
Specifying State Abstractions and Representation Mappings

Ronen I. Brafman, Or Wertheim
Department of Computer Science

Ben Gurion University of the Negev
{brafman,orwert}@post.bgu.ac.il

Abstract

Languages are used to describe diverse aspects of planning
formalism: classical domains (PDDL), stochastic domains
(RDDL), hierarchical task networks (HDDL), and more. In
this paper, we suggest that another component of planning-
based systems – state representation mappings – should be5

singled out and specified explicitly so that it can be used
and manipulated by other programs to provide added value.
Our main motivation is the automated integration of planning
and execution, where this mapping connects the more ab-
stract, descriptive planning model with the actual code within10

the system that implements it. However, the language could
also be used to describe mappings between different planning
state spaces and, possibly, domain models. This paper moti-
vates the need for state mapping languages and describes and
illustrates a concrete language we developed.15

Introduction
Planning systems are typically developed with the goal of
being used to control systems in order to enhance these sys-
tem’s autonomy. The planner reasons about the impact on
the environment of the various operations the system can20

perform and how they can lead to a goal state or desirable be-
havior. Eventually, a controller must carry out the operations
recommended by the planner. However, while the planner
manipulates relatively abstract descriptions that model the
action’s impact on properties of interest to the user, the sys-25

tem implements it using code in a programming language.
This code typically manipulates less abstract variables. For
example, if we implement an open-door routine on a robot,
the planning model will usually model it in terms of proposi-
tions like door-closed, door-open, door-locked, has-key, in-30

room(X) etc, while the code for opening the door will be
concerned with properties such as the robot’s position and
pose, arm-joint angles, gripper status and various proper-
ties of images or sonar readings. Similarly, the parameters
of the planner model may be some door identifier or may35

assume the robot is facing the relevant door, while the code
may require precise coordinates of the door and its handle in
the robot’s frame of reference.

Abstraction occurs not only when we map descriptive rep-
resentations to procedural representations but also when we40

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

map between different levels of descriptive representations
as we try to simplify a model in order to make it easier to
solve. Indeed, abstraction mappings are the basis for popular
heuristics such as the pattern-database heuristic (Culberson
and Schaeffer 1998; Edelkamp 2001) and the merge-and- 45

shrink heuristic (Helmert et al. 2014).
In this paper, we argue for the development of explicit

descriptions of state mappings and describe one such lan-
guage we developed. There are diverse languages for spec-
ifying planning models, starting from STRIPS (Fikes and 50

Nilsson 1971), PDDL (Fox and Long 2003; Gerevini et al.
2009), PPDDL (Younes and Littman 2004) and RDDL (San-
ner 2010). There are also languages for specifying action ab-
stractions as HTN planning domains, such as HDDL (Höller
et al. 2020), but we are unaware of any language for speci- 55

fying state abstractions.
The reason we need a language for describing state map-

pings is as input to programs that manipulate these map-
pings and provide automation, standardization, and other
added values. Whereas the programs that manipulate plan- 60

ning domain descriptions are, typically, planners, the pri-
mary use for state mappings is integration: generating code
that can connect planners to systems. Presently, when one
wishes to use a planner to control a system, one must man-
ually write code that integrates the two systems: the planner 65

and the controlled system. While the mapping itself may be
relatively simple, the integration code can be complex and
system-dependent. Once we have an agreed-upon language
for these mappings, we can automate the integration process,
greatly reducing the software engineering effort required to 70

connect planners with systems.
More specifically, the main motivation for the language

described here is recent systems developed for simplifying
the integration of planning and robotics, especially robots
that use ROS (Quigley et al. 2009) as their infrastructure, 75

starting with the pioneering ROSPlan system (Cashmore
et al. 2015). Robot code that implements various capabili-
ties, often referred to as skills, such as navigation, diverse
types of manipulation, and sensed-data analysis (e.g., ob-
ject and face recognition), is becoming more and more 80

widely available. ROSPlan, and many follow-up systems
(e.g., (Martı́n et al. 2021; Rovida et al. 2017; Rao, Hu, and
Jiang 2020; Albore et al. 2023; Doychev et al. 2021)) make it
easier to build planner-based task-level controllers that can



automatically activate such code as needed. Yet, many of85

these systems still require writing explicit mapping and in-
tegration code.

The AOS system (Wertheim, Suissa, and Brafman 2024)
addresses this issue by adding an explicit state-mapping
model to the planning model. Using this model, it is able90

to fully automate the integration process, greatly simplify-
ing and reducing user effort.

