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Abstract

In the early years, crowdsourcing delivery platforms used
to face most of the demand from real-time on-demand re-
quests. Recently, with increasing adoption by ecommerce re-
tailers, we observed a shift of demand pattern from real-
time on-demand to scheduled delivery requests. The increas-5

ing reliance on crowdsourced drivers for scheduled deliver-
ies presents a new challenge. That is, the timings through the
process of dispatching trips to drivers set the foundation of
the delivery journey. Despite the critical role of end-to-end
dispatch timing decisions, there has been a paucity of holis-10

tic approaches to this decision-making process that ensure
cost-efficient, on-time deliveries. We present a novel system
designed to optimize the end-to-end driver dispatch timing
decisions. The system begins by predicting time duration of
segments throughout delivery journeys. It then utilizes simu-15

lation, stochastic programming, and survival regression mod-
eling to optimally determine arrival time of drivers, start time
of driver dispatch, and initialization time of surge pay. The
objectives are maximizing dispatch efficiency while meeting
promised delivery time for customers. Our novel decision-20

making system is adaptable to dynamic market conditions
through configurable parameters, which are learned automat-
ically via market segmentation and operational constraints.
We have implemented and deployed this system on Wal-
mart’s proprietary crowdsourced last-mile delivery platform.25

To evaluate its effectiveness, we conducted comprehensive
simulation and experimentation studies. The results indicate
significant improvements in dispatch efficiency, by reducing
idle time (55% compared to previous solutions) in dispatch
process, all while maintaining high rates of on-time deliver-30

ies in line with customer promises. Our work demonstrates
that the general framework underlying the system has the po-
tential to enhance delivery experiences and efficiency across
other crowdsourced delivery platforms, where on-time deliv-
ery promise for customers are foundational.35

Introduction
With the growing prevalence of online ordering across var-
ious sectors, such as retail and food, there is an escalat-
ing demand for a flexible and cost-efficient method to meet
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these needs. Crowdsourced deliveries, which leverage in- 40

dependent drivers to fulfill deliveries whenever and wher-
ever they choose to be online, have emerged as the most
widely adopted solution. As consumer preferences continue
to evolve and online transactions become increasingly preva-
lent, the trajectory of crowdsourced last-mile deliveries is 45

set for further expansion, reshaping the landscape of mod-
ern commerce (Skiver and Godfrey 2017). The e-commerce
retail sector has seen a significant shift in consumer demand
patterns. This change, driven by increased adoption of e-
commerce platforms, has seen a move away from real-time, 50

on-demand delivery requests towards scheduled deliveries.
Scheduled deliveries, which allow customers to pre-define
their preferred delivery windows, offer greater convenience
and predictability. This trend not only reflects the evolv-
ing consumer preferences but also underscores the impact 55

of technological advancements on online retail dynamics.
The primary objective for delivery platforms supporting

scheduled deliveries is to ensure timely and cost-effective
order fulfillment. The driver dispatch system is the corner-
stone of the platform’s objective. The system aims to engage 60

the right drivers at the right time and with the right compen-
sation. Timing is a critical aspect of this process. An end-
to-end view of the business flow reveals multiple decisions
related to timing that need to be made. The first decision is
when to initiate the driver dispatch process (referred to as 65

dispatch start time). Additionally, dynamic or surge pricing
is often used as a real-time incentive to encourage drivers
to accept deliveries that are deemed unattractive (Silva and
Pedroso 2022), such as those that need to be fulfilled in bad
weather. Therefore, a decision also needs to be made regard- 70

ing when such dynamic pricing should be implemented (re-
ferred to as surge time). The last decision is when drivers
should collect orders at pick-up locations (referred to as ar-
rival time).

It’s crucial to highlight the complex interconnections of 75

these timing decisions, as they constitute an essential end-to-
end decision-making process for scheduled deliveries. View-
ing each decision separately, without considering its impacts
on or from others, can lead to sub-optimal or even infeasible
solutions. For instance, the time when a driver should arrive 80

sets the reference for when to initiate driver dispatch. The



goal of the latter is to start dispatch such that drivers can
arrive at the suggested arrival time.

