
Search Applications for Integrated Planning and Execution of Satellite
Observations using Dynamic Targeting

Akseli Kangaslahti1,2, Itai Zilberstein2, Alberto Candela2, Steve Chien2

1University of Michigan, Ann Arbor, USA
2Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA

akanga@umich.edu, itai.m.zilberstein@jpl.nasa.gov, alberto.candela.garza@jpl.nasa.gov, steve.a.chien@jpl.nasa.gov

Abstract
In the Dynamic Targeting (DT) planning problem, a satellite
uses a look-ahead sensor to gain information on the upcom-
ing environment. This information can be used to intelligently
plan observations for the future as to maximize utility. The
DT problem is an exciting application of automated planning
to further Earth science missions. We build on previous work
to analyze the performance of well-known search algorithms
on realistic DT problem instances derived from data sets and
operational constraints such as power and slewing. We also
examine the strengths and weaknesses of different search al-
gorithms and strategies and explore how they optimize the
trade-off between planning time and execution time in this
online planning application. We evaluate beam searches, par-
titioned depth-first searches, Monte-Carlo tree searches, A*
searches, and a greedy approach on two DT problems. For
comparison, we also evaluate an algorithm representative of
most planning algorithms aboard Earth science missions to-
day as well as an upper bounding algorithm. Empirical results
and analysis highlight the dominance of slewing capability in
the search for a high-utility observation plan, meaning suc-
cessful planning algorithms need to be computationally ef-
ficient in order to maximize slewing capability at execution
time.

Introduction
Intelligent planning aims to increase the performance of
robotic systems across applications and domains. Remote
sensing is one such domain. We examine the application of
intelligent planning to a real remote sensing problem: Dy-
namic Targeting (DT).

The Dynamic Targeting planning problem is an emerg-
ing, exciting application of planning and scheduling to Earth
science and space. In the DT problem, a satellite uses a
look-ahead sensor to retrieve information on the upcoming
environment. This look-ahead information is used to con-
struct a short-term plan as to maximize the utility of obser-
vations taken by a primary sensor. Advancements in satel-
lite technology raise the bar of potential science return, but
in turn increase the complexity of planning problems. Ag-
ile satellites are satellites that can slew their primary sen-
sor, which enables a greater region for potential observation.
These satellites are used in the DT planning problem. In ad-
dition, the next generation of satellites will have a higher

Copyright © 2024. All rights reserved.

Figure 1: Dynamic Targeting uses a look-ahead sensor to
plan intelligent observations. Figure is adapted from (Can-
dela, Swope, and Chien 2023).

ceiling for on-board computation, using processors that en-
able deep learning (Swope et al. 2023; Chien et al. 2024).
While DT is conceptualized for Earth-observing satellites,
the concept extends beyond this application. DT applies to a
variety of observing assets, whether in air, in water, in space,
or on land.

The goal of Dynamic Targeting is to utilize intelligent
planning solutions to increase the quality of the science data
from observations. The data from the look-ahead sensor en-
ables avoidance of low utility observations, such as ones that
are blocked by clouds, and identification of potential high
utility observations. This information is used to plan and ex-
ecute, within constraints, the actions of the spacecraft for the
near future. Figure 1 illustrates the DT concept (Candela,
Swope, and Chien 2023).

DT can be applied to a wide variety of Earth science
missions. Furthermore, the ability of DT algorithms to im-
prove science return has already been demonstrated (Can-
dela, Swope, and Chien 2023). Thus, DT is expected to
become common amongst future missions (Candela et al.
2022). However, much of the previous work on DT planning
is not yet applicable to general missions. The majority of
DT research has failed to account for operational constraints
of onboard hardware and the complex utility models that
are realistic to Earth science applications. Previous relax-



ations include infinite slewing capabilities and constant util-
ity for repeat observations of the same target. Recently, Kan-
gaslahti et al. worked towards a more realistic DT frame-
work, which included a physics-based primary sensor slew
model and complex utility functions to account for changing
utility across observations and time (2024). Just considering
slewing capabilities, resource constraints, and dynamically
changing utility creates an exponentially large search space
to plan over for a single look-ahead observation. The pre-
vious work also introduced some preliminary algorithms for
planning over the search space, including a greedy algorithm
and a tree-search algorithm, that were tested on two data sets
(Kangaslahti et al. 2024). However, the DT problem remains
largely unexplored. Very few planning algorithms have been
tested, and there has been little insight into the performance
of those algorithms across real instances of DT problems.
Furthermore, the search algorithms deployed to plan obser-
vation paths can have long run-times. When considering on-
line planning, the planning time reduces the amount of time
that remains for execution during a fixed plan-execute cy-
cle time. This imposes a trade-off between search thorough-
ness and execution time. Searches that are more thorough
have the potential to produce plans that accrue more utility,
but they must account for a decrease in the available time
to slew and observe since their longer plan computations ex-
pend valuable cycle time. So far, there has also been minimal
analysis regarding this trade-off.

In this paper, we aim to propel the research of the DT
problem further by evaluating more search techniques on
more real-world data sets, and crucially, uncovering the
properties of planning techniques and problem instances that
drive the performance of DT solutions.

We introduce variations of beam search, Monte-Carlo tree
search (MCTS), and A* search to compare to a revised
version of the previously presented partitioned depth-first
search (Kangaslahti et al. 2024). All of these algorithms aim
to search the look-ahead space to generate high-utility plans
for the primary sensor. Our analysis includes a trade study of
correlations between features of the problem instances and
performance of the search algorithms. We also delve into op-
timizing the allocation of planning time and execution time
and investigate how different problem instances can affect
this trade-off.

In the next sections, we discuss related work relevant to
the DT problem, describe the DT problem in full, outline a
variety of observation planning algorithms, and present and
analyze the performance of these algorithms on data sets.