The main contribution of this paper is to point out the
need for an agreed-upon representation of state mappings,
to suggest that they be specified explicitly and separately95

from the code that uses or embodies them, and to illustrate
a candidate language. The article describing the AOS sys-
tem (Wertheim, Suissa, and Brafman 2024) demonstrates the
utility of this approach by describing diverse implemented
use cases. through applications programmed using the AOS100

system.
Our focus within this paper, and the main current applica-

tion discussed, is mapping descriptive models to procedural
code. However, state mappings can also be used to specify
abstractions, and we believe a promising future application105

of such a language could be as a target language for abstrac-
tion learning algorithms.

In the rest of this paper, we describe the abstraction map-
ping language we developed, which we denote by AM. AM
was developed in the context of factored POMDP models,110

described next, of which classical deterministic models are
a special case. Moreover, in POMDPs, one must model not
only the mapping from planning actions to the code imple-
menting them but also from code values to POMDP observa-
tions. While, in principle, this latter mapping is not needed115

in the context of deterministic classical models, in practice,
all systems that rely on classical models realize that their
model is imperfect and provide some way of updating the
state based on observations. Most systems require the user
to write explicit code for this.120

Related Work
The two most closely related works known to us are: se-
mantics attachments in planning (Dornhege et al. 2009) and
embedded system bridges (ESBs) (Sadanandam et al. 2023).

Semantic attachment were introduced in the FOL rea-125

soning system (Weyhrauch 1980) as a way of using LISP
code to evaluate the value of predicates. They were adopted
by (Dornhege et al. 2009) for use in planning. Instead of
checking the validity of some ground predicate by checking
an explicit list of all true ground predicates, as done in typ-130

ical planners, a procedure (e.g., a path planner) is called to
evaluate a predicate (e.g., reachable(config1,config2)) and
return the ground predicate’s truth value. The procedure is
called during the planning phase and is used in forward-
search planners during as part of planning. The novelty135

in (Dornhege et al. 2009) is the explicit extension of PDDL
with the ability to specify such semantic extensions mak-
ing this feature available to domain-independent planners.
However, this planner must support this extended PDDL
version. They support two types of attachments: procedures140

that check conditions and procedures that compute the effect
values, hence handling both preconditions and effects.

Technically, we also consider two mapping directions:
from the more abstract to the more concrete and from the
more concrete back to the more abstract. The information 145

that needs to be provided is similar. Except that our mapping
are used to bridge model levels and not to help the planner.
They are used to activate the concrete skill code abstracted
by the planner’s model as an action, and are used to send data
back from the skill code to the planner. Hence, the planner is 150

not involved in this process, and can be any general purpose
planner. Or, of course, it could be a planner that also uses
semantic attachment to compute its plan.

As an example, the action of moving a block might re-
quire complex computations to decide whether a precon- 155

dition of having a clear path holds. Semantic attachment
(calling a path planner) can compute whether this condition
holds. But then, to actually move the arm, a call to some
code, e.g., move-it with appropriate parameters is required,
which is what our mapping provides. Similarly, semantic at- 160

tachment could run a computation for updating the battery
level after this action, while if there is a battery-level topic
in ROS maintaining this information, our mapping will pro-
vide the information needed to map this value to planning
model values. 165

ESB is a part of the AIPlan4EU project and is related
to its Unified Planning Library (UP)(https://www.aiplan4eu-
project.eu). UP offers an abstraction layer/user interface on
top of standard planning definition languages for specify-
ing planning language. As such, it offers mapping services. 170

These are focused on mapping user input to and code spe-
cific planner’s inputs. In principle, one could do with code
whatever one likes, and more specifically, map actions to
code calls or to a different abstraction level. However, this
is not the focus of UP, nor does it give declarative tools for 175

such specification. The AM language as used by the AOS
attempts to remove the need for coding such mapping by
specifying them declaratively.

ESBs attempt to extend the UP to the application domain
by connecting the gap with orchestration. The bridge auto- 180

matically maps executable functions from the application
definition to the action instances returned by the planner,
sensor data into fluent values, and action choices to code ap-
plication. This is done in the context of some application do-
main. In this respect, the bridge provides the added value the 185

AOS system provides by auto-generating integration code
based on our mapping specification. The key difference is
that this paper posits the explicit specification of a mapping
function between representations as a separate object, sep-
arating the definition of the mapping from its application. 190

We conjecture that an ESB could be auto-generated given
an AM spec.