Studies in the timing domains for crowdsourced deliver-
ies have been primarily focusing on projections rather than85

decision-making. Majority of studies predominantly involve
on-demand than scheduled deliveries. These studies mainly
aim to predict when certain events or milestones will oc-
cur, given historical and current information. The underly-
ing problem to solve is usually the prediction of time du-90

rations. Numerous techniques have been proposed, imple-
mented, and tested to improve prediction accuracy, ranging
from decision tree ensemble models, deep learning models
(Araujo and Etemad 2021) (Hu et al. 2022), Markov deci-
sion process (Zehtabian, Larsen, and Wøhlk 2022). How-95

ever, these studies are conducted without any links to driver
dispatch timing decisions, which are prerequisites for down-
stream timing predictions. Some studies (Wang et al. 2018)
(Liu, He, and Shen 2020) (Ding et al. 2021) evaluated the
importance of estimation in guiding upstream decisioning,100

but only on driver assignment (how to match drivers with de-
liveries) than timing decisioning. It is naturally expected that
different dispatch timing decisions lead to different down-
stream time predictions. Moreover, time estimations can and
should influence dispatch timing decisions. For instance,105

knowing the estimated delivery time in advance can guide
when drivers should arrive at pickup locations to avoid late
deliveries.

While there are numerous studies (Barbosa, Pedroso, and
Viana 2023) (Miao et al. 2023) on the dynamic pricing110

mechanism in crowdsourced deliveries, a significant gap ex-
ists in the temporal dimension of dynamic pricing. Specifi-
cally, when surge pricing should be implemented. Most stud-
ies focus on structuring the pricing mechanism, i.e., deter-
mining the price amount and structure. A few studies (Lei115

et al. 2020) (Tong et al. 2018) (Wang, Wang, and Shuaijie
2019) have briefly touched upon common indicators asso-
ciated with the timing of surge pricing, such as supply (of
drivers) and demand (of deliveries). However, these indica-
tors are only discussed at a high level to ensure the complete-120

ness of pricing structures. There is no comprehensive study
on how these temporal indicators should be implemented.
Furthermore, there is a lack of a cohesive end-to-end view
of timing decision-making, as the timing of surge pricing is
closely connected with other dispatch timings. This connec-125

tion is crucial not only for establishing the right compensa-
tion mechanism but, more importantly, for ensuring on-time
deliveries to customers.

The Spark Driver platform is Walmart’s proprietary de-
livery network, launched in 2018. Crowdsourced drivers can130

sign up on the Spark Driver App and make deliveries for
Walmart and other retailers. The platform delivers millions
of customer orders from more than 17,000 pickup locations
reaching more than 84% of U.S. households (Chadha 2023).
The Spark Driver platform plays a crucial role in supporting135

our omni-channel strategy, enable Walmart to offer fast and
reliable delivery options to customers on hundreds of thou-
sands of items across Walmart and other retailers, present a
consistent experience across the digital and physical worlds,
and serve customers seamlessly through online, mobile, and140

in-store interactions. The platform had been relying on a
rule-based system to define driver dispatch timing decisions.
This system, which lacked consideration for variations in
each delivery and environmental factors (e.g., the supply of
drivers and the demand for deliveries), is suboptimal in dis- 145

patch efficiency.

Problem Statement
The business process for online scheduled deliveries is
shown in Figure 1. Customers place orders and select de-
livery windows, for example, between 2 to 3 PM. The plat- 150

form’s objective is to fulfill these orders by 3 PM in an ef-
ficient manner. The platform initiates a driver search at a
certain point (e.g., 1:20 PM), offering a base pay amount. If
the delivery order is at risk of not finding drivers in time, the
platform must decide when to increase the pay (e.g., 1:40 155

PM) to enhance the likelihood of securing drivers before
it becomes too late for on-time delivery. When drivers are
considering offers, they need to be aware of the expected ar-
rival time (e.g., 2 PM) at the pickup locations. This is the
time when the platform anticipates the order will be col- 160

lected and enroute to delivery, and it should not be so late
that drivers cannot complete deliveries after picking up the
items. Hence the platform needs to make intelligent timing
decisions to ensure on-time delivery rates while improving
surge efficacy. 165

The timing of deliveries also needs to be considered
from the drivers’ perspective. Drivers see offers and decide
whether to accept them or not. If they accept, they need to
drive to pickup locations and collect items by the designated
arrival time, then drive to the customer’s location to com- 170

plete the delivery.
Crowdsourced drivers spend their valuable time online

to earn money, so they prefer engaged time over idle time.
Timing decisions are crucial to a driver’s time utilization.
A poor example would be starting driver dispatch too early. 175

The driver accepts the delivery assignment but finds that the
expected arrival time is far in the future, resulting in deliv-
ery start lag time before they need to drive to the store. An-
other bad example is when a driver arrives at a store, only to
find many drivers also waiting to pick up orders. However, 180

the pickup locations have limited resources to handle these
drivers simultaneously. Hence, they must wait a long time
before picking up items. This wait time creates poor driver
experiences and jeopardizes on-time delivery.