Related Work
Dynamic targeting is part of a collective effort to increase
the efficiency of satellite data collection. Prior to the DT
concept, previous work rapidly screened observations for
clouds and removed any cloudy observations to reduce data
volume (Thompson et al. 2014). This method was demon-
strated on the Airborne Visible-Infrared Imaging Spectrom-
eter - Next Generation (AVIRIS-NG) instrument (Thompson
et al. 2014). Early intelligent targeting methods include the
imaging order scheduling algorithm that was used for the

FORMOSA-2 satellite, which generated a nominal observa-
tion schedule based on weather conditions and forecasts that
could be adjusted at execution time (Liao and Yang 2005). In
addition, intelligent targeting onboard the Thermal and Near
Infrared Sensor for Carbon Observation Fourier-Transform
Spectrometer-2 (TANSO-FTS-2) was used to avoid observa-
tions blocked by clouds, resulting in more clear-sky obser-
vation scenes by a factor of 1.8 (Suto et al. 2021). Further-
more, the Earth Observing-1 (EO-1) satellite flew an algo-
rithm that analyzed previous observations in order to intelli-
gently schedule subsequent observations (Chien et al. 2005),
although the subsequent observations were scheduled for the
next orbital cycle, roughly 90 minutes later. Beaumet, Ver-
faillie, and Charmeau also presented a feasibility study that
showed, in theory, how a look-ahead camera for cloud de-
tection could be combined with a primary sensor using an
online algorithm to better satisfy mission objectives (2011).

DT builds on all of these past works by utilizing the
look-ahead sensor to schedule observations during a single
overpass, only a few minutes later or less. A greedy algo-
rithm for scheduling such observations based on information
from previous observations has been demonstrated (Chien
and Troesch 2015). The DT concept specifically has been
demonstrated in simulation for both storm hunting (Swope
et al. 2021; Candela et al. 2022) and cloud avoidance (Can-
dela, Swope, and Chien 2022, 2023). It has also been con-
ceptualized for mapping the planetary boundary layer (Can-
dela et al. 2024). However, previous research has assumed
infinite slewing capabilities and constant utility for repeat
observations of the same target. One theoretical DT study
represented slewing limitations by only allowing the pri-
mary sensor to move a certain spatial distance along each
axis between observations (Hasnain et al. 2021). More re-
cently, DT was simulated using a more realistic, physics-
based slew model with a complex, varying utility function
dependent on repeat observations (Kangaslahti et al. 2024).
This study introduced the slew model and utility model that
motivate the work in this paper. In addition, the authors
presented a greedy algorithm and a partitioned depth-first
search algorithm that we adapt in this paper (Kangaslahti
et al. 2024). We analyze these algorithms and several addi-
tional algorithms in this paper.

Dynamic Targeting Problems
In this section we discuss the variations in real instances of
Dynamic Targeting (DT) problems and the different aspects
that define a problem instance. There are several features of
DT that make it a challenging application of robotic plan-
ning:

• Real-time planning: as the satellite orbits Earth, the look-
ahead sensor provides a constantly changing view of the
upcoming environment. Planning must occur in real-time
as to task the primary sensor before the satellite passes
over the look-ahead view, resulting in constantly updat-
ing planning horizons with new problem views.

• Real-world constraints: a satellite is constrained by sev-
eral driving factors including memory limits, computa-
tional power, slewing capabilities, and energy consump-



tion. All of these factors contribute to an exponentially
large search space.

• Dynamic environments: the look-ahead sensor provides
a current view of the upcoming environment. However,
this environment may be volatile and change during the
planning horizon.

• Complex utility: the utility is driven by the science return
of the primary sensor. Science return can be hard to quan-
tify, especially when the environment is changing. Tak-
ing an observation with the primary sensor can impact
the utility of the local space, depending on the applica-
tion. For example, some applications may want multiple
repeat observations of the same target in order to track
how it changes over time, while other applications may
de-prioritize collecting repeat observations of the same
geo-spatial region.

The aspects above can all shift drastically depending on
the science mission, operational constraints, and other fac-
tors. We aim to understand how prominent search methods
can apply to this planning problem, and what techniques
serve best for different instantiations of the DT problem. The
most basic components of a DT problem are:

• H: a planning horizon.
• D: the data obtained by the look-ahead sensor over time.
• C: the set of constraints of the satellite.
• A: the set of actions of the satellite.
• U : the utility function.

The goal of the problem is to construct a plan, π =
(a1, ..., an) where ai ∈ A, that does not violate C and max-
imizes the utility of the observations taken by the primary
sensor, as defined by U , over the course of the planning hori-
zon H . The next sub-sections discuss these components for
different problem instances.

Look-Ahead Data
In our data sets, the look-ahead data D = D1, ..., Dn is a
sequence of discrete views from the look-ahead sensor over
the planning horizon. Each Dt is a matrix containing a map
of the current environment with static utilities for each pixel
in the look-ahead. We call the time that passes between t and
t+1 the cycle time. Several factors influence the sampling of
the look-ahead sensor including the angle of the sensor, the
velocity of the satellite, and the re-sample frequency. This
means the difference between the look-ahead view at time t
and time t+1 can change across agents and problems. There
are two data sets we evaluate:

1. Global Precipitation Measurement (GPM): this data set
contains look-ahead data generated from precipitation
rate estimates retrieved by integrated multi-satellite re-
trievals and brightness temperature from the National
Oceanic and Atmospheric Administration Climate Pre-
diction Center, National Centers for Environmental Pre-
diction, and the National Weather Service (Candela,
Swope, and Chien 2023). An expert generated classifi-
cation rules that label a pixel as c ∈ {0, 1, 2} based on
the measurements. The goal of this instance is to identify

and observe storm clouds of interest, which are repre-
sented by higher label values.