The AM mappings are language-dependent in the sense
that they map one description to the other, so they must parse
specific syntax. In the AOS system, they parse our POMDP 195

specification syntax. But one nice thing about them is that
they are compositional – one can map A to C by mapping
A to B and B to C. Moreover, because factored POMDPs
subsume MDPs and classical planning, any language for de-
scribing the latter can be mapped to the former. 200



POMDPs
POMDPs offer a realistic model for autonomous robots be-
cause they model the stochastic nature of robots’ actions,
partial and noisy sensing, and one can provide rich task spec-
ifications using the reward function. Formally, a POMDP205

is a tuple ⟨S,A,T,R,Ω,O, γ, I⟩: S is the state space, A
the action space, T the state transition model, R the reward
model, Ω the observation space, O the observation model,
γ ∈ (0, 1] is the discount factor, and I ∈ B is the initial be-
lief state. A belief state is a distribution over S that models210

the likelihood of each concrete world state based on avail-
able information.

Following an action a ∈ A, the environment transitions
from its current state s ∈ S to state s′ ∈ S, with probability
T(s, a, s′). Then, the agent receives an observation o ∈ Ω,215

with probability O(s′, a, o), and a reward r = R(s, a) ∈ R.
Now, one can update one’s belief state b to b′ = Pr(s|a, o, b)
using the model parameters.

We focus on factored models where a state is an assign-
ment to variables X1, . . . , Xk, and each observation Ω is220

an assignment to observation variables W1, . . . ,Wd. Thus,
S = Dom(X1) × · · · ×Dom(Xk) and Ω = Dom(W1) ×
· · ·×Dom(Wd). In that case, τ , O, and R can be represented
compactly by, e.g., a dynamic Bayesian network (Boutilier,
Dean, and Hanks 1999).225

A policy for a POMDP is a mapping π : B 7→ A from
belief states to actions. The goal of POMDP solvers is to
find a policy π∗ that maximizes the expected accumulated
discounted reward, i.e., π∗ = max

π
[Eπ[

∑∞
t=1 γ

trt.]. rt is

the reward at step t, discounted by γt, so that when γ < 1,230

receiving a reward earlier is preferred.

The AM language
The basic requirement from a planning-based controller is
to be able to dispatch actions and update the state with
their results. Dispatching requires the ability to activate the235

code with appropriate parameter values. As noted earlier,
these could be quite different from the action parameters
used by the planner. Update requires using code elements,
such as code variable values or values returned by the code,
to update the planner’s state representation. In the case of240

POMDPs, the latter is captured by the concept of an obser-
vation. In both directions, it is useful to be able to define
local variables that help generate the final result. Therefore,
the AM file consists of three parts: (1) Local variable def-
initions. (2) Observation computation. (3) Code activation,245

including how to compute code parameters.

Local Variable Definition. The first part of an AM file
contains definitions of local variables and how to initialize
their value. These variables can be used in other assignment
statements in the AM file. Local variables can be initialized250

using (1) action parameters (2) code parameters (3) code re-
turn values (4) Python code that manipulates any of these
elements.

Observation. The second part of the AM file specifies
how to use the value of local variables to compute the obser-255

vation following the action execution. In a factored POMDP,

the observations are represented through the values of the
observation variables. A POMDP is a very general model,
and the fully observable case is the special case where the
observation variables correspond to all state variables and 260

there is no noise. We allow two specification methods: The
first is appropriate when we want to return one of a small set
of values. The user specifies a sequence of rules (expressed
in Python) with associated values. The return value is that
associated with the first rule evaluated to True. The second 265

option is particularly useful for large observation spaces. We
simply return the value of some local variable defined in the
first part.

Code Activation. The third part of the AM file specifies
how to activate the code. This includes instructions for find- 270

ing the relevant code and for computing the code parameters.
Code parameters may be unrelated to the model, e.g., a cam-
era’s sampling frequency, or they can be derived from the
action parameters. For example, a navigation action is likely
to have the source and destination as its parameters, where 275

their values are discrete locations such as here, kitchen, of-
fice, lab. The navigation code may specify some code pa-
rameters, such as the local planner used or the rate by which
the cost map is updated, and the actual (x, y) coordinates of
the source and destination locations. The AM file provides 280

(1) A path to the code or some equivalent system-specific
information, such as the name of a ROS service. (2) An as-
signment to the various code parameters using local variable
values.