In summary, the end-to-end timing decision-making sys- 185

tem should improve dispatch efficiency, by reducing idle
time, while ensuring high on-time delivery rates. The idle
time consists of two parts as discussed above, the delivery
start lag time and wait time. To achieve this, it needs to ad-
dress the three questions: 190

1. What is the optimal driver dispatch start time to avoid
delivery start lag time and the risk of failed on-time de-
livery?

2. When is the best time to increase pay to improve surge
efficacy of the platform and reduce the risk of failed on- 195

time delivery?



Figure 1: Delivery flow and driver dispatch timing decisioning in end-to-end

3. What is the ideal arrival time to prevent wait time due
to pick-up location congestion without jeopardizing on-
time delivery?

We have developed an intelligent decision-making sys-200

tem to determine end-to-end timings for each delivery. The
solution starts by predicting time duration of all segments
throughout the delivery journey. It then optimizes the de-
cisions on these timings using various simulation and op-
timization techniques, while integrating on time delivery205

constraints. Our solution accepts user-defined parameters to
tune outputs depending on application specific objectives.
The framework rooting the system is universally applicable
to timing decision making for online delivery via crowd-
sourced drivers. Novel contributions of this work include:210

1. An innovative decision-making system to optimize dis-
patch timing systematically regarding dispatch effi-
ciency, with integration of on-time delivery risk con-
straints.

2. A generalized framework for solving end-to-end driver215

dispatch timing decisions for crowdsourced online deliv-
eries, building upon delivery duration predictions, sur-
vival modeling, simulation and real-time optimization
enabled decision making.

3. Configurable decisioning through automatic market seg-220

mentation and user-defined inputs to meet various busi-
ness objectives.

System Architecture
The system is composed of the following modules (Figure
2):225

• Data Preprocessor: This module ingests end to end deliv-
ery data, performs standard data cleaning procedures and
generates feature stores for models.

• Model:

– Delivery Segment Duration Predictor: This module230

predicts time durations of end-to-end segments for
each delivery.

• Decision-making optimizer: this comprises three opti-
mization models, which determines end-to-end dispatch
timing coherently in a sequential manner.235

– Arrival time optimization model: Determines the opti-
mal arrival time for each delivery to minimize drivers’
wait time while ensuring high on-time delivery rates.

– Dispatch start time optimization model: Determines
the optimal dispatch start time for each delivery to 240

minimize the delivery start lag time while ensuring
high on-time arrival rates.

– Surge time optimization model: Determines when to
increase pay to drivers for each delivery to maximize
surge efficacy while ensuring high on-time delivery 245

rates.

• Configurator: Segments all markets into several clusters,
applies configs at the cluster level for decision-making
optimizer.

• Evaluation flows: Comprises a simulator to validate the 250

decisioning outputs, and an experimentation protocol to
measure and quantify the impacts.

The rest of the paper is organized as follows. In Sec-
tion 2, we describe components of our system (See Figure
2), detailing mathematical formulations and our solution ap- 255

proach. In Section 3, we perform rigorous evaluations of our
system via simulation and online experimentation on. We
conclude in Section 4 summarizing the importance of our
work and the future directions that emanates from this work.

Methods 260

Delivery Segment Predictor
To make intelligent decisions regarding driver dispatch tim-
ing, it is crucial to understand the duration throughout the
delivery journey. In this module, we employ predictive ma-
chine learning techniques to estimate these duration. Specifi- 265

cally, we consider four duration: driver search, drive to pick-
up location, delivery loading time, and delivery time. Driver
search is the time from the start of dispatch to when the
driver accepts the delivery. Drive to pick-up location is the
time the driver spends driving to the pick-up locations. De- 270

livery loading is the necessary time needed to load all items
into the drivers’ cars after arriving at the pick-up locations.
Delivery is the time from the driver departing the pick-up
locations to the completion of deliveries.

