
Mixed-initiative planning leverages the strengths of humans
and computers: humans provide contextual understanding,
creative problem-solving and flexibility, while automated

systems offer speed, consistency, and the ability to effi-
ciently consider complex constrained situations or large
volumes of information.

Beyond planning, the principles of mixed-initiative
also apply to mission supervision and execution (Dixon,
Wickens, and Chang 2005; Cummings and Guerlain 2007;
Wilkins, Lee, and Berry 2003). Planning aims at harnessing
the complementary capabilities of humans and robots,
thereby enhancing performance, efficiency and safety in the
proper achievement of the mission. It primarily allows to
quickly repair jobs without jeopardizing the overall plan,
and also to handle collaborative human/robot plan repair or
even replanning when needed.

For both planning and supervision activities, a key as-
pect in mixed-initiative approaches is to endow the operator
with the ability to properly interact with the planner and the
robots. Apart from adequate ergonomics, this calls for in-
formation sharing, control algorithms, and interaction pro-
tocols. In addition, and especially for mixed-initiative exe-
cution supervision, the operator must be in a mental state
that allows its intervention.

Two important notions come into play: the Situation
Awareness (SA) and the NASA Task Load indeX (NASA-
TLX) (Ruff, Narayanan, and Draper 2002). SA involves un-
derstanding the current state of the environment and the
robots, interpreting data to project future states, so as to
make decisions that align with the robots’ capacities and
goals. The NASA-TLX is a widely used workload assess-
ment tool that evaluates the perceived workload experienced
by individuals performing tasks. It provides a multidimen-
sional rating system that encompasses different aspects of
workload to capture a comprehensive view of the task de-
mands placed on an individual. These dimensions include
mental demand, physical demand, temporal demand, perfor-
mance, effort and frustration. The NASA-TLX is a valuable
tool in the development and evaluation of mixed-initiative
systems, offering insights into how automated systems im-
pact human operators. It should be noted that the analysis of
the mental load of an operator on the field is an active re-
search topic in the cognitive models community (Kokar and



Endsley 2012; Hollands, Spivak, and Kramkowski 2019;
Endsley, Garland et al. 2000). These are still to be adapted
to a decision support context such as ours.

Contributions
In this paper, we propose a method to plan complex multi-
robot missions that explicitly consider the operator con-
straints, aiming at making possible the mixed initiative su-
pervision of the plan execution. This is done by introduc-
ing operator-related metrics that produce plans which do not
overwhelm the operator during execution monitoring. Con-
sidered missions involve a team of aerial and ground robots
that must ensure a progression throughout a terrain struc-
tured as a navigation graph. A mission involves the accom-
plishment of specific tasks at a number of nodes, some of
which are constrained relative to each other. Main contribu-
tions of the paper are

• The definition of the mission with a Constraint Satisfac-
tion Problem (CSP) based planning models,

• the introduction of metrics to quantify the operator’s op-
erational workload and information gain, and

• the evaluation of the method on a realistic mission use
case.

Outline
In the next section, we take a brief look at the literature on
methods of interaction between an operator and a team of
robots, and the ways in which they can be quantified. The
two following sections state the considered problem, formal-
ize it and present the operational planning model. Metrics
of operator mental load and informational gain are then in-
troduced, and mission planning results are presented, on a
simple use case first, and then for a full-scale scenario.

Problem Statement
General Problem
We address the challenge of planning missions for heteroge-
neous robot teams tasked with traversing a designated area
under specific constraints and auxiliary objectives. The sce-
nario involves a group of robots operating autonomously in
a specified zone, supported by a remote operator situated
nearby to the area. The operator possesses the capability to
teleoperate the robots. He is familiar with these kinds of mis-
sions and provides strategic support during the mission. The
heterogeneity of the robot team is a critical aspect, as certain
tasks within the mission can only be executed by specific
robots, necessitating task allocation among the team mem-
bers.