Example 285

In this section, we describe an AM file that maps between
a move action at the model level and the navigate skill code
that implements it. In our system, one AM file is associated
with every (lifted) action to allow for incremental addition
of skill code and their corresponding planning-model action. 290

However, in principle, one can aggregate all mappings in a
single file. Through this example, we will also understand
the syntax of AM files. We also present parts of the model-
level documentation needed to understand the AM file (see
Listings 1 and 2). In the AM file described below, blue words 295

mark the start of a section. Sections may appear in any order
except project name, which appears first. Brown words spec-
ify section properties. Section properties may also appear in
any order. Teal words further elaborate section properties.
Reserved variable names are in red. 300

Move, which is described in the model, has one parame-
ter of type tLocation whose name is oDesiredLocation (see
Listing 2). It specifies the location’s (x, y, z) coordinates.
Its Navigate’s skill code is based on the well-known open-
source ROS MoveBase package. It has a single parameter 305

called goal, which is an object with three fields, the (x, y, z)
coordinates of the navigation target.

The definition of the tLocation type is in Lines 1-5 of the
domain’s Environment File (see Listing 1). Variable types
can be any C++ primitive, primitive vector, or compound 310

type. Compound variable types or enums can be defined with
C++ primitive types as the building blocks. Next, for brevity,
Lines 6-8 define a single tLocation constant: l1. The real file



in our application contains additional tLocations, of course.
1 project: example315

2 define type: tLocation
3 variable: float x 0.0
4 variable: float y 0.0
5 variable: float z 0.0
6 const: tLocation l1320

7 code:
8 state . l1 .x = −1.01606154442; state . l1 .y =

0.660750925541; state . l1 .z
=−0.00454711914062; state . l1 . discrete = 1
Listing 1: Domain’s Environment File

1 project: example325

2 parameter: tLocation oDesiredLocation
Listing 2: Move’s Documentation File

The AM file starts with a declaration and definition of the
local variables using the local variable keyword (see List-
ing 1). The lines following this declaration and ending in
the next definition, define its properties. For example, we330

see that goal reached is a variable that is defined through
a ROS topic. It describes the topic’s name, the type of the
message it contains, where this message type is defined, and
the variable’s type. The AM file initializes its value in Line
7 to False. The code property describes how its value is335

updated. If its value was True, it remains so. Otherwise, if
the /rosout topic published a message containing the ”Goal
reached” text, the else part will return True. In Lines 13-18,
local variables are initialized based on the model parameter’s
oDesiredLocation x,y, and z values. The sd parameter prop-340

erty tells us that what follows is based on the skill model’s
parameters. In Lines 19-24, we define the skillSuccess vari-
able using navigate skill code’s return value. The reserved
word ’ input’ refers either to a topic message’s recent value
(as used in Line 12) or the skill code’s returned value (as345

used in Line 24).
1 project: example
2 local variable: goal reached
3 topic: / rosout
4 message type: Log350

5 imports: from: rosgraph msgs.msg import: Log
6 type: bool
7 initial value: False
8 code:
9 if goal reached == True:355

10 return True
11 else:
12 return input .msg.find (’Goal reached ’) > −1
13 local variable: nav to x
14 sd parameter: oDesiredLocation .x360

15 local variable: nav to y
16 sd parameter: oDesiredLocation .y
17 local variable: nav to z
18 sd parameter: oDesiredLocation .z
19 local variable: skillSuccess365

20 imports: from: std msgs .msg import: Bool
21 type: bool
22 from ros service response: true
23 code:
24 skillSuccess = input . success370

Listing 3: Move’s Abstraction Mapping File

In Lines 25-28, we describe the mapping from skill code
to observations. Move can receive two observation values:
eSuccess, eFailed. We return eSuccess if skillSuccess and
goal reached are true and otherwise, eFailed. Another op-
tion, not shown, yet essential for large observation spaces, 375

is to return a specified local variable value as the POMDP’s
observation.
25 response: eSuccess
26 response rule: skillSuccess and goal reached
27 response: eFailed 380

28 response rule: True

Listing 4: Move’s Abstraction Mapping File

Lines 29-36 specify how to activate the /navigate ROS
service, provide its path and name, and specify its code pa-
rameters’ value using the local variables defined earlier.
29 module activation: ros service 385

30 imports: from: geometry msgs.msg import: Point
31 imports: from: simple navigation goals . srv

import: navigateResponse, navigate
32 path: / navigate to point
33 srv: navigate 390

34 parameter: goal
35 code:
36 Point (x= nav to x , y= nav to y , z= nav to z )