These time duration depict one delivery from end to end, 275

but they differ in correlating features. For instance, driver
search duration heavily correlates with the supply of drivers
and demand of deliveries, as well as the attractiveness of
the delivery. Drive to store duration strongly correlates with
drivers’ locations, pick-up locations, and traffic. To address 280

these correlations, we conducted feature engineering and



Figure 2: System Architecture

built four predictors for each duration. The features mainly
fall into three categories: delivery attributes (such as deliv-
ery distance, number of items, pick-up location, delivery lo-
cation), supply (of drivers) and demand (of deliveries), and285

activities at pick-up locations (such as delivery preparation
speed).

We used regression tree models with hyper-parameter tun-
ing for the four predictors, as it provided satisfactory perfor-
mance and interpretability among other choices we consid-290

ered. We also enabled the model to store statistics (mean
and standard deviation) of leaf nodes for later decision mak-
ing. In many cases, using these statistics, rather than a sin-
gle point prediction, provides much-needed flexibility in the
decision-making model. We can take suitable thresholds (or295

quantiles) to finalize predictions on timing duration, to meet
various operational objectives, as we’ll show in the decision-
making models later.

We train and deploy predictors for each market. Time
duration fluctuate based on many seasonal and market fac-300

tors. These fluctuations are further compounded by a rapidly
growing platform. Hence, we retrain predictors on weekly
basis using historical four weeks data.

Arrival Time Optimization Model
The arrival time informs drivers of the optimal time to arrive305

at pick-up locations. The goal is to ensure that drivers arrive
at the pickup location in a manner that avoids creating unde-
sirable congestion, while also providing them with sufficient
time to complete their deliveries punctually.

First, the model utilizes duration predictors to derive the310

latest possible arrival time for each delivery. In other words,
drivers must arrive prior to this timestamp to guarantee on-
time delivery. We refer to this as the “at-risk” timestamp.
It can be formulated as equation (1), where for each deliv-
ery i, tia is arrival time, T i

l is the loading (load orders into315

drivers’ cars) time duration and T i
d is the delivery time du-

ration. tie is the latest delivery time (i.e., delivery end time)
promised to customers. The threshold α dictates the level of
conservatism of the at-risk time. The higher the threshold,
the earlier the at-risk time. 320

P (tia + T i
l + T i

d > tie) < α (1)

To determine the optimal arrival time for each delivery,
such that congestion at pick-up locations are reduced, we
aim to minimize the waiting time of drivers. Hence, we can
formulate this as an optimization problem (equation (2)):

minimize
i=n∑
i=1

Wi = f({tia}i∈I , C)

subject to P (tia + T i
l + T i

d > tie) < α, ∀i ∈ I

T i
l > 0, T i

d > 0, ∀i ∈ I

C > 0, 0 < α < 1

(2)

Where I is all deliveries, Wi is the wait time for each 325

delivery, C is the dispensing capacity at pick up locations.
While this can be formulated as an optimization prob-

lem, there are three challenges to solve it. First, the wait
time is a function of the arrival time for all deliveries and
the dispensing capacity at pick-up locations. Establishing 330

this function is non-trivial. It requires knowing relationships
among the arrival time of all deliveries, and their interac-
tions with dispensing capacities. Secondly, dispensing ca-
pacities are typically not readily available. While we use es-
tablished three-phase traffic theory (Kerner and Lieu 2005) 335

to enable the estimation, a method to validate the estimation
accuracy is necessary. Last, it is infeasible to solve the prob-
lem through traditional optimization solver, given that many
decision variables are not known simultaneously. Deliveries
can occur at any time of the day, and decisions of arrival time 340

for current deliveries need to be made without knowledge of
future deliveries.



Simulation conveniently addresses these challenges. First,
deliveries are dispensed to drivers following a typical queue-
ing process. We build an agent-based, discrete-event simu-345

lator to establish the relationship. Given the arrival time for
all deliveries and the dispensing capacities, the simulation
engine can conveniently derive the wait time before each de-
livery is handled by the available dispensing resources. Sec-
ond, we estimate and validate the dispensing capacity such350

that the wait time distribution from the simulator matches
the actual observations. We then run the simulator over a list
of candidate arrival patterns and select the optimal pattern
that minimizes the wait time without negatively impacting
on-time delivery rates. The arrival pattern is a list of distri-355

butions over a time window. Each value indicates percent of
deliveries with arrival time allocated for each bucket within
the time window. Finally, we use the optimal arrival pattern
to guide the decisioning of the arrival time for each delivery
on the fly. The process aims to match the distribution of de-360

liveries to the targeted distribution, while following at-risk
time constraints. This approach works regardless of uncer-
tainties in future deliveries.