2. Moderate Resolution Imaging Spectroradiometer
(MODIS): this data set contains data from a moderate
resolution imaging spectroradiometer. This data deter-
mines the fraction of a pixel that is covered by a cloud.
Thresholds in the cloud fractions determine the label of a
pixel, c ∈ {0, 1, 2}, where higher label values represent
more clear images. The aim of this DT instance is to
avoid taking observations that are blocked by clouds.

These data sets have been used in previous work (Can-
dela, Swope, and Chien 2023; Candela et al. 2022), and are
becoming baselines for evaluating DT solutions on realistic
look-ahead data. We refer the reader to (Candela, Swope,
and Chien 2023) for more details on the classification ap-
proaches of the raw data, and other aspects of the data sets.
Note that the standard we have enforced across the two data
sets is for the classified data to be labelled c ∈ {0, 1, 2} such
that increasing label values classify pixels of increasing sci-
ence utility.

Constraints and Actions
Across the data sets, the actions we consider are fixed.
The available actions during each cycle are combinations of
slewing and observing. The primary sensor can be slewed
to point at a target with no energy penalty, however slew-
ing requires time to perform the rest-to-rest maneuver. We
model the satellite as a rigid body. Our slew model (Kan-
gaslahti et al. 2024) is physics-based and defined by angular
acceleration/deceleration values and maximum angular ve-
locities of the primary sensor along the pitch and roll axes.
Each axis is treated as independent of the other. To calculate
a reachable set of observation targets in a given amount of
time, we first calculate the maximum angular distance that
can be slewed along each axis in the allotted time, given the
angular acceleration/deceleration and maximum angular ve-
locity along each axis. Then, one ray is cast down from the
satellite to each ground observation target within the entire
primary sensor range. The angular distance required to slew

Figure 2: The reachable set of targets that can be reached
within one cycle of slewing in our experiments. We use the
slewing model first introduced in (Kangaslahti et al. 2024).
The red dot in the middle is nadir, which is where the pri-
mary sensor is currently pointed. The yellow area represents
all targets that can be slewed to within one cycle. The blue
area shows the entire primary sensor range. The right edge
of the purple area is the extent of the look-ahead range.



from the current primary sensor position to each ground tar-
get ray is then calculated for both axes using a spherical co-
ordinate system. Any targets that fall within the previously
calculated angular distance threshold for each axis are con-
sidered reachable observations within the originally speci-
fied amount of slewing time (Kangaslahti et al. 2024). Fig-
ure 2 shows how far the primary sensor can slew within one
cycle in our experiments.

The primary sensor must be at rest when an observation is
collected, so observations cannot be collected while the pri-
mary sensor is slewing. The satellite is also constrained by
its energy consumption. Observations can be made a maxi-
mum of one time per cycle at the expense of energy. A con-
stant amount of power is regenerated during each cycle from
the solar panels on the satellite, regardless of whether an ob-
servation is collected or not. The satellite cannot make an
observation if the current state of charge is below the energy
cost of an observation. Additionally, there is processing time
required to collect an observation.

We use previously presented values from DT research to
define the common constraints of our satellite across data
sets in Table 1 (Kangaslahti et al. 2024). We use realistic
angular acceleration and maximum angular velocity values
(Lappas, Steyn, and Underwood 2002).

Utility Model
The utility model we evaluate captures several real-world
phenomena. Static utility functions are often too simple for
remote sensing applications. Complex strategies that evolve
over time with the observations and dynamism of the mea-
sured phenomena are required. Our utility model is a func-
tion of the previous observations and time, making it a suit-
ably complex model to evaluate. A similar utility model was
introduced in previous work (Kangaslahti et al. 2024). For
all the data sets, we use a decrease-after-observation util-
ity paradigm. The base utility of a point classified with la-
bel c ∈ {0, 1, 2} is 4c. After observation, the utility of the
points around the observed point are decreased with a Gaus-
sian kernel centered at the observation point. As time passes,
the utility of decreased points gradually recovers to the ini-
tial utility. In addition, an off-nadir penalty is applied to the
utility of an observation. In practice, the further off-nadir a
satellite observes, the worse the observation quality. We de-
crease the utility of off-nadir observations linearly in the dis-
tance of the target from nadir. This off-nadir penalty means
the same point in space observed at different points in time
will accrue different utility, regardless of the previous obser-
vations. Figure 3 illustrates the effect of this utility model.

The motivation of this utility function was presented in
(Kangaslahti et al. 2024), but we re-iterate the reasons here.
For both storm hunting and oceanic studies, it is valuable to
prioritize gathering information for a diverse set of events
as opposed to detailed observations of a single event. Thus,
observing multiple high utility regions is preferred to re-
observing a single high utility region. Accruing utility in
this manner applies to domains outside of DT. For exam-
ple, rover exploration may prefer to limit repeat visits to the
same location in quick succession as to gain more knowl-
edge of the environment.