Listing 5: Move’s Abstraction Mapping File

Implementation

The AM file format was defined as part of the AOS system 395

for using model-based planning for task-level control of au-
tonomous robots and systems (Wertheim, Suissa, and Braf-
man 2024). AOS assumes that each robotic skill is modeled
as a POMDP action and that the skill is implemented as a
ROS service. In this sense, it follows in the footsteps of sim- 400

ilar systems, starting with ROSPlan (Cashmore et al. 2015),
that uses an action description language to describe the im-
pact of some skill code and use planning to decide which
skill to apply and when. These systems are able to dispatch
the action and initiate the execution of the relevant skill 405

code, and they also offer some mechanism for updating the
state based on observations. AOS is the first system of this
type to model skills using a POMDP model and is the first
to include an explicit mapping format between the POMDP
action and the skill code in the form of the AM file defined 410

above. The use of AM files provides two important advan-
tages. First, we have a clear, structured description. Second,
we achieve plug’n play behavior: the user need not specify
any code and information beyond the POMDP model and
the AM file. Using this, the AOS can automatically inte- 415

grate a POMDP planner with the skills’ code, and control
the robot online. For more details see (Wertheim, Suissa, and
Brafman 2024), where we describe an implementation of a
tic-tac-toe playing robotic arm, and a mobile robot with an
arm delivering a cup, both of which required the program- 420

mer to specify the POMDP model and the AM, only, using
which it generated all the integration code and controlled the
robot.



Extensions

Our current file format supports the mapping of factored425

POMDP state and observation spaces to different represen-
tations of these spaces. But representation mappings can also
be used to specify state abstractions that are the basis of di-
verse planning heuristics. Abstraction heuristics require, in
addition, a mapping between action spaces. Specifying ac-430

tion mapping for POMDPs is not straightforward because
this requires maping distributions. However, in the context
of classical planning, this may be easier.

The best-known abstraction heuristics in classical plan-
ning are pattern database (PDB) heuristics (Culberson and435

Schaeffer 1998; Edelkamp 2001). The mapping used there
is simply a projection, where some variables are completely
ignored and other variables are copied without change. This
is easily captured by using an identity mapping for the vari-
ables used and ignoring (or mapping to true) all other vari-440

ables. Because PDBs maintain the same set of labels for ac-
tions, the action mapping is automatically induced by the
state abstraction.

More interesting and more general are merge-and-shrink
(M&S) heuristics (Helmert et al. 2014). (Sievers and445

Helmert 2021) develops a comprehensive theory of trans-
formations of factored transition systems that provides the
foundation for understanding M&S and its properties. Two
fundamental concepts are factored representations and map-
pings, and composition of transformation. The mapping de-450

scribed by the AM is essentially a factored mapping over a
factored representation. As long as labels remain unchanged,
it also automatically extends to a mapping between action
representations. To capture mappings between domains with
different label/action spaces, the AM language would have455

to be extended, but we do not see any conceptual chal-
lenge in this. Indeed, one interesting application mentioned
in (Sievers and Helmert 2021) is that of domain reformula-
tion, which is, in a sense, our main application.

An important element of the M&S heuristic is the idea460

of transformation compositions, where a sequence of do-
main transformations is applied. In complex settings, cor-
responding to robotics, and possibly multi-robot systems,
such transformations could be complex, and added-value
tools could help automate their compositions. Indeed, while465

classical planning typically considers discrete, finite-domain
variables, in robotics and other applications, we have many
numeric variables. We believe that the fundamental ideas be-
hind M&S remain as relevant in such domains, but now ta-
bles must be replaced by more complex functions, as in AM470

specs. In fact, one of the fundamental tools of ROS is a coor-
dinate transformations package, which is often used to auto-
matically compose such transformations. A typical compo-
sition would be between the transformation from a fixed co-
ordinate system (e.g., a map) to the coordinate system of the475

robot base and then to the coordinate system of the robot’s
gripper. Or from a coordinate system of the robot’s camera to
its base and then to the gripper. Our work on formally spec-
ifying the transformation enables similar mapping between
more complex state spaces.480

Summary
When integrating planning with execution, a planning model
is used to make decisions that must then be dispatched by
executing real code. This code interacts with the real world
and returns new observations that must be integrated into the 485

planner’s world model. Making this process work requires
non-trivial programming, much of which can be replaced by
auto-generated code, given an explicit mapping between the
state variables of the planner and those of the code. The AM
format described here provides such a specification format, 490

used by the AOS system to provide exactly this added value.
The precise AM syntax, which can surely be improved, is
not the core issue. Rather it is the idea of using such a formal
specification and the demonstration of its utility. We hope
that this work will stimulate additional development of this 495

knowledge representation and its applications.