Thus, we effectively solve the optimization problem, but
with a simulation-based approach. This allows us to tackle365

both the challenge of function estimations, and the infeasi-
bility of solving the optimization problem on the fly.

Dispatch Start Time Optimization Model
The dispatch start time plays a crucial role in recommend-
ing the optimal initiation time for the driver search process.370

The primary objective is to start the search for drivers by
timely publishing the delivery, thereby minimizing delivery
start lag time, and ensuring high on-time arrival rates.

Using the delivery segment predictor, we get estimated
driver search time and drive to pick-up location time, which375

are then integrated into an optimization-based decisioning
algorithm. We formulate this as a stochastic programming
problem for each delivery (equation (3)):

maximize ts

subject to P (ts +X + Y > ta) < α

X + Y ∼ N(µx + µy, σ
2
x + σ2

y + 2σxy)

µx > 0, µy > 0, 0 < α < 1

(3)

Where ts is the dispatch start time, X is random vari-
able of driver search time, Y is random variable of drive to380

pick-up location time, ta is the arrival time obtained from ar-
rival time optimizer, α is the on-time arrival rates threshold,
µx, µy, σ

2
x, σ

2
y, 2σxy are estimated parameters from deliv-

ery segment predictors.
The arrival time sets the reference for dispatch start time.385

The latter’s goal is to start driver search such that delivery
start lag time is minimized while on-time arrival (at pick-
up locations before arrival time) constraints are satisfying.
By maximizing the dispatch start time while complying the
on-time arrival constraints, we start driver dispatch as late390

as possible. This essentially minimizes the delivery start lag
time. It equals to leave just enough time for driver search and
drive to pick-up locations, without rooms for delivery start
lag time.

Here we use random variables to describe driver search 395

time and drive to pick-up location time, instead of single
point predictions. The reason is we make decisions for each
delivery before driver dispatch starts. Hence our predictions
and decisions are driver agnostic. As such, it is better to use
random variables based on statistical parameters. It gives us 400

the flexibility to set the cut-off point in predictions based
on operational objectives and make decisions accordingly.
We experimented with different statistical distributions and
found normal distribution fits best.

Surge Time Optimization Model 405

The surge time pertains to the optimal time to increase the
pay for drivers. Initially, drivers are offered a base pay for
delivery. The process of driver dispatch, initiated by the dis-
patch start time model, leads to the quick acceptance of at-
tractive deliveries. However, less attractive deliveries require 410

a surge in pay to be accepted by drivers. This model opti-
mizes the timing of starting surge pay.

This model introduces the concept of delay risk, which is
the probability that drivers cannot be found in time to com-
plete deliveries on time without surging. The surge timing 415

is critical as surging too early can increase unnecessary dis-
patch costs, while surging too late can delay the delivery
process, leading to failed on-time deliveries. The goal is to
determine the optimal surge time to maximize surge efficacy
while ensuring on-time delivery, by initiating the surge when 420

the delay risk becomes unacceptable.
We first obtained the latest allowable driver found time

from the delivery segment predictor. This time is the lat-
est delivery time promised to customers minus the delivery
time, loading time, and drive to pick-up location time. In 425

essence, drivers must be found by this time to avoid risking
on-time delivery.

Given the surge range, which is the time between the
driver dispatch start and the latest driver found time, we use a
survival regression model to estimate the delay risk for each 430

trip at each time t within the surge range, as shown in equa-
tion (4). Survival regression, a classical method of estimat-
ing ‘survival’ likelihood, applies well to the driver dispatch
problem. Here, not ‘surviving’ means deliveries are accepted
by a driver. We obtain the acceptance (not surviving) proba- 435

bility using survival regression via the Cox proportional haz-
ards model (Cox 1972). A key assumption for this model is
the absence of timing variant factors for the sample. In our
case, we adhere to this assumption by assuming no changes
in the pay, aligning with our objective of modeling delay risk 440

without surge pay.

h((t+ tf ) | t,X) = h0((t+ tf ) | t) e
∑p

i=1 xiβi (4)
Where tf represents additional search time in the fu-

ture with respect to already searched time t; the term h0

is the baseline hazard; h is the hazard function, i.e., the
acceptance likelihood determined by a set of p covariates 445

(xi, i = 1, . . . , p), which are input features such as delivery
attributes, the coefficients (βi, i = 1, . . . , p) measure the
impact of covariates.