The exploration zone presents its own set of contingen-
cies related to terrain, which may obstruct the execution of a
pre-defined plan and require operator advice to achieve mis-
sion objectives. Furthermore, the robots face the possibil-
ity of losing functionality either through the depletion of re-
sources or mechanical failures, introducing a layer of unpre-
dictability that the mission planning process must account
for. Such deviations from the initial plan can be detected
by an experienced operator, who might take extra steps to

modify the plan before problems arise. While telecommu-
nication issues are present in these scenarios, they are not
deemed significant enough to impede the ability to teleoper-
ate the robots effectively and will not be considered into the
planning model.

A pivotal element of the mission is the execution of dura-
tive tasks, which may necessitate the completion of prereq-
uisite tasks or the simultaneous execution of multiple tasks.
Another objective of the mission is to respect some tempo-
ral exclusion in designated areas, in which certain robots are
expected to be outside for a given time.

Role of the Operator
During the mission, the operator’s responsibilities encom-
pass the verification of task completion, the maintenance of
a comprehensive understanding of the mission’s progress,
and ensuring the safety of all involved agents. This multi-
faceted role requires the operator to continuously monitor
task execution while ensuring they are performed accurately
and efficiently.

In situations where multiple task execution paths are
available, the operator must take informed decisions, prior-
itizing the safety of the agents while considering the mis-
sion’s objectives and the current situational context. To be
able to take the proper decisions, he must have a high level
of situational awareness to adapt to dynamic mission envi-
ronments. He must therefore possess a holistic view of the
mission’s advancement, integrating information from vari-
ous sources to form a coherent picture of the current state
and foresee potential issues that may arise. Hence, besides
the consideration of the operator’s mental load during the
mission planning process, ensuring he is aware of the situa-
tion to be able to take decisions is also an important concern.

Problem Formalization
Let us consider a set of nr robots navigating directed graphs,
each denoted by Gi = (V,Ei), where i serves as the index
for individual robots. In this context, eik ∈ Ei represents the
kth edge available to robot i, with v, v′ ∈ V 2 forming edges
as eik = (v, v′). The traversal time for the kth edge by robot
i is denoted by a constant Ttik.

Each robot i have specific entry and exit points associated
with respective vertices.

Let v, v′ and v′′ denote respectively entry, exit and any
other random vertex. v and v′ are indirectly identified by a
variable Biv defined for every vertex as: Biv = 1, Biv′ =
−1 and Biv′′ = 0.

We assume a discrete time representation as natural
numbers, where 0 is the initial time and tmax denotes the
planning horizon, at which all robots must have reached
their exit nodes.

The mission incorporates a total of nt tasks, each needing
to be performed at a specific position Tm ∈ V where m in-
dexes each task. Each task duration is specified by Dtm ∈
J0, tmaxK. Each task is associated with a valid initiation
window, denoted as Wtm ⊆ J0, tmaxK, ensuring that tasks
are started within specified time slots. Additionally, particu-



lar tasks are required to be executed by specific robots, these
assignments are detailed in the set Atm ⊆ J1, nrK.

In parallel, the mission features nra temporal restric-
tions, represented as Arn ∈ V , where n indexes each
temporal exclusion. The implication of a temporal exclusion
varies, impacting only a subset of robots. Robots that
must respect temporal exclusions are identified in the set
Marn ⊆ J1, nrK for the nth area. The position must not be
occupied by robots that have to comply with the temporal
exclusion during a time window Warn ⊆ J0, tmaxK.

Coordination between task execution is categorized into
two types to streamline the framework, focusing on pairwise
interactions. The sets S and P encompass action pairs that
require synchronous and successive execution, respectively.

Furthermore, the mission strategy includes deploying
agents for recognition. The corresponding boolean constant
Afiv is true iff the robot i is allowed to arrive first at position
v.

The assignment must be carried out within a predefined
timeframe, but the plan quality will be assessed in relation
to the speed of its planned execution.

Planning Problem Formulation
In this section, we propose an encoding of the problem into
a CSP formalism with finite-domain integer variables, in-
spired by the one of Guettier (2007) on related progression
problems. This approach is particularly efficient for produc-
ing plans. Boolean variables are represented as binary inte-
ger variables where 1 encodes true and 0 encodes false. We
denote disjunctions by vertical lines to the left of the equa-
tion. All constants are denoted by non-qualigraphic letters.
Variables are denoted by qualigraphic letters.

