
PDBs Go Numeric: Pattern-Database Heuristics for Simple Numeric Planning

Daniel Gnad1, Lee-or Alon2, Eyal Weiss2, Alexander Shleyfman2

1Linköping University, Linköping, Sweden
2Bar-Ilan University, Ramat Gan, Israel

daniel.gnad@liu.se, {alonlee1, eyal.weiss, alexash}@biu.ac.il

Abstract

Despite the widespread success of pattern database (PDB)
heuristics in classical planning, to date there has been no
application of PDBs to planning with numeric variables. In
this paper we attempt to close this gap. We address optimal
numeric planning involving conditions characterized by lin-
ear expressions and actions that modify numeric variables by
constant quantities. Building upon prior research, we present
an adaptation of PDB heuristics to numeric planning, intro-
ducing several approaches to deal with the unbounded nature
of numeric variable projections. This approach aims to re-
strict the initially infinite projections, thereby bounding the
number of states and ultimately constraining the resulting
PDBs. We argue that our PDB heuristics obtained with our
approach can provide strong guidance for the search.

Introduction
In this work, we concentrate on simple numeric plan-
ning (SNP) with instantaneous actions. Numeric state flu-
ents introduce a further degree of complexity over classi-
cal planning, making plan existence undecidable in gen-
eral (Helmert 2002). Nevertheless, since the introduction of
numeric variables in PDDL2.1 (Fox and Long 2003), several
methods have been proposed to solve satisficing and optimal
variants of numeric planning problems (Hoffmann 2003b;
Shin and Davis 2005; Gerevini, Saetti, and Serina 2008; Ey-
erich, Mattmüller, and Röger 2009; Coles et al. 2013; Scala
et al. 2016; Illanes and McIlraith 2017; Li et al. 2018; Scala,
Haslum, and Thiébaux 2016; Scala et al. 2017; Aldinger
and Nebel 2017; Piacentini et al. 2018a,b; Kuroiwa et al.
2022; Kuroiwa, Shleyfman, and Beck 2022). We consider
here optimal planning with so-called simple numeric condi-
tions, where numeric variables can be increased or decreased
by constant quantities and pre-conditions are inequalities in-
volving linear expressions.

Previous works have utilized heuristics based on pattern
databases (PDBs) (Culberson and Schaeffer 1996, 1998) in
classical planning (Edelkamp 2002; Holte et al. 2004; Fel-
ner, Korf, and Hanan 2004; Haslum, Bonet, and Geffner
2005; Holte et al. 2006; Anderson, Holte, and Schaeffer
2007; Haslum et al. 2007; Katz and Domshlak 2009). A
PDB heuristic considers only a subset of the state variables,
called the pattern, and does so in a perfect precision. Other
variables are projected away in the heuristic calculation.

While showing state-of-the-art performance in classical
planning, to the best of our knowledge, PDB heuristics
have never been used in the numeric planning setting. Ad-
dressing this gap may be desirable for two reasons: (1)
multiple heuristics known from classical planning, such as
hmax (Bonet and Geffner 2001), or LM-cut (Helmert and
Domshlak 2009), have been adopted successfully in numeric
planning, and (2) as PDB heuristics perform very well in
classical planning, it is reasonable to assume that their suc-
cess may be brought to the numeric realm.

Unfortunately, unlike in classical planning, the transition
systems induced by a projection of a task onto a set of vari-
ables that include numeric fluents may have infinitely many
states. Therefore, to adopt the multiple approaches used in
classical planning to generate informative PDBs, one needs
to somehow bound the numeric transition system. We in-
troduce several strategies that can be employed to do so,
bounding the numeric transition system effectively. One ap-
proach is to discretize the numeric fluents within the tran-
sition system, reducing then the infinite state space to an
incomplete finite one. Another approach involves defining
structure-specific constraints or rules that limit the possi-
ble values of numeric fluents during the transition, thereby
constraining the state space. Additionally, abstraction tech-
niques can be utilized to represent the numeric transition
system at a higher level of granularity, focusing only on rele-
vant aspects while abstracting away unnecessary details. By
implementing these strategies, it becomes feasible to gen-
erate informative PDBs for tasks involving numeric fluents
in planning domains. In what follows, we discuss this ap-
proaches, providing them with a theoretical background.

Preliminaries
Numeric Planning
We work over a fragment of numeric planning based on the
finite-domain planning (FDR) formalism (Bäckström and
Nebel 1995; Helmert 2009) extended with numeric fluents
called integer restricted task (IRT). This is a variant of the
restricted numeric task (RT) formalism (Hoffmann 2003a),
where all values of the numeric state variables are integers.
Hoffmann shows that RTs are equivalent to simple numeric
tasks (Hoffmann 2003a), and Helmert (2002) demonstrates
that any RT can be transformed into an IRT. For the expres-

sive power of IRTs see (Gnad et al. 2023).
An IRT is a tuple Π = ⟨V,A, s0, G⟩, where V = Vn ∪ Vp

is a set of numeric and finite-domain variables, respectively.
A is the set of the actions of the task, s0 is the initial state,
and G is the goal description. All these sets are finite. The
task with no numeric variables, Vn = ∅, is called an FDR
task.

Let v ∈ V , and let D(v) be its domain. Then, |D(v)| <∞
if v ∈ Vp and D(v) = Z otherwise. A state of Π is a full
assignment over the variables in V . The set of all states is
denoted S . Each state s ∈ S can be represented as a tu-
ple ⟨sp, sn⟩, where sp ∈

Ś

v∈Vp
D(v) and sn ∈

Ś

v∈Vn
Z.

