
Comparing Rubik’s Cube Solvability in Domain-Independent Planners Using
Standard Planning Representations for Insights and Synergy with Upcoming

Learning Methods

Bharath Muppasani, Vishal Pallagani, Biplav Srivastava, Forest Agostinelli
AI Institute, University of South Carolina, Columbia, South Carolina, USA

{bharath@email., vishalp@email., biplav.s@, foresta@cse.}sc.edu

Abstract

The Rubik’s Cube (RC) is a renowned puzzle that has spurred
AI researchers to investigate efficient representations and so-
lution techniques. This paper introduces the first RC repre-
sentation in the widely-used PDDL language, enhancing its
accessibility to PDDL planners, competitions, and knowl-
edge tools, and improving human readability. We then bridge
across existing approaches and compare performance using
the IPC-2023 benchmark dataset for RC. In a benchmark ex-
periment, DeepCubeA1 optimally solves all tasks; Scorpion,
using SAS+ and pattern database heuristics, optimally solves
75% of tasks; and FastDownward, with PDDL representation
and the FF heuristic, solves 60% of tasks, with 83.33% be-
ing optimal. Notably, the introduced PDDL domain for RC
was notorious at the 2023 International Planning Competition
(IPC) for posing a significant challenge for emerging plan-
ners. While the maximum any planner could solve optimally
was only 55% of the tasks, our results show improvement
over them. Our findings shed light on the interplay between
representational choices and plan optimality, guiding future
strategies that amalgamate general-purpose solving methods,
heuristics, and both standard and custom representations.

1 Introduction
The Rubik’s Cube is a 3D puzzle game that has been widely
popular since its invention in 1974. It has been a subject of
interest for researchers in Artificial Intelligence (AI) due to
its computational complexity and potential for developing
efficient problem-solving algorithms. RC has motivated re-
searchers to explore alternative representations that simplify
the problem while preserving its complexity. Efficient algo-
rithms have been developed to solve RC in the least num-
ber of moves, and they have been used in various applica-
tions, including robot manipulation, game theory, and ma-
chine learning. Therefore, in this paper, we aim to explore
the different representations and algorithms to solve RC and
evaluate their performance and effectiveness in solving this
challenging puzzle.

Various solution approaches have been proposed RC in-
cluding Reinforcement Learning (RL) and search. For in-
stance, DeepCubeA (Agostinelli et al. 2019) uses RL to

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1DeepCubeA trained with 12 RC actions

Notations Description
RC Rubik’s Cube

PDDL Planning Domain Definition Language
(McDermott 2000)

Custom RC representation in DeepCubeA
(Agostinelli et al. 2019)

hBlind FastDownward with Blind3

hMax FastDownward with Max-cost3

hGC FastDownward with Goal count3

hCG FastDownward with Causal Graph3

hCEA FastDownward with
Context-enhanced Additive3

hLM-Cost FastDownward with
Landmark Cost Partitioning3

hFF FastDownward with FF3

hM&S Scorpion with Merge & Shrink4

hPDB-Man Scorpion with Max Manual PDB4

hPDB-Sys Scorpion with Max Systematic PDB4

Table 1: Notations and their descriptions.

learn policies for solving RC, where the cube state is rep-
resented by an array of numerical features. Although Deep-
CubeA is a domain-independent puzzle solver, it employs a
custom representation for RC. On the other hand, Büchner
et al. (2022) utilized SAS+ representation to model the RC
problem in a finite domain representation, which enables
standard general-purpose solvers like Scorpion to be used on
the RC problem. Despite the success of these approaches, no
prior work has explored the use of Planning Domain Defi-
nition Language (PDDL) to encode a 3x3x3 RC problem,
while a previous study2 has encoded a 2x2x2 RC problem
using PDDL and solved it with a Fast-Forward planner.