Navigation Graph
The planning of the actions carried out by the agents is done
using a flow model. We define Fik ∈ J0, 1K the flow rep-
resenting the path of the robot i on the kth edge. Thus, en-
suring flow consistency is equivalent to compare incoming,
outgoing and balance flow. To do so, for each position, we
have to constraint incoming and outgoing flow to be equal
to balances. ∑

k|eik=(v′,v)

Fik −
∑

k|eik=(v,v′′)

Fik = Biv (1)

Propagation of Operational Metrics
The primary objective of this mission planning model is to
produce schedules for the robot actions. It is therefore nec-
essary to have a time metric based on the robots’ achieve-
ments. To do this, we have chosen to represent time with
two variables Tiv,Div ∈ J0, tmaxK2 that represent the time
of arrival and the duration of the time spent on the node v of
the robot i. It has to be propagated on the graph as:

Tiv =
∑

k|eik=(v′,v)

Fik(Tiv′ +Div′ + Ttik) (2)

By the network flow definition, Tiv is 0 where the agent
does not use the position v. We need to add a constraint on
Div so it’s also 0 where agent does not pass. This is the case
for every point where Tiv is 0 except the entry point. As Biv

represent flow bias it could be used in the logic equation to
represent the entry point where Biv = 1. Thus the constraint
asserting null duration on none pass by positions.

Tiv = 0 ∧Biv ̸= 1 ⇒ Div = 0 (3)

Task Constraint Expression
Considering the task m, we designate Rtim ∈ J0, 1K that
reify task completion by the agent i. We first add the con-
straint that it has to be completed by one agent that is al-
lowed to do so.

∑
i

Rtim = 1 (4)

i /∈ Atm ⇒ Rtim = 0 (5)

In our planning model, we consider the task to be com-
pleted if the robot remains on the point longer than the du-
ration of the task to be carried out. Thus durative task real-
ization constraint is

Rtim ⇒ DiTm ≥ Dtm (6)

We define the variable T tm ∈ J0, tmaxK the starting time
of realization of the task m. This variable will be used later
for verification of synchronization. In addition to the storage
of the time of the realization, we have to ensure that this is
performed in the appropriate time window.

Rtim ⇒ T tm = TiTm
∧ TiTm

∈ Wtm (7)

We also need to consider the limiting case of the starting
point. The robot is at the starting position at t=0. This is
also the case for all positions not taken by the robot. It is
therefore necessary to make the task feasible at t=0 for the
starting point, or to ensure that it is carried out at a later time
to ensure the robot’s passage.

Rtim ⇒ TiTm
≥ 1 ∨BiTm

= 1 (8)

Tasks cannot be performed simultaneously by the same
agent at the same location, therefore, we prohibit an agent
from executing two tasks at the same node.

m ̸= m′ ∧ T tm = T tm′ ⇒ Rtim +Rtim′ ≤ 1 (9)

Temporal Exclusion Constraint
Temporal exclusion constraints on a given position is ex-
pressed by the following disjunction. The robot must pass
before or after the temporal exclusion window Warn.

i ∈ Marn ⇒ TiArn +DiArn < Warn ∨ TiArn > Warn
(10)



Position Discovery
To ensure the constraint of first arrival it is necessary to de-
fine two new variables T fv, Ifiv ∈ J0, tmaxK × B which
respectively represent the time of the first robot’s arrival time
and whether i is the first robot arriving at position v.