⟨v, d⟩ denotes a fact, where v ∈ V and d ∈ D(v). We say
that s |= ⟨v, d⟩ or equivalently ⟨v, d⟩ ∈ s iff s[v] = d, where
s[v] indicates the value of v in s. A state s can be seen as
a set of facts thus as a minor abuse of notation we write
s = sp ∪ sn. A set of facts spt is a partial state if spt ⊆ s
and s ∈ S.

Conditions can be either propositional or numeric. Propo-
sitional conditions are formed out of facts, ⟨v, d⟩, a non con-
tradicting set of such propositions forms a partial state spt.
spt is satisfied by the state s if spt ⊆ s. Numeric conditions
have the form v ▷◁ w, with ▷◁∈ {>,≥, <,≤}, v ∈ Vn, and
w ∈ Z. s |= v ▷◁ w if s[v] ▷◁ w. For a set of conditions Ψ
we say s |= Ψ if s |= ψ for each ψ ∈ Ψ.

A tuple of partial states ⟨pre(a), eff(a)⟩ forms an action
a ∈ A, where pre(a) is the precondition and eff(a) is the
effect of a. Precondition pre(a) := prep(a) ∪ pren(a) is
formed out of propositional and numeric conditions, respec-
tively. Similarly, effects eff(a) := effp(a)∪effn(a) are given
as sets of propositional and numeric effects. Numeric effects
in an IRT have the form (v += m), where v ∈ Vn and
m ∈ Z \ {0}. We say that a is applicable in s if s |= pre(a),
the result of this application is given by sJaK := s′p ∪ s′n,
with s′p[v] = d if ⟨v, d⟩ ∈ effp(a), s′n[v] = sn[v] + m if
(v += m) ∈ effn(a), and sJaK[v] = s[v] otherwise. In this
work we assume that each action has at most one effect on
each variable. cost(a) denotes the cost of an action.

The goal description, denoted as G, comprises both
propositional conditions, Gp, and numeric conditions, Gn.
A state s∗ is considered a goal state if it satisfies the goal
description, i.e., s∗ |= G. A s-plan, denoted as π, is a se-
quence of actions applied consecutively, starting from the
state s and leading to some s∗. A plan for Π is an s0-plan.
The cost of a s-plan π is the sum of all its action costs and an
optimal s-plan has minimal cost among all possible s-plans.
The optimal cost of a s-plan is denoted by h∗(s). If no goal
state is reachable from s we say h∗(s) = ∞. A plan for Π is
a s0-plan, and its cost is h∗(s0).

PDBs for Classical Planning
One of the most employed algorithms to solve optimally
a planning tasks is A∗ search (Hart, Nilsson, and Raphael
1968) with an admissible heuristic, which estimates the cost
of reaching a goal state. A heuristic h : S → R0+ ∪ ∞ is
called admissible if it assigns every state s an estimate such
that h(s) ≤ h∗(s). A Pattern Database (PDB) heuristic, de-
noted as h

∣∣
P

, is induced by a subset of variables P ⊆ V

comprising the variables of Π, known as the pattern. All
variables that are not in the pattern are ignored. Thus, an ab-
straction of the state space is created. A projection ΠP maps
each state in the original state space to a state in the ab-
stract state space. h

∣∣
P
(s) is defined as the perfect heuristic

in the projection Π
∣∣
P

of Π onto P . In the perfect heuristic,
the distances from each state to the goal are optimal. This
projection can be computed by eliminating all occurrences
of variables from V \ P in Π. PDBs are precomputed once
by determining the optimal solution costs, h

∣∣
P
(s
∣∣
P
), for all

abstract states s
∣∣
P
∈ S

∣∣
P

in the abstract planning task Π
∣∣
P

.
Instead of starting from the initial abstract state and com-

pute the distance of each abstract state to the set of abstract
goal states, as done in progression search, regression search
is often used for this purpose. A regression search starts
from the set of abstract goal states and searches backwards
until reaching the initial abstract state. Unlike progression
search which may require multiple iterations over some ab-
stract states, regression search avoids these redundant dis-
tance computations. By exploring the abstract state space in
a backward direction, it computes state distances from goal
states in a single exploration. This could also detect dead-
ends along the way, as the search progresses from the set of
abstract goals towards the initial abstract state.

During the search process, concrete states s are projected
onto the variables in P using a perfect hash function (Siev-
ers, Ortlieb, and Helmert 2012). This hash function is well-
defined for all partial states spt defined over the variables
Q ⊇ P . We use the notation Π

∣∣
P
(spt) for the heuristic

computation of such states. Given that PDBs grow expo-
nentially in the number of included variables, single PDB
heuristics alone typically do not offer sufficient guidance.
Consequently, state-of-the-art planners employ various tech-
niques to admissibly combine multiple PDB heuristics.

Combining Multiple PDBs
Let H be a set of admissible heuristics. For any state s a
maximum over this set of heuristics is an admissible esti-
mate. We say thatH is additive if

∑
h∈H h(s) is admissible.