In this paper, we introduce a novel approach for repre-
senting RC in PDDL. We encode the initial state and goal
state using a set of predicates, each of which specifies the
color of a sticker on a particular cube piece or edge piece.
We then define the actions that can be taken to manipulate
the cube pieces and edges. Our PDDL representation en-

2https://wu-kan.cn/2019/11/21/Planning-and-Uncertainty/

ables us to model RC as a classical planning problem, which
can be solved using off-the-shelf planning tools. To the best
of our knowledge, this is the first attempt to represent RC
formally using PDDL. We also evaluate the effectiveness of
our approach by comparing it with other state-of-the-art rep-
resentations in terms of the efficiency and effectiveness of
problem-solving. Our major contributions are:

• We develop the first PDDL formulation for the 3x3x3
Rubik’s Cube, which is a novel and significant contri-
bution to the existing literature. This PDDL formulation
will enable the use of standard PDDL planners for solv-
ing Rubik’s Cube problems, which was not previously
possible.

• We bridge across hither-to incomparable RC solving ap-
proaches, compare their performance and draw insights
from results to facilitate new research.

• We perform a comparative analysis of two standard rep-
resentations, SAS+ and PDDL, and a custom representa-
tion in DeepCubeA, an RL approach for solving RC on a
set of common benchmark RC problems. This compara-
tive analysis is important as it provides insights into the
strengths and weaknesses of these different approaches,
and helps to identify which method may be most appro-
priate for a given problem setting.

• We contextualize the IPC results using the encoding.

Our results indicate several key insights: SAS+ emerges
as the best representation among those considered for solv-
ing the Rubik’s Cube. While deep learning methods exhibit
strong performance, their applicability is limited to the train-
ing data. By combining advancements from both automated
planning and deep learning fields, significant improvements
in solving the Rubik’s Cube can be achieved, provided com-
mon baselines are established.

The paper is organized as follows: We overview Ru-
bik’s Cube-solving ecosystem, including the RC problem,
domain-independent planners and heuristics, and learning-
based RC solvers. Then, we compare three representations
for RC: DeepCubeA, SAS+, and PDDL. Next, we outline
the experiments conducted, including the heuristics consid-
ered and the experimental setup, followed by the result anal-
ysis. We compare RC solvers and heuristics for the num-
ber of problems solved and plan optimality. Furthermore,
the introduced PDDL domain for RC was notorious at IPC
2023 for posing a significant challenge to emerging plan-
ners. The detailed results, showcasing the performance of
various planners on RC domain, are provided in the supple-
mentary material.

2 The RC Solving Ecosystem
In this section, we describe the RC problem, planners, and
heuristics that are used for our study. Table 1 summarizes
the notations used.

3https://www.fast-downward.org/Doc/Evaluator
4https://jendrikseipp.github.io/scorpion/Evaluator/

RC Problem
The Rubik’s Cube is a 3-D combination puzzle consisting of
26 smaller colored pieces anchored to a central spindle. The
objective is to manipulate the cube until each face displays
a uniform color. The primary rotations correspond to the
cube’s faces: Up (U), Down (D), Right (R), Left (L), Front
(F), and Back (B), each representing a 90-degree clockwise
turn of the respective face. Their inverses (denoted with a
’rev’ suffix) indicate a counter-clockwise rotation. The cube
is initially rotated by a random sequence of rotations in the
puzzle’s initial configuration. The goal is to find a series of
rotations that results in the solved state, where each face has
a single color. One can solve the RC from a scrambled state
to the original solved configuration by performing a set of
the above-mentioned actions.

Domain-Independent Planners and Heuristics
Classical Planning Formalism Consider F to be a set of
propositional variables or fluents. A state s ⊆ F is a subset
of fluents that are true, while all fluents in F \s are implicitly
assumed to be false. A subset of fluents F ′ ⊆ F holds in a
state s if and only if F ′ ⊆ s. A classical planning instance
is a tuple P = ⟨F,A, I,G⟩, where F is a set of fluents, A
is a set of actions, I ⊆ F an initial state, and G ⊆ F a goal
condition. Each action a ∈ A has precondition pre(a) ⊆ F ,
add effect add(a) ⊆ F , and delete effect del(a) ⊆ F , each
a subset of fluents. Action a is applicable in state s ⊆ F
if and only if pre(a) holds in s, and applying a in s results
in a new state s ⊕ a = (s\ del(a)) ∪ add(a). A plan for P
is a sequence of actions

∏
= ⟨a1, ..., an⟩ such that a1 is

applicable in I and, for each 2 ≤ i ≤ n, ai is applicable in
I ⊕ a1 ⊕ ... ⊕ ai−1. The plan

∏
solves P if G holds after

applying a1, ..., an, i.e. G ⊆ I ⊕ a1 ⊕ ...⊕ an.