We then define delay risk at any time t as equation (5).
It is the likelihood of survival (not finding drivers) by latest 450



Figure 3: Delay risk over time and corresponding surge tim-
ing decisioning

allowable driver found time tdf , given already searching for
drivers for t. The delay risk is monotonically increasing over
time. This is expected as the longer the delivery is still in the
market, the less likely (higher risk) it can find drivers before
a fixed timestamp in the future.455

F (t,X) = h(tdf | t,X) (5)

Finally, we get the optimal surge time by comparing the
delay risk with the thresholds, as shown in Figure 3. The
thresholds are generated by automatic learning of the deliv-
ery risk from historical data in the same and similar markets.
It also accepts user defined configurations for flexible cut-off460

and corresponding decisioning.

Configurator
Our system operates in a complex environment with more
than thousands of markets in United States, each exhibit-
ing unique characteristics. For instance, markets with am-465

ple driver supplies typically experience shorter times to
find drivers and fewer deliveries incurring surge costs. Con-
versely, markets with low delivery volumes and high dis-
pensing resources at pick-up locations are less concerned
about the concentration of drivers’ arrival times. These var-470

ied patterns necessitate different operational strategies and
objectives. In markets with sufficient driver supplies, we can
afford to relax on-time delivery rate constraints, providing
more flexibility to optimize other objectives such as dispatch
efficiency. However, in markets with limited supplies, we475

need to enforce stringent on-time delivery constraints.
To cater to these differentiated strategies, we designed a

configurator that segments markets into several clusters us-
ing k-means clustering. This clustering is based on key per-
formance metrics such as demand volume of deliveries, sup-480

ply volume of drivers, historical on-time delivery rates, and
driver dispatch cost. The number of clusters is determined
using the elbow method and business feedback.

Once the markets are segmented, we assign configura-
tions at the cluster level for each decision-making model.485

The decisioning model integrates on-time delivery as con-
straints, with parameters defining the conservative or aggres-
sive levels. Based on market cluster attributes, we assign
corresponding levels for these parameters. The assignment

of parameters is two-fold. First, we have set up pipelines 490

to periodically inspect the metrics and determine the appro-
priate settings such that the on-time delivery rates are no
worse than historical levels. Second, we take business feed-
back into consideration to fine-tune settings for some clus-
ters from time to time. This approach ensures automated pa- 495

rameter settings while maintaining the flexibility to incorpo-
rate user-defined inputs.

Evaluation Flows
We build simulation and experimentation flows to evaluate
the system performance. The simulation evaluates the ef- 500

fectiveness of the solution in comparison to existing rule-
based processes. The simulation flow utilizes an agent-
based, discrete-event simulation technique to emulate the
complete delivery journey, starting from the driver dispatch
to the delivery completion. The simulated results allow us to 505

evaluate the impacts of the timing decisions on both directly
impacted metrics (e.g., driver wait time, delivery start lag
time) and indirectly impacted metrics (e.g., dispatch cost,
on-time delivery rates). To ensure the accuracy of the sim-
ulation engine, it is validated against real-world datasets, 510

based on the similarity of primary metrics of interests, such
as wait time, delivery start lag time, and on-time delivery
rates.

We have also built a Difference-in-Differences (DID)
(Angrist and Krueger 1999) experimentation flow to monitor 515

and measure impacts. Given the nature of timing decisions,
which are agnostic to users (i.e., drivers) and have poten-
tial carry-over effects (decisions from one hour can impact
deliveries in the next hour), DID is the most suitable experi-
mentation framework. Each market is treated as one unit. 520

The flow is built in several steps. First, it selects test and
control groups via stratified sampling. The test groups are
chosen to be representative of the entire market, based on
primary metrics of interest. The control groups are selected
to exhibit parallel trends in recent times, on weekly or daily 525

frequencies. Once the experiment has been launched for a
sufficient duration with enough data inputs, the experimen-
tation framework examines the impacts through visual in-
spection on dashboards and statistical analysis via DID mod-
eling, shown in equation (6), where Ygt are observations on 530

metrics of interests, ag are group-fixed effects, bt is time-
fixed effects, δ is the coefficient of the cross-over term (ex-
periment group in post-launch period) Dgt, ϵgt is the cor-
related error within each market. The DID model evaluates
the impacts through the coefficient of the cross-over term. 535

The statistical significance is determined by the p-value of
the coefficient δ. The model considers the fixed effects on
markets and weekly patterns, and error correlations within
each market through cluster robust standard error.