A tighter bound for a set of PDB heuristics H was proposed
by Haslum et al. (2007) who introduced a heuristic based
on the disjoint additivity of patterns underlying the PDBs.
Two patterns P1 and P2 are disjoint-additive if there exists
no action a that affects at least one variable in each pattern.
For a set (collection) of patterns C, the heuristic hC is de-
fined as the maximum over the sums of PDB heuristics in-
duced by patterns in maximal disjoint-additive subsets, i.e.,
hC = maxA∈A(C)

∑
P∈A h

∣∣
P

, where A(C) is a set of max-
imal disjoint-additive subsets of C. hC is admissible.

A general combination technique for a set of arbitrary ad-
missible non-additive heuristics {hi}ni=1 is cost partition-
ing (Katz and Domshlak 2010; Pommerening et al. 2015).
Cost partitioning computes each heuristic hi for the task Π
under a cost function costi different from the original cost.
The sum

∑n
i=1 hi is admissible if

∑n
i=1 costi(a) ≤ cost(a)

for all actions a ∈ A. Unfortunately, computing the optimal
cost partitioning is usually infeasible in practice. State-of-
the-art approaches to approximate the optimal cost partition-

ing are for example saturated cost partitioning (SCP) (Seipp,
Keller, and Helmert 2020) and post-hoc optimization (PhO)
(Pommerening, Röger, and Helmert 2013).

In a nutshell, SCP considers the heuristics in {hi}ni=1 in
an arbitrary but fixed order. When computing hi, it com-
putes the saturated costs scfi, which are the minimum costs
needed by the heuristic computation. They can be computed
efficiently for abstraction heuristics by looping over all ab-
stract transitions of the abstract state space. The costs not
needed by hi, costi − scfi, are the costs costi+1 available to
the next heuristic hi+1 and so on. The order of the heuristics
in this iterative approach may affect the heuristic estimates.

In post-hoc optimization, the algorithm identifies which
actions are relevant for each abstraction-based heuristic.
That is, determines which action affects variables in each
pattern. For each action that affects an abstract heuristic, the
algorithm assigns a value called the action’s factor, which
determines the effect of the action on the heuristic in the
projection onto that pattern. The cost partitioning is then cal-
culated by the sum of each action’s factor with the action’s
cost. Thus, the algorithm combines several PDBs consider-
ing the effect of actions within each heuristic.

Cost partitioning is a general approach that combines
heuristics while maintaining an admissible bound. PDB, on
the other hand, is a specific abstraction heuristic. Previous
works have emerged cost partitioning to combine several
PDB heuristics to improve the estimates in classical plan-
ning (Seipp, Keller, and Helmert 2020; Pommerening et al.
2015). In cost partitioning projections, suboptimal cost par-
titions are computed, and are then composed to a single (op-
timal) partitioning.

Causal Graphs for Numeric Planning
Since planning tasks are usually structurally complex, mul-
tiple means were introduced to study this structure. One of
the them is the causal graphs (CG) that were introduced
for classical planning (e.g., Knoblock 1994; Bacchus and
Yang 1994; Brafman and Domshlak 2003). Recently, Sh-
leyfman et al. (2023) adopted the compact definition of CG
by Helmert (2004) for RTs. The main observation made in
this adaptation was that in RTs all conditions and effects,
numeric or propositional, involve exactly one variable per
formula. Denote by vars(Ψ) be the function that returns the
set of variables that are involved in a a set of formulas Ψ.
For each individual RT formula ψ ∈ Ψ the function vars
returns a single variable. Thus, the definition of CG for clas-
sical tasks can be adopted to RTs almost as-is.

The CG of a planning task Π = ⟨V,A, s0, G⟩, then, is a
digraph CG(Π) = ⟨V, E⟩, where (u, v) ∈ E if u ̸= v and
there exists a ∈ A, s.t. u ∈ vars(pre(a)) ∪ vars(eff(a))
and v ∈ vars(eff(a)). In essence, in a causal graph (CG),
there is an edge from a variable v to a variable v′ if changing
the value of v′ might necessitate a change in the value of v,
showing that v′ depends on v.

One of the most commonly used CG structure were
introduced by for classical planning by Domshlak and
Dinitz (2001) are forks and inverted forks. Recall that in di-
graphs, roots are vertices that have only outgoing edges, and
leaves are the vertices that have only in incoming edges. A

CG, then, is a fork if there is a y ∈ V such that for any other
variable x the CG contains an edge (y, x), and there are no
other edges. A CG is an inverted fork if (x, y) instead.

PDBs Heuristics for Integer Variables
Common techniques employed to compute PDBs for clas-
sical planning involve computing the entire transition sys-
tem (TS) across the specified projection. In the context of
numeric planning, though, even projecting the task onto a
subset of variables, with at least one being numeric, may
yield an infinite TS. In this section we introduce several ap-
proaches that are capable of dealing with potentially infinite
TS. We start by defining infinite TS and discussing the chal-
lenges involved in having PDBs with infinite state spaces.

Infinite Transition Systems
Let T = ⟨S,L, cost, T, s0, S∗⟩ be a directed weighted la-
beled graph called a transition system (TS), where S denotes
the set of states, L is the set of labels, cost : L→ R0+ is the
cost function, T the set of transitions, s0 ∈ S is the initial
state, and S∗ the set of goal states. By (s, s′; l) ∈ T we de-
note a transition from s to s′ under label l. Note that every
planning task Π defines a TS, which we denote by TΠ. The
main difference between classical and numeric planning is
that in the former the number of states in the induced TS is
finite, while in the latter it often occurs that |S| = ∞.