Abstractions Let T = ⟨S,L, T, sI , S∗⟩ be a transition
system. An abstraction α : S → Sα maps the states of T
to a set of abstract states Sα. The induced transition sys-
tem is T α = ⟨Sα,L, Tα, α(sI), {α(s)|s ∈ S∗}⟩ where
Tα = {⟨α(s), o, α(s′)⟩|⟨s, o, s′⟩ ∈ T}. By construction, ev-
ery path in T is a path in T α. Consequently, the length of the
shortest path between state α(s) and α(s′) in T α is a lower
bound on the length of the shortest path between state s and
s′ in T . Thus, the abstract goal distance for a given state
is an admissible estimate of the true goal distance (Büchner
et al. 2022). In the later section of the paper, we mention the
abstraction heuristics used for our work.

PDDL Planning has evolved through various representa-
tions like STRIPS (Fikes and Nilsson 1971), ADL (Pednault
1994), and SAS+ (Bäckström 1995). However, the Plan-
ning Domain Description Language (PDDL) (McDermott
et al. 1998; Fox and Long 2003) has become the standard
notation. Planners often use PDDL for problem specifica-
tion, although they might convert to other formats for effi-
ciency (Helmert 2009). PDDL requires a domain description
file detailing general information and a problem description
file defining the initial and goal states. A planner uses both
files to produce a plan, verifiable by tools like VAL (Howey
and Long 2003).

International Planning Competition
The International Planning Competition (IPC) is a key event
for evaluating planning systems. Through its annual bench-
marks, IPC highlights the latest challenges and innovations
in planning. The RC 12 action PDDL domain in IPC-2023
Classical track (Taitler et al. 2024) stood out as one of
the most challenging, emphasizing the intricacy of the RC
problem5. Detailed results on RC from IPC 2023 can be
found in the supplementary material.

Learning-based RC Solver
There exist specialized solvers for solving the Rubik’s
Cube, which can be classified as either domain-dependent
or domain-independent. DeepCubeA is an example of a
domain-independent solver that employs domain-dependent
custom representation encoding for RC, as proposed in
(McAleer et al. 2018; Agostinelli et al. 2019). The solver
trains a deep neural network to be a heuristic function using
approximate value iteration and uses the learned heuristic
function to guide weighted A* search. However, although
DeepCubeA was able to find an optimal path in the majority
of verifiable test cases, DeepCubeA does not have optimality
guarantees.

3 Comparision of RC representations
In this section, we describe and provide a comparative anal-
ysis of different RC representations comprising of RL and
Planning formal languages.

DeepCubeA
The DeepCubeA algorithm adopts a unidimensional array
as a representation of the Rubik’s Cube (RC) state. Specif-
ically, this array encompasses 54 elements, each of which
corresponds to a unique sticker color present on a cube piece
of the RC. While this array-based modeling offers computa-
tional advantages, it is limited by its inability to fully encap-
sulate the spatial orientation of Rubik’s Cube. Furthermore,
the usage of a hard-coded representation and implicit as-
sumptions concerning the position of cubelets poses a chal-
lenge to novice users seeking to comprehend the array-based
representation.