Ygt = ag + bt + δDgt + ϵgt (6)

System Performance Evaluation 540

Arrival Time Evaluation
The effectiveness of the arrival time model is evaluated us-
ing the simulation platform. The primary question we aim



Parameter settings
(conservative level)

Relative changes
in wait time

Relative changes
in OTD

0.0 -65% +0.5%
-0.25 (optimal) -68% +1.1%

-0.5 -64% +1.3%
-0.75 -57% +1.4%
-1.0 -55% +1.4%

Table 1: Wait time and OTD changes under different candi-
date arrival time distribution

to answer is: Can the model generate an optimal arrival time
distribution that minimizes wait time without negatively im-545

pacting on-time delivery rates? This question is addressed
in two steps. Initially, within a specific market and hour,
we observe how the model evaluates candidate distributions
and determines the optimal arrival time distribution. Subse-
quently, we apply the model across various markets and hour550

slots to verify its effectiveness in a broad range of scenarios.
Table 1 presents a comparison of wait times and on-time

delivery (OTD) rates under different candidate solutions.
The final choice made by the model is indicated in brack-
ets. Each candidate solution is governed by a parameter that555

signifies conservative level. The lower the value, the more
conservative the setting, meaning more deliveries are as-
signed with an earlier arrival time. A value of zero represents
the most aggressive scenario, where a uniform distribution
across all times is adopted. We can see that the solution cho-560

sen by the model achieves the greatest reduction (68%) in
wait time without compromising OTD. Another observation
is that as we adopt a more conservative setting to candidate
distribution, the reduction in wait time decreases. This out-
come is expected and validates the model’s effectiveness. As565

the setting becomes more conservative, more deliveries are
assigned to earlier times, increasing the likelihood of con-
gestion at pick-up points, which increases wait time.

This method was then applied across several markets and
hour slots, with the results summarized in Table 2. These570

different markets and hour slots represent clusters identified
by the clustering algorithm. They generally have different
patterns of driver supply versus delivery demand, dispens-
ing resources at pick-up locations. Consequently, different
configurations are adopted, through either automatic learn-575

ing or user-defined inputs. For instance, in markets and times
where store dispensing capacities are sufficient and delivery
demands are low, a more conservative distribution setting is
used. This is used in anticipation that the wait time will re-
main manageably low while significant gains are made on580

OTD. The results indicate a consistent improvement in re-
ducing wait time and no negative impacts on OTD rates,
demonstrating the effectiveness of the model.

Surge Time Evaluation
The surge timing model’s effectiveness is evaluated by its585

capability to reasonably differentiate surge time when de-
lay risk varies. To achieve this, we applied the model across
various scenarios and evaluated the outputs.

First, we assessed how surge timing results vary under dif-

Cluster Relative changes
in wait time

Relative changes
in OTD

0 -68% +1.9%
1 -28% +4.6%
2 -47% 0%
3 -63% +2.0%

Table 2: Wait time and OTD changes under different clusters
with optimal arrival-time distribution

Figure 4: Surge time under different supply (of drivers) and
demand (of deliveries) ratio

ferent delay risks. Figure 4 illustrates the surge timing (rel- 590

ative to the promised delivery time) under low versus high
supply-demand ratio. When ratios of driver supply to de-
livery demand are low, delay risks of deliveries increase as
drivers are harder to find. Consequently, we observe earlier
surge timing (3.3 minutes on average). Figure 5 depicts the 595

surge timing for deliveries with short versus long delivery
distances. When delivery distances are high, delay risks of
deliveries increase as they need more time to fulfill. As ex-
pected, deliveries with longer distances have earlier surge
timings (9.7 minutes on average). This confirms that the 600

model can reasonably differentiate surge timing based on
delay risk.