We state the disjunction between three cases. Either the
robot is the first to arrive at the position, and the moment of
first arrival is when the robot enters the position. Or it passes
over the position and is not the first, hence the time of first
arrival is lower than the robot’s arrival time. Or it does not
pass through this position.∣∣∣∣∣ Ifiv ∧ Tiv = T fv

¬Ifiv ∧ Tiv > T fv
¬Ifiv ∧ Tiv = 0

(11)

It is therefore only possible for an agent to arrive alone on
a position first. It is also necessary to force the use of these
variables if a robot passes through this position.∑

i

Tiv ≥ 1 ⇒
∑
i

Ifiv = 1 (12)

It is also necessary to add constraints on position never
visited. We need to enforce that if no robot passes by the
position then there is no first arrived at this position.∑

i

Tiv = 0 ⇒
∑
i

Ifiv = 0 (13)

Coordination Between Tasks
For the succession of 2 tasks (m,m′) ∈ P we want to ensure
that the first task is completed before starting the second one.
Thus the constraint for every pair of successive tasks m and
m’

T tm +Dtm ≤ T tm′ (14)

For the synchronization of 2 tasks (m,m′) ∈ S we want
to ensure that both tasks start at the same time. Thus the
constraint

T tm = T tm′ (15)

Mission Metrics
We want the robots to arrive as soon as possible at the end
of the mission thus reducing the mission’s makespan. The
makespan takes into account moving and task completion.
It may be necessary to leave robots possibility of staying on
the finish line if a task needs to be completed at the mission
exit point.

Mm = max
iv

(Tiv +Div) (16)

Resolution of the Constraint Problem
The constraint problem is solved using OrTools (Google
LLC 2023). The model is expressed in Minizinc(min 2023;
Nethercote et al. 2007).
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Figure 1: Test Navigation Graph

Problem Instance
We investigate planning outcomes on a demonstration sce-
nario effects of the metrics introduced previously. The navi-
gation graph for this example is shown in Figure 1.

The scenario includes five agents: two grounds unmanned
vehicles (UGVs) traveling at 1 m/s and three unmanned
aerial vehicles (UAVs) at 3 m/s. These agents adhere to a
consistent navigation graph, entering at point pe and exiting
at ps.

Throughout the mission, tasks are allocated at various
numbered points, each taking 2s to complete. Some tasks
have specific temporal requirements, such as simultaneous
tasks at p23 and p11, and at p33 and p31. Moreover, the
task at p32 must precede the task at p12. Access to point pr
is prohibited between 10s and 20s.

The optimal plan solution for this problem is shown in
Figure 2a, with numerous tasks executed concurrently. Go
to position tasks are displayed in blue and durative tasks in
green. The resulting plan proposes a solution that satisfies all
operational objectives. Temporal exclusions are represented
in gray on a dedicated timeline below the agent, they are
respected by every agent.

We represent with blue dot the maximum level of men-
tal load desired that will be presented in the next section.
The plan to minimize the makespan does not meet this cri-
terion. It is necessary to define measurable mental load met-
rics, with associated desired threshold, to ensure effective
operator mission supervision during execution.

Planning with Operator Based Metrics
In our target scenarios, plan execution requires an opera-
tor responsible for overseeing operations, to guarantee the
safety of the robots and efficiency of the mission. In this sec-
tion we define operator based metrics that can be optimized
to improve plan quality.

Metrics Overview
We propose three new metrics to optimize a plan along ope-
rator supervision. The metrics are inspired from ergonomics
observations during real life experimentation such as de-
scribed in (Ruff, Narayanan, and Draper 2002; Dixon, Wick-
ens, and Chang 2005; Cummings and Guerlain 2007). We
hypothesize that the automatic system is able of carrying out
the mission in complete autonomy. The operator is respon-
sible for ensuring robot safety and plan completion. To do
this, it has robot positions and robots states and completion



0 5 10 15 20 25 30 35 40
Time

TE

UGV1

UGV2

UAV1

UAV2

UAV3
Ag

en
t

0

2

4

6

8

10

Ba
ck
gr
ou

nd
 M
en

ta
l L
oa

d

 max

(a) Makespan Optimization
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(b) Operator Based Metrics Optimization
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Figure 2: Temporal Representation of Task Completion

information in progress tasks. In addition, it can directly su-
pervise the tasks to be carried out. For material reasons, we
consider that only one task can be supervised at a time.

• The first metric deals with tasks or temporal exclusion
supervision by the operator. Ideally, the operator should
supervise as many tasks and exclusions as possible, with
a preference for complex tasks. However, due to hard-
ware constraints, an operator can only supervise one task
or temporal exclusion at a time. The aim of this metric is
primarily to secure task completion, with positive effects
on operator situation awareness.