SAS+
In Büchner et al. 2022, Rubik’s Cube is modeled with 18 ac-
tions in SAS+ representation as a factored effect task, with
each face labeled as F, B, L, R, U, or D. The orientation of
each cube piece is represented as a triple of values, and for
corner cube pieces, the orientation is a permutation of {1, 2,
3}, while for edge cube pieces, it is a permutation of {1, 2,
#} (where # represents a blank symbol). The rotation of the
cube in 3D space is captured as the permutation of the re-
spective triple for each cube piece. In our experimentation,
we have considered the SAS+ model with 12 actions, to be
consistent with the IPC-2023. Additionally, we provide re-
sults and insights using the 18 action model in the supple-
mentary material. The SAS+ model has 20 variables, each

5None of the planners in IPC-23 were able to solve more than
11 problem instances optimaly

Listing 1: Action L of Rubik’s Cube modeled in PDDL
(:action L
:effect (and
;for corner cubelets
(forall(?x ?y ?z)(when (cube1 ?x ?y ?z)

(and (not(cube5 ?x ?y ?z)) (cube2 ?y ?x ?z
))))

(forall(?x ?y ?z)(when (cube3 ?x ?y ?z)
(and (not(cube3 ?x ?y ?z)) (cube1 ?y ?x ?z

))))
(forall(?x ?y ?z)(when (cube4 ?x ?y ?z)
(and (not(cube4 ?x ?y ?z)) (cube3 ?y ?x ?z

))))
(forall(?x ?y ?z)(when (cube2 ?x ?y ?z)
(and (not(cube2 ?x ?y ?z)) (cube4 ?y ?x ?z

))))
;for edge cubelets
(forall(?x ?z)(when (edge13 ?x ?z)
(and (not(edge13 ?x ?z)) (edge12 ?x ?z))))

(forall(?y ?z)(when (edge34 ?y ?z)
(and (not(edge34 ?y ?z)) (edge13 ?y ?z))))

(forall(?x ?z)(when (edge24 ?x ?z)
(and (not(edge24 ?x ?z)) (edge34 ?x ?z))))

(forall(?y ?z)(when (edge12 ?y ?z)
(and (not(edge12 ?y ?z)) (edge24 ?y ?z))))

))

having 24 distinct values, leading to 480 fact pairs, and uses
16 bytes to represent a single RC state. Every variable ac-
counts for all possible positions and orientations of a cube
piece.

PDDL
In the PDDL domain, the Rubik’s cube problem environ-
ment has been defined by assuming the cube pieces are in
a fixed position and are named accordingly, as defined in
Figure 1. These fixed cube pieces are modeled as predicates
in the RC domain and the colors they possess in the three-
dimensional space as parameters of these predicates. With
the help of conditional effects, each action in the RC envi-
ronment is defined as the change of colors on these fixed
cube pieces. The 3D axis of the cube is considered as three
separate parameters X, Y, and Z that specify the position of
the colors on the cube’s pieces. One of these axes can be con-
nected to each face of the cube. According to the representa-

Figure 1: Rubik’s cube description to define the domain en-
coding.

Planner with
Heuristic

PDDL SAS+

Solved Cost # Nodes Secs Mem (MB) # Solved Cost # Nodes Secs Mem (MB)

hBlind 8 (100%) 4.5 4.52E+06 22.92 338.58 8 (100%) 4.5 1.37E+07 49.26 572.81
hCEA 8 (75%) 7.38 1.08E+06 80.80 105.48 9 (55.55%) 10.11 3.84E+06 72.27 186.04
hCG 9 (77.77%) 7.89 1.13E+07 165.50 1103.55 10 (50%) 11.7 1.87E+07 131.01 882.00
hMax 10 (100%) 5.5 3.95E+06 155.12 324.82 11 (100%) 6.0 1.04E+07 136.51 543.48
hLM−Cost 10 (100%) 5.5 1.33E+06 9.42 124.77 11 (100%) 6.0 1.13E+07 74.03 528.25
hGC 11 (100%) 6.09 4.71E+06 25.84 405.09 11 (100%) 6.09 4.71E+06 11.61 245.69
hFF 12 (83.33%) 7.17 2.45E+05 11.09 38.44 12 (100%) 6.5 1.25E+06 24.46 72.40
+hM&S 11 (100%) 6.0 6.18E+06 66.39 512.81 11 (100%) 6.0 8.19E+06 18.03 392.18
+hPDB−Man 9 (100%) 5.0 3.81E+06 20.76 278.12 15 (100%) 8.0 7.57E+06 20.69 518.24
+hPDB−Sys 9 (100%) 5.0 3.43E+06 127.24 270.31 14 (100%) 7.5 2.88E+06 80.46 2366.62