Table 1: Common run-time Parameters Across Testing (Kan-
gaslahti et al. 2024)

Parameter Value Description
Primary 15o Max off-nadir angle
Sensor for primary sensor,
Range from SMICES

(Swope et al. 2021)
Look-ahead 45o Off-nadir angle for

Sensor look-ahead sensor,
Range from SMICES

(Swope et al. 2021)
Power 1%/ Rate at which

Recharge cycle battery power
Rate increases

Power 1%/ Rate at which
Discharge obs battery power

Rate decreases during
cycles when an
observation is

made
Cycle 3s Total time allocated
Time for each cycle

Gaussian 75 km Size of Gaussian
Kernel × kernel used in
Size 75 km utility models

Gaussian 15 km Standard deviation
Kernel of Gaussian kernel

Standard used in utility
Deviation models
Angular 1.08◦/s2 Angular acceleration

Acceleration of slewing along the
pitch and roll axes. The

value we use is
realistic for small satellites

Maximum 5.40◦/s The maximum angular
Angular velocity of slewing
Velocity along the pitch and roll

axes. The value we use is
realistic for small satellites

Processing 0.1 s Amount of time allocated
Time for observation acquisition

and processing
Minimum 0.25 The minimum portion of

Utility the original base utility
Multiplier that a target must retain

in our utility model
Maximum 20% Penalty for an observation
Off-Nadir as far off-nadir
Penalty as possible



Figure 3: The effect of an observation on the utility of the
corresponding target and nearby targets, under the decreas-
ing utility model first introduced in (Kangaslahti et al. 2024).
Brighter colors indicate greater utility. Note that the ring that
forms on the left side of each figure is due to off-nadir penal-
ties, which are applied to every target within the entire pri-
mary sensor range but have the greatest effect at points far
from nadir. First, an observation is made, as indicated by the
red dot (top). Then, the utilities of the corresponding target
and nearby targets decline sharply for the next cycle (top
middle). As time passes and the satellite flies to the right,
the utility of these targets gradually recovers (bottom mid-
dle, bottom).

Planning Algorithms
At the center of Dynamic Targeting (DT) is a search to find
high-utility, feasible plans based on the look-ahead sensor
view of the upcoming environment. Prior work includes a
greedy approach and a partitioned depth-first search (Kan-
gaslahti et al. 2024). For a limited-width depth-first search
such as the partitioned depth-first search from (Kangaslahti
et al. 2024), little analysis has been conducted on the effects
of different heuristic expansion of the search tree and the
values of the limited-width and the maximum depth in terms
of run-time and solution quality, which we aim to explore in
this paper.

Along with the partitioned depth-first search, we analyze a
beam search, a Monte-Carlo tree search (MCTS), and an A*
search. The search trees for DT consist of nodes and edges
where a node represents a problem state and an edge corre-
sponds to actions between states. At depth d from the root,
the nodes correspond to states that are d cycles in the future
from the root node. Each node in the search tree consists
of the current state of charge, p, the location of the primary
sensor, (x, y), as well as the data read in by the look-ahead
sensor and the current utility. At a node, the actions avail-
able include observing a reachable point at the next cycle or
waiting, which expands the set of reachable points for child
nodes since more time is allocated for slewing. The details
of all evaluated algorithms are presented below.

1. Nadir Only (NO). This algorithm simply observes the
target directly at nadir whenever there is enough power
available for an observation. This is representative of the
scheduling algorithms aboard most Earth science mis-
sions today (Candela et al. 2022).

2. Greedy (G). We adapt our greedy algorithm from previ-
ous work (Kangaslahti et al. 2024). This algorithm does
not plan into the future, but rather selects a locally op-
timal action. If there is enough power available for an
observation, the highest utility target within the set of tar-
gets that are reachable in one cycle is selected for obser-
vation. If there is not enough power available for an ob-
servation, the primary sensor is slewed towards the high-
est utility target within the entire primary sensor radius.
Unlike previous work, this algorithm does not use any
power allocation adjustments, as that heuristic does not
generalize well to different data sets.

3. Beam Search (BS). The beam search uses a limited-width
depth-first search structure to generate a short-term ob-
servation plan that spans a pre-specified number of cy-
cles. After the search is completed, the first observation
in the highest utility plan is executed and the algorithm
subsequently re-evaluates with the new problem view.
Beam search is parameterized by a search depth, d, and a
search width, k. During expansion, a lower bound of the
utility for the node is calculated by simulating the greedy
algorithm d cycles into the future. An upper bound is also
calculated using the upper bound algorithm described
below (algorithm number 7). These bounds are used to
prune branches during the search that are suboptimal. At
each node, the beam search selects the k highest utility
actions to expand. Although utility is only accrued when



taking an observation, we can estimate the utility of not
observing. We do this by first calculating the amount of
power that is saved by reserving the current cycle for
slewing. We divide this value by the energy cost of tak-
ing an observation, which equates to the number of ad-
ditional observations that can be made if we reserve the
current cycle for slewing. We then multiply this value by
the mean target utility within the current reachable set
of observation targets. This serves as an estimate of the
utility that could be accrued if no observations are taken
at the current cycle. Beam search recursively performs
this expansion for each of the k highest utility actions
until the search depth is reached. The highest utility ob-
servation plan is returned, and the first observation in that
plan is executed. We repeatedly search with new problem
views to generate subsequent plans.

4. Partitioned Depth-First Search (PDFS). PDFS resembles
beam search with one major distinction. During expan-
sion, instead of selecting the highest k utility actions,
PDFS partitions the set of reachable targets into k sets of
equal size and selects the highest utility action from each
partition. The partitioning is done by angle after convert-
ing the rectangular coordinates of the reachable set to
polar coordinates, thus creating partitions like slices of
a pie. The idea behind this search is to enforce spatial di-
versity in observation candidates. A different version of
this algorithm was first introduced in (Kangaslahti et al.
2024). As opposed to previous work on PDFS, this vari-
ation considers waiting (i.e., not making an observation)
as an action that may or may not be among the top k
actions by using the same utility estimation as the BS.
Previous versions also used a different search structure
that resulted in longer run-times without a significant
improvement in output plan utilities (Kangaslahti et al.
2024).