• The second metric represents situational knowledge ac-
quisition. Some terrain key positions provide important
insights into mission status, and it is important to explore
them regardless of task completion. While the operator
supervises the robots, discovering some key positions in-
crease operator awareness levels. We define a new task
that doesn’t correspond to any operational action in the
mission. Supervision on position discovery consists of a
brief consideration of robot perception. It is necessary

to supervise as many positions discoveries as possible,
preferably those who are the more interesting. The aim
of this metric is to improve the situation awareness of the
operator.

• The third metric represents the operator background
mental load. During a mission, the operator is constantly
trying to keep in mind what robots are doing. This is par-
ticularly problematic during critical operations when the
operator would like to focus on a single robot. When the
operator is overcommitted by the mission, the results are
even worse. In fact, instead of providing a decision sup-
port, robots are abandoned until the critical task is re-
solved. Constraints over the metric aim to decrease task
load index.

Formalization
Regarding background mental load metrics, we associate to
each task a scalar La ∈ N, for each action a ∈ J1, nt +
narK. Each robot performing a move to a position task is
counted as 1. The background mental load metric maximum



is defined by Mlmax ∈ N.
The informational gained by the discovery of the vth po-

sition is specified in Gv ∈ N. When the discovery is made
through a supervised action, we consider that the informa-
tion gain to be scaled by a factor Ig.

Supervised Action
We define an action as a task or a temporal exclusion. To
represent the operator’s supervised action, we define the
boolean variable Sa ∈ B which is true iff the action is su-
pervised. Due to hardware constraints, only a single action
supervision is possible at any point in time. This constraint
is asserted on every pair of tasks m,m′. So either some tasks
are not supervised, or their execution times do not overlap,
which is enforced by the disjunctive constraint.∣∣∣∣∣ Sm + Sm′ ≤ 1

T tm +Dtm < T tm′

T tm′ +Dtm′ < T tm
(17)

The same need to be done for temporal exclusions but on
their time windows.∣∣∣∣∣ Sn + Sn′ ≤ 1

Warn < Warn′

Warn′ < Warn
(18)

Cross concurrency also needs to be addressed by combin-
ing previous approach.∣∣∣∣∣ Sm + Sn ≤ 1

Warn < T tm
T tm +Dtm < Warn

(19)

The metric representing task and temporal exclusion su-
pervision is obtained by adding the performed supervision
weighted by their relevance.

Ms =
∑
m

SmLm +
∑
n

SnLn (20)

Situational Knowledge Acquisition
We define the variable Fsiv ∈ B representing the supervised
discovery of the position v by the robot i. As it is concurrent
with task supervision, we have to enforce temporal separa-
tion. As for tasks or temporal exclusion supervision, we first
ensure that both are not done in the plan or they are not over-
lapping. ∣∣∣∣∣ ¬(Fsiv ∧ Sm)

Tiv > T tm +Dtm
Tiv ≤ T tm

(21)

A similar constraint is used to prevent overlapping super-
vised discovery and temporal exclusion supervision:∣∣∣∣∣ ¬(Fsiv ∧ Sn)

Tiv > Wran
Tiv ≤ Wran

(22)

It is only possible to perform one supervision at a time, so
it is necessary to specify the disjunction of discovery super-
vision two by two. ∣∣∣∣ ¬(Fsiv ∧ Fsi′v′)

Tiv ̸= Ti′v′
(23)

The associated metric is denoted Mfs and defined as fol-
lows.