A path from s ∈ S to s′ ∈ S, denoted path(s, s′) is
a sequence ⟨t1, . . . , tn⟩ of transitions such that there ex-
ists a sequence of states s = s0, . . . , sn = s′ with ti =
(si−1, si; li) ∈ T for all i ∈ [n]. We allow the special case
of an empty path from s to s denoted ⟨⟩. The cost of a path is
given by cost(s, s′) := cost(path(s, s′)) =

∑n
i=1 cost(li),

the cost of an empty path is zero. cost∗(s, s′) is the minimal
cost of a path from s to s′. A path from some state s to some
goal state s∗ ∈ S∗ is also called an s-plan, an s0-plan is
called a plan. A plan is optimal if there exists no other plan
with lower cost.

How to Deal with Numeric Variables?
The first question one may ask is what kind of numbers can
actually be supported in PDB heuristics. In this work, we opt
for integers, which still covers a significant fragment of nu-
meric planning, as shown in previous work (Helmert 2002;
Hoffmann 2003a; Gnad et al. 2023). Note that this is not
a strict requirement, though. As long as only a finite set of
distinct values needs to be distinguished for every numeric
variable, this is supported by our approach.

A more serious limitation is in the representation of action
effects that can be dealt with effectively. In the IRT formal-
ism, numeric effects are restricted to addition by a constant.
If we allowed for, e. g. assignment effects of other variables
values, such as x := y, then if x is contained in a pattern P ,
but y is not, that would cause an infinite branching in every
abstract state in which the respective action is applicable.
The same is true whenever the new value of a numeric vari-
able in the pattern depends on a numeric variable outside the
pattern. In order to avoid infinite branching, we require that

such effects are compiled away in a preprocessing step that
results in an IRT task.

The common approach to compute a PDB heuristic is to
construct the abstract state space, i. e., the TS induced by
a pattern P , and compute minimal goal distances for ev-
ery abstract state. To avoid duplicate computation, the ab-
stract state spaces are constructed starting from the set of
abstract goal states, in a regression search. This enables the
construction of the TS and the computation of abstract goal
distances in a single pass. For patterns containing numeric
non-goal variables, this is not possible, though. The reason
is that there are infinitely many abstract goal states, so a re-
gression is not possible. We address this issue by performing
a progression search instead, starting from the (fully speci-
fied) abstract initial state s0[P]. We explore the abstract state
space either until exhaustion, in case it is bounded by the
task structure, or until a maximum number of states N has
been generated. On exhaustion, we can compute the mini-
mum goal distances for all generated states by a single re-
gression pass from the goal states. If we hit the limit N , we
stop the construction. For abstract states that have not been
expanded at that point, i. e., states in the fringe, we do not
have any information about their goal distance. A variant
we discuss below is to compute such distance using another
heuristic. Our default algorithm simply assumes a goal dis-
tance equal to the minimum action cost. With that, as before,
we can invoke a regression starting in the goal and fringe
states, computing the goal distances.

Once the (partial) abstract state space is constructed and
we computed the goal distances, we can build a look-up ta-
ble using perfect hashing very similarly to how this is done
in classical planning. Observe that for every numeric vari-
able only a finite number of distinct values can be reached
during the state-space construction. Hence we can view
these numeric variables as finite-domain variables, and com-
pute the hashes as before.

A downside of partially constructing the abstract state,
when the upper bound N on the number of states is hit, is
that we can visit a concrete state s in the main search with-
out abstract counterpart s|P in the PDB. That is because an
insufficient part of the domain of some numeric variables
x ∈ P∩Vn has been generated during PDB construction. We
suggest two possible solutions to this: (1) ignore this PDB,
i. e., use a heuristic value of 0, or (2) update the heuristic
by invoking another progression from s|P and merging the
look-up tables. For (1), since most commonly large collec-
tions of PDB heuristics are used, we expect that some other
PDB heuristic will cover state s. Option (2) takes a more
practical approach, refining the heuristic during the search,
as larger parts of the search space are generated that have
not initially been covered by a PDB.

Next, we describe two approaches that are more clever in
constructing the initial abstract state space of a PDB than the
blind variant that we just outlined.

Exploit Known Bounds of Tractable IRT Fragments
Prior work has established multiple conditions that allow to
bound the state space of a numeric planning task (Helmert
2002; Shleyfman, Gnad, and Jonsson 2023; Gigante and

Scala 2023; Helal and Lakemeyer 2024). Of particular in-
terested for our work are results that impose conditions on
the variables dependencies of a planning task, e. g., by re-
stricting the structure of the causal graph. If we select the
pattern P ⊆ V such that the projection Π

∣∣
P

can be bounded,
then we have the guarantee that the abstract state space can
be exhausted. For some fragments of RT Shleyfman, Gnad,
and Jonsson (2023) even provide a recipe to compute the
bounded domain intervals, which we use to estimate the size
of a PDB.

Care must be taken with this approach, though, because
ignoring variable dependencies outside P is an approxima-
tion. If a numeric variable vn ∈ P is in a cyclic dependency
with another one not in P , then in the full task the bounds
that were computed for numeric variables within the pro-
jection are not necessarily valid. Furthermore, even if the
bounds are in fact valid on Π, we can still run into the is-
sue described in the previous section, where concrete states
reached in the search may have numeric values outside the
bound. That is because in particular the causal-graph related
analyses imply that it is sufficient to consider numeric values
only within the bounds, but not that values outside the bound
are not reachable.