5. Monte-Carlo Tree Search (MCTS). Our variation of
MCTS is adapted for our look-ahead planning problem.
During selection, we use the Upper Confidence Bound
(UCB) (Kocsis, Szepesvári, and Willemson 2006) to
identify the tree node to expand. We modify the formula
of UCB so that q is the maximum utility over the ex-
plored paths rooted at the node. For expansion, we de-
fine the hyper-parameter k, which denotes the maximum
search width, limiting the breadth of the tree. We select
the k − 1 observations with the current highest utility to
expand in addition to waiting at the current cycle. We
use a random rollout and perform back-propagation as
normal. The first observation in the returned plan is ex-
ecuted. After each action, the search tree is pruned so
that the root is the current state. The tree is continuously
expanded both to reduce repeated computation and gen-
erate better estimates of the outcomes of actions that are
still possible to take in the future.

6. A*. We implement a variation of A* that is adapted from
Partial Expansion A* (PEA*), which we call limited-
width A* (Yoshizumi, Miura, and Ishida 2000). As we
are maximizing utility, we use a max priority queue for
the frontier, where nodes are ordered based on their f val-

ues: f(n) = g(n) + h(n). The upper bound algorithm,
described below, serves as a suitable admissible and con-
sistent heuristic, h(n), for A*. We allow any node dur-
ing our search to be considered a goal node and search
for the highest utility path to any node over our plan-
ning horizon. This means that the first goal state reached
will not terminate the search. To balance this increase
in computation, we utilize a modified PEA* and expand
only the top k child nodes based on their current utility.
To fit within memory constraints, whenever a child node
is added to the frontier, we prune nodes from the fron-
tier with f values less than the expanded node’s g value.
The search terminates when the frontier is empty and the
algorithm returns the highest utility plan. The plan is ex-
ecuted, and then the algorithm is called to plan over the
new environment.

7. Upper Bound (UB). This algorithm, first presented in
(Kangaslahti et al. 2024), is used to calculate an upper
bound on the utility that can be accrued over a planning
horizon. It is not a viable scheduling algorithm, as it as-
sumes infinite slewing capabilities and does not neces-
sarily abide by other hard operational constraints. First,
this algorithm calculates o, the maximum number of ob-
servations that can be made during the simulation given
the satellite’s constraints. Then, a set of observations are
constructed by selecting the highest utility target (con-
sidering static utility), in the entire primary sensor range
during each cycle of the horizon. The o highest utilities of
this set are then summed together to calculate the upper
bound. This bound over-estimates the amount of obtain-
able utility and is not tight. Future work would explore
ways to improve this bound.

Exhaustive search would have a complexity of O((n2)d)
for a single look-ahead view. Here, n is the diameter of the
entire primary sensor reachability range and d is the search
depth. In comparison, PDFS, BS, and A* have a complexity
of O(n2kd), where k is the search width. Another benefit of
these search strategies is that the O((n2)d) complexity of the
exhaustive search strategy is largely controlled by the spatial
footprint of the instrument (i.e. proportional to n). The com-
plexity of PDFS, BS, and A* is driven by k and d rather than
n. This affords more power to the search parameters, mak-
ing these algorithms generalizable to missions with differ-
ing sensors and spatial footprints and satellites with varying
computational power (Kangaslahti et al. 2024).

In comparison to the greedy algorithm, we obtain the fol-
lowing result:

BS,PDFS,A∗ ≥ G

BS, PDFS, and A* are lower bounded by the performance of
the greedy algorithm. This is a trivial result since these three
algorithms are optimal over the sub-region of the search
space they expand, which is guaranteed to contain the action
selected by the greedy algorithm based on our implementa-
tions.

Experiments and Results
We evaluate all planning algorithms on both the MODIS
and GPM data sets. The spatial resolution of the GPM data



set is 4 km/pixel, which is much finer than the 11 km/pixel
resolution of the MODIS data set. The utility available in
the GPM data set is sparse compared to the MODIS data
set. Recall that higher class pixels have exponentially higher
utility. In the GPM data set, approximately 95.99% of pix-
els are class 0, 3.90% of pixels are class 1, and 0.11% of
pixels are class 2. In the MODIS data set, 69.48% of pixels
are class 0, 26.11% of pixels are class 1, and 4.41% of pix-
els are class 2. In order to select optimal search parameters
(including maximum search width and depth) for each in-
stance, we perform parameter selection using 1% of the data
from each data set. By analyzing the parameter selection re-
sults, we uncover several underlying patterns and properties
of these DT planning problem instances that determine the
success of the various algorithms that we examine. We re-
serve the remaining 99% of the data for final testing using
the optimal parameters. In both parameter selection and final
testing, battery power starts at 0%. Although we only study
the MODIS and GPM datasets in this work, these experi-
ments could be replicated with different data sets to analyze
other DT applications. We note that all experiments were
executed using Python, so the reported run-times are subject
to variation relative to what would be executed on-board a
satellite.

Parameter Selection
Both the MODIS and GPM data sets contain 28400 cycles
of data. We use 284 of these cycles for parameter selection.
During parameter selection for a given algorithm and data
set, we first sweep through all of our parameter combina-
tions. For each parameter combination c, we record the run-
time of the algorithm during each cycle in which it ran. We
then find the maximum run-time rc that the algorithm took
to run across all cycles. Next, we run the same parameter
selection sweep again, but for each parameter combination,
we reserve rc (simulated) time for computation during each
cycle in which the planning algorithm runs. This means that
planning algorithms that take longer to run are penalized in
slewing time during plan execution, as the reserved compu-
tational time is subtracted from cycle time that could oth-
erwise be spent slewing. This simplifies how real-time, on-
board planning would function. As future work, we aim to
execute these algorithms in a coupled planning and execu-
tion environment on simulated flight software.

We use the best performing parameter combination c′

from this second parameter sweep in final testing. We also
reserve rc′ (simulated) time for computation during plan-
ning cycles in final testing. We repeat this process for every
combination of search algorithm and data set.