Mfs =
∑
v

Gv

∑
i

Ifiv[IgFsiv + (1−Fsiv)] (24)

Background Mental Load
As described beforehand, background mental load is the ac-
tion performed by each robot at a specific time. For a given
time t ∈ J1, tmaxK, we define actT (t) as the set of tasks
executing at t:

actT (t) = {m ∈ J1, ntK | t ∈ JT tm, T tm +Dtm − 1K}
(25)

actAr(t) as the set of active temporal exclusions:

actAr(t) = {n ∈ J1, narK | t ∈ Wran} (26)

and move(t) as the set of ongoing displacement at t:

move(t) =

{
v ∈ J1, nrK

∣∣∣∣ t ∈ JTiv, Tiv +Div − 1K
∨ t ≥ Tiv ∧Biv = −1

}
(27)

The background mental load Ml(t) is modeled as the sum
of the contribution of all these activities at a given time t:

Ml(t) =
∑

m∈actT (t)

Lm+
∑

n∈actAr(t)

Ln+
∑

v∈move(t)

1 (28)

We do not optimize this metric but constraint its value be-
low a certain threshold defined during mission preparation.

Mlmax ≥ max
t

(Ml(t)) (29)

Metrics optimization
While optimizing operator metrics, optimal makespan is no
longer feasible. The cognitive load is not optimized, it is lim-
ited so as not to overload the operator such as described in
equation 29. Optimization step has to be conducted itera-
tively to achieve the best quality plan. Optimal makespan
value might not be reached.

1. Maximizing supervision score (M),

2. Maximizing informational gain (Mfs),

3. Minimizing makespan (Mm),

4. We have tie-breaking metric to that indirectly favors a
fair repartition of tasks among agents.

Thus the global metrics to be maximized is of the shape

M = AMs+BMfs− CMm−
∑
iv

(T 2
iv) (30)

With constants A,B,C such that the resolution is lexico-
graphic (A ≫ B ≫ C ≫ 1).



Results
Problem’s optimal solution is depicted in Figure 2b. In ad-
dition to Figure 2a color convention, we display supervised
tasks in purple and supervised position discovery in orange.

Operator maximal background mental load criterion is re-
spected which causes the makespan to be larger. Not all tasks
are supervised, as some are performed synchronously. This
synchronicity is a hard constraint of the planning problem.
The final optimization step separates the different tasks and
produces a plan that is more resilient to minor variations in
execution time.

Application to a Realistic Operation
CoHoMa II Mission
French Army introduced a new challenge within a military
context that involves navigating through hostile territories.
This requires coordinating robots to ensure the safety of the
operator’s vehicle, as presented by Godet, Lesire, and Bit-
Monnot (2023).

It involves a robotic combat group tasked with progress-
ing 1.5 km in enemy territory while ensuring the protection
of operators inside a command vehicle. Contingencies are
simulated by disseminated red cubes, discover during the
progression. Instructions on the cubes detail the operations
required for their deactivation, which may require the col-
laboration of multiple robots. The vehicle is considered vul-
nerable and must avoid proximity to the red cubes unless
they have been deactivated beforehand.

Model
To model the CoHoMa mission, we used distinct navigation
graphs for UAVs and UGVs. For UGVs, their real geome-
try is obtained by representing the different paths in a forest.
For UAVs, the navigation graph is obtained by connecting all
nearby points which gives them greater freedom of trajecto-
ries. The speed settings are 1 meter per second for UGVs
and 3 meters per second for UAVs.

We introduce a new agent in the planning model that rep-
resents the operator who has to cross the area. All reached
position by this agent has to be discovered by another one.
This agent is not able to be performed durative tasks and has
a speed of 1 m/s.

The mission involves various entry and exit points for the
agents, which are not further elaborated upon in this text. It
involves achieving 13 tasks, each with the duration of 120
seconds. Two tasks have a specific order of execution and
three tasks are on the same position and have to be synchro-
nized. There is a temporal exclusion from t=200s to t=400s
where no task has to be conducted. The makespan of the plan
is required to be below 2500 seconds, with a time step of 20
seconds.

Results
On this representative problem, when ignoring operator met-
rics, optimal makespan is computed in 970s. An optimal so-
lution with respect to operator metrics is displayed in Fig-
ure 3. This solution was computed in 1800s on a machine
with 10 physical core of 2.6 GHz, with OrTools v9.8.

This plan, while being 120% longer to execute linken to
the optimal plan, effectively reduces the peak of the op-
erational workload by three which greatly facilitates com-
prehensive exploration of the zone. The strong impact of
the max load on the makespan is due to the fact that there
are more agents than the max load. This means that not all
agents can move in parallel. In addition, the tasks modeled
are particularly demanding, which makes it even more diffi-
cult for robots to move.