Ragnarok* 10 (100%) - - - - - - - - -

Solved Cost # Nodes Secs Mem (MB)

DeepCubeA 20 (100%) 10.5 9.67+E05 18.13 -

Table 2: Comparison of planner configurations including the total number of problems solved, along with the percentage of
optimal plans, average number of nodes generated, average search time in seconds, average memory usage in MB, and average
plan cost for the solved instances across different Rubik’s Cube models evaluated on the IPC-2023 dataset. (* - IPC-2023
Classical optimal-track winner); + - Admissible heuristics

tion shown in Figure 1, the respective faces on each axis are:
FX = ⟨U,D⟩; FY = ⟨F,B⟩; FZ = ⟨R,L⟩. These different
faces of the cube can be identified by the color of the middle
cube piece. We considered White, Red, and Green colors as
the colors on the front(F), up(U) and right(R) faces respec-
tively (similarly, the counter colors on the counter faces).

The following conventions regarding the RC cube pieces
are considered to model the RC domain actions in the
PDDL:
1. The corner cube pieces of the RC are modeled as a three-

color cubelet and are specified as a predicate with three
parameters: x, y, and z, which indicate the piece’s colors
on three separate axes. There are 8 corner pieces in RC.

2. The edge cube pieces, which are in between corner cube
pieces, are modeled as two-color cubelet and is specified
as a predicate with two parameters denoting the piece’s
colors on the two axes. There are 12 edge pieces in RC.

3. We do not consider the rotations performed on the middle
layer, as this can be resolved into rotation of right and left
faces in the opposite direction. As a result, the middle
cube piece of a face is unaltered.

The predicate names define the fixed position of the
cubelets that are defined with respect to the different faces
of the cube. The representation considered for the cube
positions is shown in Figure 1. One of the actions, action
‘L’, of RC designed in PDDL from the description provided
is shown in Listing 1. In this, we refer to corner cube pieces
as cubeP and edge cube pieces as edgePQ where P and
Q are the numbers for the cube pieces as stated in Figure
1. When the move L is applied to the RC, for example,
the left face is rotated clockwise. This may be regarded
as a 90-degree clockwise translation of colors from the
left-face corner and edge cube pieces. Considering the RC
representation shown in Figure 1, the colors on the pieces:

cube1, cube2, cube4, and cube3, are circularly shifted
towards the right. The same applies to the edge pieces. As
the left face falls in the Z-plane, only the X-axis and Y-axis
colors on the cube pieces are affected.

Definitions and Notations
• C: Set of colors, e.g., C = {White, Red, Green, ...}.
• F : Set of faces, with FX = {U,D}, FY = {F,B}, and
FZ = {R,L}.

• A: Set of axes, A = {X,Y, Z}.
• cube(x, y, z): Corner cube piece with colors x, y, z ∈ C

on axes X,Y, Z.
• edge(x, y): Edge cube piece with colors x, y ∈ C on two

axes.

Actions and Effects Actions correspond to 90-degree ro-
tations of Rubik’s Cube faces. For face f ∈ F , action f()
(and frev()) denotes clockwise (and counter-clockwise) ro-
tations. When rotating face f aligned with axis A, colors on
the other axes translate:

• f ∈ FX : cube(x, y, z) to cube(x, z, y) and edge(x, y)
swaps with edge(x, z).

• f ∈ FY : cube(x, y, z) to cube(z, y, x) and edge(x, y)
swaps with edge(y, z).

• f ∈ FZ : cube(x, y, z) to cube(y, x, z) and edge(x, z)
swaps with edge(y, z).

State and Transition A state s repre-
sents the Rubik’s Cube configuration as s =
{cube(xi, yi, zi), edge(xi, yi), ...} for xi, yi, zi ∈ C.
The transition function T : S × A → S′ defines state
changes post-action.