Figure 4 shows the parameter selection results for all al-
gorithms when run on the GPM data set. Likewise, Figure
5 shows the parameter selection results for all algorithms
when run on the MODIS data set. In all figures, the total util-
ity presented is from the second parameter sweep, which ac-
counts for the run-time penalty. The color scale indicates the
total utility accrued across all 284 cycles. White areas rep-
resent parameter combinations where either the maximum
per-cycle run-time from the first parameter sweep exceeded
the 3 second cycle time or the 16 GB memory limit was

Table 2: Optimal Parameters Found during Parameter Selec-
tion

GPM Data set MODIS Data set
BS Depth = 3, Width = 3 Depth = 7, Width = 3

PDFS Depth = 5, Width = 3 Depth = 5, Width = 5
MCTS Depth = 4, Width = 2 Depth = 4, Width = 5

A* Depth = 3, Width = 2 Depth = 7, Width = 4

Table 3: Maximum Single Cycle Run-Time during First Pa-
rameter Sweep for Optimal Parameters (ms)

GPM Data set MODIS Data set
BS 40.7457 475.0683

PDFS 172.4098 484.0328
MCTS 100.7869 30.8206

A* 36.8192 441.7007

breached during the first parameter sweep. Note the differ-
ing search parameters that we iterated through across differ-
ent algorithms.

Table 2 shows the best search width and depth combi-
nations found during parameter selection. Table 3 provides
the maximum run-times from the previously mentioned ini-
tial parameter sweep with no computational time subtracted
from the available slewing time. During the second parame-
ter sweep and final testing, these values indicate how much
computational time is reserved during cycles in which the
planning algorithm is executed.

First, we note that the in both BS and PDFS, parame-
ters with a balance of search depth and width were opti-
mal. This indicates that neither depth nor width dominates
the search. These limited-width depth-first searches need to
carefully balance exploration and exploitation in order to
perform well. We also observe that the difference in search
strategy between BS and PDFS does not have a great im-
pact on performance, as the optimal parameters for the two
algorithms accrued similar amounts of utility. Furthermore,
BS and PDFS are relatively expensive in terms of run-time.
In all of the BS and PDFS search parameter combinations
that have no value in Figure 4 and Figure 5, it was the max-
imum per-cycle run-time that was exceeded rather than the
memory limit. Especially in the GPM data set, the optimal
parameters were relatively low values compared to other val-
ues that we swept through, meaning trading off search time
for execution time is valuable. This suggests that the slewing
capability, rather than search thoroughness, is a dominant
factor in solution quality. Deeper and wider searches per-
form worse because their greater computational time limits
the amount of time available to slew during the 3 second
cycle.

For MCTS, we observe that the randomness of rollouts
leads to varying performances across different sets of search
parameters with seemingly little pattern. However, we do
note that the optimal search parameters are again less thor-



Figure 4: GPM data set parameter selection results for beam
search (top), partitioned depth-first search (top middle),
Monte Carlo tree search (bottom middle), and A* search
(bottom).

Figure 5: MODIS data set parameter selection results for
beam search (top), partitioned depth-first search (top mid-
dle), Monte Carlo tree search (bottom middle), and A*
search (bottom).



ough than most other parameters that we tried, which re-
inforces the idea that slewing capability, rather than search
thoroughness, is crucial to solution quality.

In the A* search, we first note that the memory consump-
tion of this search was far greater than the other searches.
All parameter combinations with no value in Figure 4 and
Figure 5 were combinations that exceeded memory limits,
which did not occur in any other search even though the
search parameters we tested for A* search did not have par-
ticularly high values compared to other searches. We also
observe that there is less overall variation in performance
across different search widths for the A* search compared
to other search algorithms. We hypothesize that this is be-
cause the greediest option, according to the priority function
that we use in the A* search, often ends up being the best
choice. As a result, the optimal or near-optimal child nodes
are added to the frontier early on during expansion, as they
have the highest priority values. This means that increas-
ing search width results in adding suboptimal nodes that get
pruned from the frontier later. Therefore, after some small
search width is reached, increasing search width has a min-
imal effect on run-time, slewing restriction, and overall per-
formance, although it does increase memory consumption
as nodes still need to be added to the frontier during ex-
pansion before they can be pruned. This is consistent with
the parameter selection results. It is also consistent with the
smaller variation in run-times that we recorded for the A*
algorithm across varying search widths compared to other
algorithms. For example, with depth held constant at 5, in-
creasing the search width of the A* algorithm from 2 to 14
in the MODIS data set parameter selection only causes the
maximum single cycle run-time to increase from 21.4202
ms to 634.4345 ms, while increasing the search width from
1 to 13 (with depth constant at 5) causes the maximum single
cycle run-time of the partitioned depth-first search algorithm
to increase from 13.3352 ms to 2813.6971 ms.

We also observe that overall, there were some search pa-
rameter combinations that were feasible for the MODIS data
set but not the GPM data set, as they ran into run-time or
memory issues with the GPM data set (e.g., depth = 5, width
= 9-13 for the beam search). This is likely due to the fact
that the GPM data set has a finer spatial resolution, meaning
the data and search tree nodes simply have a greater vol-
ume and take longer to operate on. We also note that overall
utility acquisition is far lower in the GPM data set param-
eter selection than in the MODIS data set parameter selec-
tion. This is most likely due to the sparsity of the GPM data
set compared to the MODIS data set. Additionally, we ob-
serve that optimal search parameters tend to be less thor-
ough and maximum per-cycle run-times tend to be lower for
the sparser GPM data set compared to the MODIS data set.
This suggests that slewing capability is especially dominant
over planning time for solution quality in sparser data sets.
In sparser applications, utility needs to be gathered when-
ever the opportunity arises, so slewing needs to be as flexi-
ble as possible in order to ensure that far-away high utility
points can be reached. Deeper searches could theoretically
be used to plan more proactively around such instances but
fail to do so in practice due to longer run-times. Since plan-