Next, we investigated how the model outputs more diver-
sified surge timing, as compared to existing rule-based de-
cisions. Figure 6 compares surge timing distributions under 605

these two cases. The existing decisions are rule based, fixed
timestamps for all deliveries (with bifurcation based on de-
livery types), while the model yields more diversified distri-
butions based on underlying delay risks of each delivery. We
further applied two configurations on the delay risk thresh- 610

old and observed two distributions differentiating the overall
decision-making of all deliveries. A higher delay risk thresh-
old implies more conservative decision-making, or earlier
surge timing, to focus more on protecting on-time delivery
rates. This confirms that the model can generate more di- 615

versified surge timing than existing solutions and shift that
decision-making reasonably, based on configurations.

Online Experimentation
We deployed the system to Walmart’s proprietary delivery
platform and conducted online experiments to measure its 620

impact. After selecting test and control groups with simi-



Figure 5: Surge time under different delivery distance

Figure 6: Surge time comparison with optimized and rule
based decisioning

lar characteristics, we launched the service in the test group,
while keeping the control groups unchanged. We monitored
metrics on a weekly basis. Once we collected enough sam-
ples for statistical analysis, we used the DID model to quan-625

tify the impacts and their statistical significance.
The primary questions we seek to answer through online

experimentation are: 1) Does the system reduce dispatch idle
time, without negative impacts on on-time delivery rates? 2)
What is the magnitude of these impacts and are they statisti-630

cally significant?
Figure 7 illustrates the changes between the test and con-

trol groups, before and after the launch. It reveals that the
system significantly reduces the delivery dispatch idle time
for drivers. This reduction is attributed to two factors. Firstly,635

the optimal dispatch start timing minimizes the delivery start
lag time (due to drivers are less likely to idle given dispatch
starts not too early) and wait time (due to less congested ar-
rival time). Further, the optimal timing increases the likeli-
hood of drivers accepting deliveries earlier, as they see their640

time utilization get improved. These two factors contributed
to the overall reduction in driver dispatch time. Getting more
drivers accepting deliveries earlier also leads to more deliv-
eries dispatched before the surge price is applied. Conse-
quently, surge efficacy is improved since less unnecessary645

surge is incurred.
Lastly, all these decisions resulted in a neutral impact on

on-time delivery rates. The reason for this is that the sys-
tem is designed to consider delivery risk as constraints in all
decision-making models. The decisions are made to main-650

Figure 7: Comparison of delivery dispatch idle time through
DID experimentation

tain on-time delivery rates at least intact. That said, there
exist parameters that can be tuned or accept user-defined
inputs. The parameters can then guide the decision-making
process more conservative or aggressive.

We further quantified the impacts and their statistical sig- 655

nificance using the DID model. It is concluded that the sys-
tem reduced dispatch time by 55%, as compared to pre-
vious solutions, while keeping high on-time delivery rates
consistent for Walmart’s last mile delivery platform. All
the changes were statistically significant (p values less than 660

0.05), except for the changes in on-time delivery rates, indi-
cating no impacts as expected .

Conclusion
In this paper, we proposed a comprehensive system for op-
timizing end-to-end driver dispatch timing decisions, to im- 665

prove dispatch efficiency in the context of crowdsourced on-
line deliveries. This system uses predictive modeling to esti-
mate delivery journey duration. The decision-making mod-
els then leverage stochastic programming, simulation, and
survival modeling to determine optimal dispatch timings. 670

Specifically, it decides 1) when drivers should arrive to min-
imize wait time at pick-up locations while ensuring on-time
delivery rates, 2) when to start driver dispatch to minimize
delivery start lag time while adhering to on-time arrival con-
straints, and 3) when to start surge to improve surge efficacy 675

while ensuring high on-time delivery rates.
We conducted simulation and experimentation studies on

Walmart’s proprietary crowdsourced last-mile delivery plat-
form to demonstrate the solution’s effectiveness. These in-
clude reducing wait time at pickup locations, reducing the 680

delivery start lag time for drivers, and maintaining satis-
factory on-time delivery rates. These accomplishments have
culminated in highly efficient dispatch processes: 55% re-
duction in dispatch time, as compared to previous solutions,
while meeting on-time delivery promises to customers. 685

This decision-making system has proven to be funda-
mental to successful driver dispatch, and consequently, to
the success of Walmart’s crowdsourced online delivery plat-
form. The framework rooting the system is applicable to
other crowdsourced platforms. It addresses the gap in end- 690

to-end timing decisions for crowdsourced online deliveries
with promised delivery time.
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