It should be noted that incorporating operator metrics into
the constraint problem presents significant complexity for
the solver. Indeed, it is easier for a CSP solver to take into
account metrics correlated to the task progression such as
the makespan or the fuel usage. On the other hand, opera-
tor metrics are orthogonal to the propagation of space pro-
gression since they depend on time. Consequently, scaling
emerges as a critical and complex aspect to consider. Our ef-
fort has been toward an implementation that facilitates prob-
lem resolution. Implementing dedicated resolution strategies
for these metrics could be a way of greatly optimizing so-
lutions search. Precisely characterizing these tradeoffs be-
tween the model accuracy and the runtime of the solver will
be the purpose of a more detailed empirical analysis on a
more diverse set of problems.

Discussion
This method has not been tested during the CoHoMa II mis-
sion but was designed based on the feedback from two teams
who participated in the challenge. During this challenge, it
became apparent that the operators were unable to fulfill
their critical roles when resorting to existing planning ap-
proaches without operator-specific metrics.

The proposed operator metrics significantly advance the
usability of planning in this context, by better aligning the
plan with the capabilities of the operator to supervise plan
execution. This enables the direct involvement of the ope-
rator, e.g., by means of teleoperation, to deal with contin-
gent events and situations not anticipated in the generated
plan. Beside our own scenario, the need for such direct in-
volvement of the operator at execution time is notably jus-
tified in a military context by (Dixon, Wickens, and Chang
2005; Wilkins, Lee, and Berry 2003; Cummings and Guer-
lain 2007).

Our approach to take the operator into account in planning
considers a simplistic model of mental load. Finer cognitive
and mental load models should be considered, such as the
ones proposed for stressful situations involving high levels
of responsibility in (Kokar and Endsley 2012; Hollands, Spi-
vak, and Kramkowski 2019; Endsley, Garland et al. 2000).

But even with more elaborated models, a more funda-
mental limitation is the difficulty of precisely capturing the
desires of the operator in the optimization metric. One could
even advocate that this is impossible to do, as the role of the
operator is precisely to bring a different perspective than
what can be currently captured in a computer system. To
tackle this challenge, we believe it is interesting to push for-
ward mixed-initiative planning techniques. Mixed-initiative
planning has been a subject of interest for many years,
especially in the context of space operations (Ai-Chang
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Figure 3: Time usage of different robots when taking account operators on CoHoMa mission

et al. 2004). A critical enabling feature for mixed-initiative
planning is the ability for the automated planner to explain
its decision to the operator. This has been the subject of
recent work in both the automated planning (Eifler et al.
2020) and constraint programming (Guns et al. 2023;
Gamba, Bogaerts, and Guns 2023) communities, which
appear very relevant for our needs. Our interest is also the
work of Lerouge et al. (2023), who considers the generation
of explanations for flow-model similar to the one of Guettier
(2007) and our own.

Besides, an underlying assumption of our approach is
that, if a sufficient time is allocated for an action, the exe-
cution layer will successfully accomplish the task, possibly
with the help of the operator. Should it fail nevertheless,
we advocate for a strategy that involves replanning the
mission considering the current state and any diminished
capabilities.

Finally, several improvements could be brought to our
planning model to tackle a more diverse set of problems.
Notably, explicit representation of resources, such as
fuel, would be important for a number of scenarios. Such
resource constraints are very common in the constraint
programming and operations research communities and
would naturally fit in our formalism.

Conclusion
We have presented an operational planning model that is ca-
pable of modeling realistic planning problems as demon-
strated on a complex progression mission. Its domain-
dependent approach enables its efficient resolution by a con-
straint solver.

Through the introduction of operator-centric metrics, we
presented contributions toward enabling operator’s involve-
ment at plan execution. A natural evolution of this work

would be toward mixed-initiative planning, empowering the
operator to refine the generated plan through direct interac-
tion with the planning system. Typical interactions could be,
e.g., changing the priorities of optimization metrics or as-
signing a task to particular robots.
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