Table 4: Utility Accrued during Final Testing

GPM Data set MODIS Data set
NO 16098 34713
G 19901 37521

BS 23960 43555
PDFS 24614 43238
MCTS 22488 41273

A* 23992 43070
UB 37953 71038

ners re-evaluate after each observation, the cycles immedi-
ately following observations are the most affected by long
algorithm run-times. This is problematic for searches with
long run-times because in many scientific applications such
as storm hunting and cloud avoidance, utility is distributed
in clusters rather than uniformly. In the storm hunting appli-
cation (the application of the GPM data set), these clusters
are much smaller than in cloud avoidance (the application of
the MODIS data set). This means that there are several brief
windows throughout the GPM data set in which the plan-
ner needs to quickly observe multiple different high-utility
points within a small cluster. Our results here support that
quicker, more reactive searches with more slewing flexibil-
ity perform better in such windows than deeper, more re-
stricted proactive searches. In applications with more abun-
dant utility such as cloud avoidance (the application of the
MODIS data set) utility is still often distributed in clusters.
However, these clusters are larger, so it is less crucial to max-
imize slewing capability since high utility points are often
not as rare or difficult to reach. Although run-time should
still be kept to a minimum in such applications, our results
show that deeper and more thorough searches help plan the
order and timing of observations a little more proactively as
to maximize the more abundantly available utility.

Final Testing
During final testing, we run each algorithm on the remain-
ing portions of each data set. This is the 99% of the data
that was not used during parameter selection. We use the
optimal search parameters found during parameter selection
for each algorithm. We subtract the maximum per-cycle run-
times that were found during parameter selection (which are
shown in Table 3) from the allotted slewing time during cy-
cles in which the planning algorithm is run in order to ac-
count for computational time.

Figure 6 shows the accumulated utility for each algorithm
over time. Table 4 displays the total utility accrued by each
algorithm during final testing.

In Figure 6, we observe that in GPM final testing, the line
plots for the nadir only algorithm and the greedy algorithm
appear almost linear, while those of the search algorithms
have several small spikes in utility. This is because in the
sparser GPM data set, algorithms need to plan to observe al-
most all of the rare high utility points, even when they are
far away from nadir. This requires great slewing capability
that the simpler planning algorithms do not have. Thus, the



Figure 6: Total utility accrued vs. cycle number for all plan-
ning algorithms in GPM final testing (top) and MODIS final
testing (bottom).

search algorithms can capitalize on the small clusters of high
utility targets, causing small spikes in their line plots, while
simpler planning algorithms observe low utility points al-
most every time, resulting in almost linear line plots. In con-
trast, all algorithm line plots have many large utility spikes
throughout MODIS final testing. In applications with greater
utility density and larger high-utility clusters, even the sim-
pler algorithms can observe the high-utility targets that are
easier to reach. The search algorithms just optimize the or-
der and timing of observations during such windows.

As shown in Table 4, the greedy algorithm improves on
the nadir only algorithm by about 24% for the GPM data set
and about 8.1% for the MODIS data set. We attribute this to
the sparsity of the GPM data set, as the nadir only algorithm
can still observe some high utility targets by chance when
utility is more abundant and high utility clusters are larger.

The partitioned depth-first search performs the best on the
GPM data set with an improvement of 53% over the nadir
only algorithm. It also accrues 65% of the intractable upper
bound utility. The beam search algorithm performs the best
on the MODIS data set, with an improvement of 25% over
the nadir only algorithm. It accrues 61% of the intractable
upper bound utility. However, in both problem instances, the
BS, PDFS, and A* search strategies all result in relatively
similar performances, with MCTS slightly underperforming
compared to other algorithms. This aligns with the parame-
ter selection results, where MCTS did not perform as well
as other algorithms that do not use random rollouts. Fur-
thermore, although DT offers significant improvement over
current scheduling algorithms in both the MODIS and the

GPM problem instances, we note that on a percentage basis,
DT has greater science returns on the sparser GPM data set.
We hypothesize that a significant portion of the disparity be-
tween the utility accrued by our best performing algorithms
and the upper bound is a result of the difficulty in efficiently
generating a tight upper bound on a planning problem with
such a large search space. However, we aim to close this gap
by improving both planning algorithms and upper bounding
algorithms in future work.

Conclusion
Dynamic targeting (DT) is a challenging application of au-
tomated planning and scheduling. In working towards de-
ploying DT solutions, we have analyzed different search
strategies on different problem instances to uncover the most
effective approaches to DT problems and understand why
these approaches are effective.

Our results show that slewing capability is an essen-
tial factor in the search for a high-utility observation plan.
Searches that prioritize run-time and slewing flexibility over
thoroughness tend to perform best on the DT planning prob-
lem. We find that this is especially important for applications
with sparse utility distributions (e.g. storm hunting), where
high slewing capability is required to ensure that small clus-
ters of high-utility observations can be collected whenever
the opportunity arises, even when those targets are far away
from the primary sensor. We also observe that applications
with more abundant utility benefit less overall from DT on
a percentage basis, as even simpler planners, like the nadir
only planner, can accrue substantial utility by chance when
clusters of high-utility targets are larger. Finally, we find that
a variety of search strategies can be successful in accruing
high amounts of utility, as long as parameters are selected
appropriately. Based on the findings of this paper, we strive
to continue boosting performance in future work by focus-
ing on algorithm efficiency in order to maximize slewing
capability while maintaining or even increasing search thor-
oughness. Developing anytime algorithms that can perform
searches in any allotted amount of time are of particular in-
terest, as current implementations waste extra time when-
ever the planning algorithm finishes early. We also aim to
tighten our upper bound algorithm and use a coupled plan-
ning and execution environment in order to more realisti-
cally account for algorithm runtime in future work. Beyond
simulation, we aim to utilize dynamic targeting in flight
demonstrations, which will require further work in integrat-
ing planning and execution.