We can address this problem in the same way as before,
either by ignoring such PDB heuristics for states with out-
of-bound values, or by re-invoking the abstract state space
construction from the previously unseen abstract state.

Bounding Infinite TS with an Admissible Heuristic
Let T be a TS with the initial state s0. Let us look at the
states that are reachable from s0. Consider a sub-transition
system T ′ = ⟨S′, L, cost, T ′, s0, S

′
∗⟩ over the states S′ =

SE ∪ SF , such that
1. T ′ ⊆ T and S′

∗ ⊆ S∗;
2. all states in SE ∪ SF are reachable from s0;
3. if s ∈ SE and (s, s′; l) ∈ T then (s, s′; l) ∈ T ′, i.e., all

successors of s are in T ′,
4. if s is in SF none of its successors are in T ′, i.e., s has

no outgoing edges in T ′; and lastly
5. if s∗ ∈ S′

∗ then s∗ ∈ SF .
Note that T ′ corresponds to the Best First Search (BFS)
paradigm, where we gradually traverse the TS by expanding
nodes one by one by taking candidates from the fringe. In
our case, SE corresponds to the expanded nodes and SF to
the expanded nodes in the fringe. Unlike a regular BFS in-
stead of a search tree, we keep the whole graph structure. We
also note that there is no point in expanded the goal states,
since we are interested in the shortest path to the goal.

For this finite sub-TS T ′ and a heuristic h we define the
following heuristic:

h̃(s) =

{
mins′∈SF

{cost∗(s, s′) + h(s′)} if s ∈ SE

h(s) otherwise.

Note that if a goal state s∗ is in SF we have h̃(s∗) = 0.

Proposition 1. If h is admissible so is h̃. If in addition h is
consistent, then so is h̃ and h ≤ h̃.

Proof. Note that for each s ̸∈ SE we have h(s) ≤ h̃(s).
Thus, we are interested only in the proof for s ∈ SE .
Admissibility: Let π∗

s be an optimal s-plan. Since, by defi-
nition of sub-TS T ′, for each s ∈ SE , along each s-plan π
there is at least one state s′ such that s′ ∈ SF . Note that in
the transition system T ′ we are always looking at the first
such state, since states in SF have no outgoing edges. Let
s∗F be such a state for π∗

s . Then,

h∗(s) = cost∗(s, s∗F) + h∗(s∗F)

≥ min
s′∈SF

{cost∗(s, s′) + h(s′)} = h̃(s).

Consistency: Since h is consistent it holds that h(s) ≤
cost∗(s, s′) + h(s′) for each s′ that is reachable from s. Let
s, s′ ∈ S, such that (s, s′; l) ∈ T . We should prove that
h̃(s) ≤ cost(l) + h̃(s′). The case is obvious for s, s′ ̸∈ SE

since h and h̃ coincide on these states.
Assume then that s ∈ SE , the successor of s denoted s′

can be either in SF or in SE . If s′ is in SF we have that

h̃(s) = min
s′′∈SF

{cost∗(s, s′′) + h(s′′)}

≤ cost∗(s, s′) + h(s′) ≤ cost(l) + h̃(s′),

since h(s′) = h̃(s′). Now, assume that s′ ∈ SF . Since h is
consistent we have

h̃(s) = min
s′′∈SF

{cost∗(s, s′′) + h(s′′)} ≤

cost∗(s, s′) + min
s′′∈SF

{cost∗(s′, s′′) + h(s′′)} ≤

cost∗(s, s′) + h̃(s′) ≤ cost(l) + h̃(s′).

For a pattern P ⊆ V the projection of Π onto P is a valid
planning task, thus using the heuristic h̃ we can construct a
PDB for a bounded number of states.

Summary
Overall, we described several approaches that are effective
at handling the unbounded nature of numeric variables in
PDB heuristics. These approaches can be combined in var-
ious ways to a full implementation of numeric PDBs, em-
bodying, to the best of our knowledge, the first adaptation
of pattern-database heuristics to numeric planning. In the
following, we discuss how the pattern generation can be
adapted to numeric variables, as well as how existing cost-
partitioning techniques can be applied.

Adaptations to Pattern Generation and Cost
Partitioning for Numeric Variables

The great success of PDB heuristics in classical planning
stems to a large degree from a sophisticated integrated ar-
chitecture that (1) creates multiple patterns that capture dif-
ferent parts of a planning task, and (2) a mechanism that
admissibly combines these PDB heuristics. These two com-
ponents are closely connected and have traditionally been in-
vestigated in combination (Haslum et al. 2007; Pommeren-
ing, Röger, and Helmert 2013). Early works proposed a hill-
climbing approach, called iPDB, that creates a collection of

Figure 1: Points of sail (https://en.wikipedia.org) for the
SAILING domain (Scala, Haslum, and Thiébaux 2016).

patterns which are evaluated during the process to optimize
the heuristic quality on a set of sampled states (Haslum et al.
2007). Here, multiple pattern are combined using the canon-
ical heuristic, which computes sets of additive patterns by
checking if two patterns are affected by a joint action. A key
operation in the hill-climbing is to extend a pattern from the
collection by one variable, which is the reason why it tends
to produce relatively few large patterns. We argue that this
approach is not well-suited to numeric PDB heuristics, as
the construction of the heuristic takes more time compared
to non-numeric PDBs. Thus, much fewer candidate collec-
tions can be generated, which severely limits the practical
applicability of the approach in our setting.