References
Albore, A.; Doose, D.; Grand, C.; Guiochet, J.; Lesire, C.;
and Manecy, A. 2023. Skill-based design of dependable
robotic architectures. Robotics and Autonomous Systems, 500

160.
Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-
Theoretic Planning: Structural Assumptions and Computa-
tional Leverage. J. Artif. Int. Res., 11(1): 1–94.
Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Ridder, 505

B.; Carrera, A.; Palomeras, N.; Hurtos, N.; and Carreras, M.
2015. Rosplan: Planning in the robot operating system. In
ICAPS.
Culberson, J. C.; and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence, 14(3): 318–334. 510

Dornhege, C.; Eyerich, P.; Keller, T.; Trüg, S.; Brenner, M.;
and Nebel, B. 2009. Semantic Attachments for Domain-
Independent Planning Systems. In Proceedings of the Inter-
national Conference on Automated Planning and Schedul-
ing, 114–121. 515

Doychev, I. D.; Viehmann, T.; Hofmann, T.; Lakemeyer, G.;
and Trimpe, S. 2021. Goal Reasoning with the CLIPS Ex-
ecutive in ROS2.
Edelkamp, S. 2001. Planning with Pattern Databases. In
ECP, 13–24. 520

Fikes, R. E.; and Nilsson, N. 1971. STRIPS: A New Ap-
proach to the Application of Theorem Proving to Problem
Solving. Artificial Intelligence, 2: 189–208.
Fox, M.; and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. JAIR, 20: 525

61–124.
Gerevini, A.; Haslum, P.; Long, D.; Saetti, A.; and Di-
mopoulos, Y. 2009. Deterministic planning in the fifth in-
ternational planning competition: PDDL3 and experimental
evaluation of the planners. AIJ, 173(5-6): 619–668. 530

Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R. 2014.
Merge-and-Shrink Abstraction: A Method for Generating
Lower Bounds in Factored State Spaces. J. ACM, 61(3).
Höller, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.;
Pellier, D.; and Alford, R. 2020. HDDL: An Extension 535



to PDDL for Expressing Hierarchical Planning Problems.
In The Thirty-Fourth AAAI Conference on Artificial Intel-
ligence, AAAI 2020, 9883–9891. AAAI Press.
Martı́n, F.; Clavero, J. G.; Matellán, V.; and Rodrı́guez, F. J.
2021. Plansys2: A planning system framework for ros2. In540

IROS.
Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.;
Leibs, J.; Wheeler, R.; and Ng, A. Y. 2009. ROS: an open-
source Robot Operating System. In ICRA workshop on open
source software.545

Rao, D.; Hu, G.; and Jiang, Z. 2020. PRobPlan: A Frame-
work of Integrating Probabilistic Planning Into ROS. IEEE
Access.
Rovida, F.; Crosby, M.; Holz, D.; Polydoros, A. S.; Groß-
mann, B.; Petrick, R.; and Krüger, V. 2017. SkiROS—A550

Skill-Based Robot Control Platform on Top of ROS. In
Robot Operating System (ROS): The Complete Reference
(Volume 2), 121–160.
Sadanandam, S. H. S. S.; Stock, S.; Sung, A.; Ingrand, F.;
Lima, O.; Vinci, M.; and Hertzberg, J. 2023. A Closed-Loop555

Framework-Independent Bridge from AIPlan4EU’s Unified
Planning Platform to Embedded Systems. In ICAPS’23
Planning in Robotics (PlanRob) Workshop.
Sanner, S. 2010. Relational dynamic influence diagram lan-
guage (rddl): Language description. Unpublished ms. ANU.560

Sievers, S.; and Helmert, M. 2021. Merge-and-Shrink: A
Compositional Theory of Transformations of Factored Tran-
sition Systems. Journal of AI Research, 781–883orw.
Wertheim, O.; Suissa, D. R.; and Brafman, R. I. 2024.
Plug’n Play Task-Level Autonomy for Robotics Using565

POMDPs and Probabilistic Programs. IEEE Robotics and
Automation Letters, 9(1).
Weyhrauch, R. W. 1980. Prolegomena to a Theory of Mech-
anized Formal Reasoning. Artif. Intell., 13(1-2): 133–170.
Younes, H. L.; and Littman, M. L. 2004. PPDDL1. 0: An570

extension to PDDL for expressing planning domains with
probabilistic effects. Techn. Rep. CMU-CS-04-162.