Nevertheless, we have found important performance
trends in the DT problem and shown the potential for intelli-
gent planning to greatly increase the data return of satellites
compared to baseline observation collection schemes.

Acknowledgements
Portions of this research were carried out by the Jet Propul-
sion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Adminis-
tration (80NM0018D0004). This work was supported by the
Earth Science and Technology Office (ESTO), NASA.



References
Beaumet, G.; Verfaillie, G.; and Charmeau, M.-C. 2011.
Feasibility of autonomous decision making on board an ag-
ile Earth-observing satellite. Computational Intelligence,
27(1): 123–139.
Candela, A.; Delfa Victoria, J.; Zilberstein, I.; Kurowski, M.;
Yue, Q.; and Chien, S. 2024. Dynamic Targeting scenario to
study the planetary boundary layer. In IEEE Geoscience and
Remote Sensing Symposium.
Candela, A.; Swope, J.; and Chien, S. 2022. Dynamic tar-
geting for cloud avoidance to improve science of space mis-
sions. In 16th Symposium on Advanced Space Technologies
in Robotics and Automation.
Candela, A.; Swope, J.; and Chien, S. 2023. Dynamic target-
ing to improve Earth science missions. Journal of Aerospace
Information Systems, 20(11): 679–689.
Candela, A.; Swope, J.; Chien, S.; Su, H.; and Tavallali, P.
2022. Dynamic targeting for improved tracking of storm
features. In International Geoscience and Remote Sensing
Symposium. Kuala Lumpur, Malaysia.
Chien, S.; Candela, A.; Zilberstein, I.; Rijlaarsdam, D.; Hen-
drix, T.; and Dunne, A. 2024. Leveraging commerical assets,
edge computing, and near real-time communications for an
enhanced New Observing Strategies (NOS) flight demon-
stration. In IEEE Geoscience and Remote Sensing Sympo-
sium.
Chien, S.; Sherwood, R.; Tran, D.; Cichy, B.; Rabideau, G.;
Castano, R.; Davis, A.; Mandl, D.; Frye, S.; Trout, B.; Shul-
man, S.; and Boyer, D. 2005. Using autonomy flight soft-
ware to improve science return on Earth Observing One.
Journal of Aerospace Computing, Information, and Commu-
nication, 2(4): 196–216.
Chien, S.; and Troesch, M. 2015. Heuristic onboard point-
ing re-scheduling for an Earth Observing Spacecraft. In In-
ternational Workshop on Planning & Scheduling for Space.
Buenos Aires, Argentina.
Hasnain, Z.; Mason, J.; Swope, J.; Vander Hook, J.; and
Chien, S. 2021. Agile spacecraft imaging algorithm compar-
ison for Earth science. In International Workshop on Plan-
ning & Scheduling for Space.
Kangaslahti, A.; Candela, A.; Swope, J.; Yue, Q.; and Chien,
S. 2024. Dynamic Targeting of Satellite Observations Incor-
porating Slewing Costs and Complex Observation Utility. In
IEEE International Conference on Robotics and Automation
(ICRA 2024). Yokohama, Japan.
Kocsis, L.; Szepesvári, C.; and Willemson, J. 2006. Im-
proved monte-carlo search. Univ. Tartu, Estonia, Tech. Rep,
1: 1–22.
Lappas, V.; Steyn, W.; and Underwood, C. 2002. Attitude
control for small satellites using control moment gyros. Acta
Astronautica, 51(1): 101–111.
Liao, D.-Y.; and Yang, Y.-T. 2005. Satellite imaging order
scheduling with stochastic weather condition forecast. In
IEEE International Conference on Systems, Man and Cy-
bernetics, 2524–2529.

Suto, H.; Kataoka, F.; Kikuchi, N.; Knuteson, R. O.; Butz,
A.; Haun, M.; Buijs, H.; Shiomi, K.; Imai, H.; and Kuze,
A. 2021. Thermal and near-infrared sensor for carbon ob-
servation Fourier transform spectrometer-2 (TANSO-FTS-
2) on the Greenhouse gases Observing SATellite-2 (GOSAT-
2) during its first year in orbit. Atmospheric Measurement
Techniques, 14(3): 2013–2039.
Swope, J.; Chien, S.; Bosch-Lluis, X.; Yue, Q.; Tavallali, P.;
Ogut, M.; Ramos, I.; Kangaslahti, P.; Deal, W.; and Cooke,
C. 2021. Using intelligent targeting to increase the science
return of a Smart Ice Storm Hunting Radar. In International
Workshop on Planning & Scheduling for Space.
Swope, J.; Mirza, F.; Dunkel, E.; Candela, A.; Chien, S.;
Holloway, A.; Russell, D.; Sauvageau, J.; Sheldon, D.; and
Fernandez, M. 2023. Benchmarking space mission applica-
tions on the Snapdragon processor onboard the ISS. Journal
of Aerospace Information Systems, 1–9.
Thompson, D. R.; Green, R. O.; Keymeulen, D.; Lundeen,
S. K.; Mouradi, Y.; Nunes, D. C.; Castaño, R.; and Chien,
S. A. 2014. Rapid spectral cloud screening onboard aircraft
and spacecraft. IEEE Transactions on Geoscience and Re-
mote Sensing, 52(11): 6779–6792.
Yoshizumi, T.; Miura, T.; and Ishida, T. 2000. A* with
partial expansion for large branching factor problems. In
AAAI/IAAI, 923–929.