Instead, we opt for a more flexible approach that gener-
ates small patterns and combines them using cost partition-
ing (Pommerening, Röger, and Helmert 2013). More con-
cretely, it enumerates the set of all interesting patterns that
contain up to a given number of variables, often no more
than three. Here, a pattern P is interesting if its variables are
weakly connected in the causal graph, and every variable
has a path to a goal variable vG ∈ P . This approach is per-
fectly suited for numeric planning, as it automatically keeps
the size of the PDBs at bay. We can also extend it nicely to
consider only patterns with a causal structure that falls into
a fragment of IRT for which bounds can be computed.

Examples from Numeric IPC Benchmarks
The missing piece is the admissible combination of the gen-
erated pattern collection. Pommerening, Röger, and Helmert
(2013) propose the post-hoc optimization method to en-
code the cost partitioning as a linear program, that considers
which operators are relevant for a pattern, i. e., contribute to
the heuristic value, and weight every PDB in the collection
so that the used action costs do not exceed the original cost.
A more fine-grained approach is saturated cost-partitioning,
which distributes the cost per PDB heuristic individually for

CG(Π)

l1 l2 · · · lk

xb yb

l1 · · · lk

xb

CG(Π|Px
)

l1 · · · lk

yb

CG(Π|Py
)

Figure 2: The causal graphs of a task Π from the SAILING
domain, and the fork causal graph that are the result of the
projections on the task onto Px and Py .

every action, to make sure the original cost is not exceeded.
Both methods can be adapted to numeric planning tasks.

A key difference lies in the representation of actions in
IRT vs. FDR. While in FDR all action parameters are in-
stantiated with concrete objects, i.e., the actions are fully
grounded, numeric variables are represented in a more
declarative way, specifically with additive effects. We can
exploit that to distinguish the occurrence of the same action
a for different absolute values of the involved numeric vari-
ables. Assume a has an additive effect x += c on variable
x, and further two states s, s′ in which x does not have the
same value. Then we can distinguish the two occurrences of
a in s, respectively s′, for cost partitioning, since they will
always label different transitions. So we can “split” the label
a into sub-labels, one for every distinct value of x for which
there is a state in which a is applicable. This is particularly
relevant if x is contained in two patterns P, P ′, where the set
of values assigned to x in the reachable states of P is disjoint
from the values x has in P ′. In such case, we can assign full
cost to a in both PDB heuristics without sacrificing admissi-
bility. Intuitively, such action occurrences would correspond
to different groundings of a in a classical planning task.

With the necessary components for pattern database col-
lection heuristics in place, we next discuss an example from
an established numeric IPC domain, which showcases how
our approach will perform on a common numeric planning
benchmark.

The SAILING Domain
Consider the SAILING domain where a boat on an un-
bounded grid needs to visit a set of given locations. Each
location is given by a set of coordinates {(xi, yi)}ki=1 ⊆ Z2,
the location of the boat is also given by the coordinates
(xb, yb) ∈ Z2. The wind is blowing from the north, and
the boat has 7 movement actions that correspond to the wind
rose (see Fig. 1), and a collect action that marks that the boat

visited the location i ∈ [k]. For example, the MOVE NORTH
EAST action has the numeric effects x += 3 and y += 3,
the MOVE WEST action has the effect x += −6, and the
MOVE SOUTH action has the effect y += 4 All move ac-
tions have no preconditions. On the other hand, the action
COLLECT I has the preconditions {xb = xi, yb = yi} and
the effect {li = visited}. Overall, the problem has 2 nu-
meric variables {xb, yb} initialized to (0, 0), and k proposi-
tional variables, where each variable is initialized to s0[li] =
not visited. The goal is to obtain li = visited for all k loca-
tions.

Note also that the SAILING domain can be trans-
formed into Numeric Additive Planning by Helal and Lake-
meyer (Helal and Lakemeyer 2024), and therefore lies in NP.

Projections and Causal Graphs
Consider the two projections of the task on the variables
V \ {xb} and V \ {yb}, denote these patterns Px and Py

respectively. Since these pattern are not disjoint-additive,
we need to introduce a cost partitioning to obtain addi-
tive heuristics. For each action that affects only xb or only
yb, we give the full cost to the appropriate projection, e.g.,
costx(MOVE WEST) = 1 and costy(MOVE WEST) = 0. The
cost of all other actions, such as MOVE NORTH EAST or
COLLECT I, is divided equally between the projections, i.e.,
its 0.5 both for Px and Py .

Next, we note that the variable xb is a numeric root in
the projection on Px that forms a fork, and yb has ex-
actly the same causal structure in the projection on Py

(For the causal graphs see Fig. 2). According to Shleyf-
man et al. (Shleyfman, Gnad, and Jonsson 2023), the nu-
meric values of xb can be bounded by the intervals [−2 +
mini∈[k] xi, 2 + maxi∈[k] xi]. The values of yb are bounded
by [−2 + mini∈[k] yi, 2 + maxi∈[k] yi], respectively. Thus,
we get two bounded transition system.

Cost-Partitioning for Projections Location
Another way to use PDBs to construct a heuristic for the
SAILING domain, would be to divide the variables into k sets
of the form Pi = {x, y, li} with i ∈ [k]. Note that there are
only 7 actions that affect either x or y, and there is only one
location where the boat should be in Pi. Thus, the problem
can be represented as an ILP

min
n⃗∈N7

7∑
i=1

cost(ai) · ni

s.t. A · n⃗ =

[
xi
yi

]
.

The matrix A ∈ Z7 × Z2 represents the effects of the 7
move actions, here for brevity denoted ai, each column in
this matrix associated with the effects of an action on the
{x, y} variables. For example, the ai = MOVE NORTH EAST
action has with the effects x += 3 and y += 3, corre-
spond to the vector (+3,+3)T as the ith column of A. In
n⃗ := (n1, . . . , n7) each ni corresponds to the number of
times action ai is applied,for details on ILP representation
see (Helal and Lakemeyer 2024).

Note that the solution to this problem can be computed
in polynomial time (Micciancio and Warinschi 2001). Intu-
itively, this means that we can construct a sufficiently small
TS based on the projection onto Pi that will include at least
one goal state. Then, using the methods described above, we
can apply SCP (Seipp, Keller, and Helmert 2020) and PhO
(Pommerening, Röger, and Helmert 2013) to combine the
projections {Pi}ki=1. It’s important to note that we may only
obtain a PDB that accounts for a subset of states in the orig-
inal transition system. However, as mentioned earlier, this
PDB may be used to enhance an already existing numeric
heuristic.

Conclusion
We introduced a novel approach to adopting pattern-
database (PDB) heuristics, the current state of the art in
optimal classical planning, to tasks with numeric variables.
A major obstacle is the possibly unbounded abstract state
space, for which we proposed several solutions. Further-
more, we addressed the question of how to combine multiple
numeric PDB heuristics admissibly using cost partitioning.

Short of a working implementation, we argue that our
approach works well on common numeric planning bench-
marks, giving an example of a domain from the International
Planning Competition. As numeric PDBs are conceptually
very similar to classical PDBs, which have a great success
on common non-numeric benchmarks, we believe that these
results will carry over also to numeric planning domains.

In future work, we want to investigate how multiple ab-
straction heuristics for numeric planning can be combined
efficiently in a better way, possibly using cost partitioning.
Another interesting direction is the application of PDBs and
merge-and-shrink heuristics tailored to detecting unsolvabil-
ity in classical planning (Hoffmann, Kissmann, and Torralba
2014) to its numeric counterpart. Finally, the approach of
constructing finite sub-transition systems for infinite projec-
tions can be naturally combined with strong numeric heuris-
tics such as LM-cut (Kuroiwa et al. 2022; Kuroiwa, Shleyf-
man, and Beck 2022). We want to investigate how different
heuristics interact and can be made compatible to each other.

Acknowledgements
Alexander Shleyfman’s work was partially supported by ISF
grant 2443/23.

References
Aldinger, J.; and Nebel, B. 2017. Interval Based Relaxation
Heuristics for Numeric Planning with Action Costs. In Proc.
SOCS, 155–156.
Anderson, K.; Holte, R.; and Schaeffer, J. 2007. Partial Pat-
tern Databases. In SARA, 20–34.
Bacchus, F.; and Yang, Q. 1994. Downward Refinement and
the Efficiency of Hierarchical Problem Solving. AIJ, 71(1):
43–100.
Bäckström, C.; and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Computational Intelligence, 11(4): 625–
655.

Bonet, B.; and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence, 129(1-2): 5–33.
Brafman, R. I.; and Domshlak, C. 2003. Structure and Com-
plexity in Planning with Unary Operators. JAIR, 18: 315–
349.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2013. A
Hybrid LP-RPG Heuristic for Modelling Numeric Resource
Flows in Planning. JAIR, 46: 343–412.
Culberson, J. C.; and Schaeffer, J. 1996. Searching with
Pattern Databases. In Proceedings of the Eleventh Bien-
nial Conference of the Canadian Society for Computational
Studies of Intelligence (CSCSI-96), volume 1081 of LNAI,
402–416. Springer-Verlag.
Culberson, J. C.; and Schaeffer, J. 1998. Pattern Databases.
Comp. Intell., 14(3): 318–334.
Domshlak, C.; and Dinitz, Y. 2001. Multi-Agent Off-line
Coordination: Structure and Complexity. In ECP, 277–288.
Edelkamp, S. 2002. Symbolic Pattern Databases in Heuristic
Search Planning. In AIPS, 274–283.
Eyerich, P.; Mattmüller, R.; and Röger, G. 2009. Using the
Context-Enhanced Additive Heuristic for Temporal and Nu-
meric Planning. In Proc. ICAPS, 130–137.
Felner, A.; Korf, R.; and Hanan, S. 2004. Additive Pattern
Database Heuristics. JAIR, 22: 279–318.
Fox, M.; and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. JAIR,
20: 61–124.
Gerevini, A.; Saetti, A.; and Serina, I. 2008. An approach to
efficient planning with numerical fluents and multi-criteria
plan quality. AIJ, 172(8-9): 899–944.
Gigante, N.; and Scala, E. 2023. On the compilability of
bounded numeric planning. In Proceedings of the 32nd In-
ternational Joint Conference on Artificial Intelligence, IJ-
CAI, volume 23, 5341–5349.
Gnad, D.; Helmert, M.; Jonsson, P.; and Shleyfman, A.
2023. Planning over Integers: Compilations and Undecid-
ability. In ICAPS, 148–152. AAAI Press.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics, 4(2): 100–107.
Haslum, P.; Bonet, B.; and Geffner, H. 2005. New Admissi-
ble Heuristics for Domain-Independent Planning. In AAAI,
1163–1168.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-Independent Construction of Pattern
Database Heuristics for Cost-Optimal Planning. In Proc.
AAAI, 1007–1012.
Helal, H.; and Lakemeyer, G. 2024. An Analysis of the De-
cidability and Complexity of Numeric Additive Planning. In
ICAPS.
Helmert, M. 2002. Decidability and Undecidability Results
for Planning with Numerical State Variables. In Proc. AIPS,
303–312.

Helmert, M. 2004. A Planning Heuristic Based on Causal
Graph Analysis. In Proc. ICAPS, 161–170.
Helmert, M. 2009. Concise Finite-Domain Representations
for PDDL Planning Tasks. AIJ, 173: 503–535.
Helmert, M.; and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: what’s the difference anyway? In
Proceedings of the International Conference on Automated
Planning and Scheduling, volume 19, 162–169.
Hoffmann, J. 2003a. The Metric-FF Planning System:
Translating ”Ignoring Delete Lists” to Numeric State Vari-
ables. JAIR, 20: 291–341.
Hoffmann, J. 2003b. Utilizing Problem Structure in Plan-
ning, A Local Search Approach, volume 2854 of LNCS.
Springer.

Hoffmann, J.; Kissmann, P.; and Torralba, Á. 2014. ”Dis-
tance”? Who Cares? Tailoring Merge-and-Shrink Heuristics
to Detect Unsolvability. In ECAI, volume 263, 441–446.
IOS Press.
Holte, R.; Felner, A.; Newton, J.; Meshulam, R.; and Furcy,
D. 2006. Maximizing over Multiple Pattern Databases
Speeds up Heuristic Search. AIJ, 170(16–17): 1123–1136.
Holte, R.; Newton, J.; Felner, A.; Meshulam, R.; and Furcy,
D. 2004. Multiple Pattern Databases. In icaps, 122–131.
Illanes, L.; and McIlraith, S. A. 2017. Numeric Planning
via Abstraction and Policy Guided Search. In Proc. IJCAI,
4338–4345.
Katz, M.; and Domshlak, C. 2009. Structural-Pattern
Databases. In ICAPS, 186–193.
Katz, M.; and Domshlak, C. 2010. Optimal admissible com-
position of abstraction heuristics. AIJ, 174(12–13): 767–
798.
Knoblock, C. A. 1994. Automatically Generating Abstrac-
tions for Planning. AIJ, 68(2): 243–302.
Kuroiwa, R.; Shleyfman, A.; and Beck, J. C. 2022. LM-Cut
Heuristics for Optimal Linear Numeric Planning. In ICAPS,
203–212. AAAI Press.
Kuroiwa, R.; Shleyfman, A.; Piacentini, C.; Castro, M. P.;
and Beck, J. C. 2022. The LM-Cut Heuristic Family for
Optimal Numeric Planning with Simple Conditions. J. Artif.
Intell. Res., 75: 1477–1548.
Li, D.; Scala, E.; Haslum, P.; and Bogomolov, S. 2018.
Effect-Abstraction Based Relaxation for Linear Numeric
Planning. In Proc. IJCAI, 4787–4793.
Micciancio, D.; and Warinschi, B. 2001. A linear space algo-
rithm for computing the Hermite Normal Form. In Interna-
tional Symposium on Symbolic and Algebraic Computation,
231–236. ACM.
Piacentini, C.; Castro, M. P.; Ciré, A. A.; and Beck, J. C.
2018a. Compiling Optimal Numeric Planning to Mixed In-
teger Linear Programming. In Proc. ICAPS, 383–387.
Piacentini, C.; Castro, M. P.; Ciré, A. A.; and Beck, J. C.
2018b. Linear and Integer Programming-Based Heuristics
for Cost-Optimal Numeric Planning. In Proc. AAAI, 6254–
6261.

Pommerening, F.; Helmert, M.; Röger, G.; and Seipp, J.
2015. From Non-Negative to General Operator Cost Par-
titioning. In Proc. AAAI, 3335–3341.
Pommerening, F.; Röger, G.; and Helmert, M. 2013. Getting
the Most Out of Pattern Databases for Classical Planning. In
IJCAI, 2357–2364. IJCAI/AAAI.
Scala, E.; Haslum, P.; Magazzeni, D.; and Thiébaux, S.
2017. Landmarks for Numeric Planning Problems. In Proc.
IJCAI, 4384–4390.
Scala, E.; Haslum, P.; and Thiébaux, S. 2016. Heuristics for
Numeric Planning via Subgoaling. In Proc. IJCAI, 3228–
3234.
Scala, E.; Ramı́rez, M.; Haslum, P.; and Thiébaux, S. 2016.
Numeric Planning with Disjunctive Global Constraints via
SMT. In Proc. ICAPS, 276–284.
Seipp, J.; Keller, T.; and Helmert, M. 2020. Saturated Cost
Partitioning for Optimal Classical Planning. J. Artif. Intell.
Res., 67: 129–167.
Shin, J.; and Davis, E. 2005. Processes and continuous
change in a SAT-based planner. AIJ, 166(1-2): 194–253.
Shleyfman, A.; Gnad, D.; and Jonsson, P. 2023. Structurally
Restricted Fragments of Numeric Planning–a Complexity
Analysis. In AAAI, 10, 12112–12119.
Sievers, S.; Ortlieb, M.; and Helmert, M. 2012. Efficient
Implementation of Pattern Database Heuristics for Classical
Planning. In SOCS, 49–56. AAAI Press.