During the execution of a problem, FastDownward
(Helmert 2006) first translates the domain into a SAS formu-
lation. The resulting SAS version of the RC PDDL domain
model has 480 variables each being binary-valued, resulting
in 960 fact pairs, and requires 60 bytes to represent a single
state of RC. Each variable represents a single configuration
of a cube piece.

4 Experiments
In the following section, we will discuss the heuristics con-
sidered in our evaluation and the experimental setup, which
includes the datasets, problem representations, and details
about the planner.

Heuristics Considered
The heuristics considered for our evaluation are presented
in 1. Due to space constraints in the main paper, a compre-
hensive description of each heuristic’s workings is provided
in the supplementary material. While all heuristics were em-
ployed in their default configurations, exceptions were made
for the abstract heuristics hM&S, hPDB-Man, and hPDB-Sys.
Merge and Shrink Heuristic Generates lower bounds in
factored state spaces using state merging and shrinking,
balancing abstraction size and heuristic accuracy (Helmert
et al. 2014). Specific strategies include bisimulation (Nis-
sim, Hoffmann, and Helmert 2011), strongly connected
components (Sievers, Wehrle, and Helmert 2016), and ex-
act label reduction (Sievers, Wehrle, and Helmert 2014).
Pattern Database Heuristic The key step in using Pattern
Database (PDBs) heuristics is selecting appropriate patterns
for the problem at hand. Korf (1997) specified two sets of
patterns for solving the Rubik’s Cube. We evaluate two set-
tings of PDBs:

Max Manual PDB: Inspired by Korf’s patterns, Büchner
et al. (2022) have considered 2 patterns for the corner cube
pieces and 3 patterns for the edge cube pieces resulting in 4
variables for each pattern. We have considered these patterns
for the evaluation of PDDL and SAS+ models.

Max Systematic PDB: This configuration systematically
generates all interesting patterns up to a certain size (Pom-
merening, Röger, and Helmert 2013). A pattern size of 3 has
been considered for this evaluation in the interest of memory
constraints.

Experimental Setup
We evaluated the performance of our RC PDDL model by
utilizing the benchmark problem test set from IPC-23, pro-
vided for the Rubik’s Cube domain. This test set comprises
of 20 problems, each with varying levels of difficulty. To
further assess the SAS+ model, we converted the problem
test set into its SAS+ version. Moreover, for the DeepCubeA
model evaluation, we transformed the problem test set into
a custom representation specific to DeepCubeA.

To evaluate the RC PDDL model and SAS+ model, we
have used Fast-Downward (Helmert 2006) and Scorpion
planner (Seipp, Keller, and Helmert 2020), which is an ex-
tension of the Fast-Downward planner. Scorpion planner

contains the implementation for PDBs that support condi-
tional effects modeled in the domain file. We perform A*
searches (Russell and Norvig 2005) with each heuristic men-
tioned above on the test set and the two RC representations.
We bound the A* search with an overall time limit of 30
minutes and a memory limit of 8GB as per IPC standards.
This constraint is the same for the abstraction heuristics as
well, despite the fact that these heuristics require significant
time for preprocessing and generating abstractions prior to
the start of the search.

5 Result Analysis
We conducted an empirical evaluation of the performance of
PDDL and SAS+ models, on the IPC test dataset. We also
evaluated the test datasets using DeepCubeA (Agostinelli
et al. 2019), a state-of-the-art domain-independent RC
solver that leverages a combination of deep reinforcement
learning and search algorithms. Our results show that Deep-
CubeA was able to solve all the problems optimally. Table 2
presents the experimental results, including the total number
of problems solved and the percentage of optimal plans gen-
erated for each configuration tested. The optimal plans we
used for comparison were generated during the IPC-23 com-
petition, and are available on the IPC GitHub repository6.
Figure 2 illustrates the number of states expanded in the
A* search algorithm where the x-axis represents the prob-
lem number and the y-axis represents the number of evalu-
ated states. Similarly, Figure 3 presents a comparison of the
runtime and memory usage for all the considered heuristics
where the x-axis represents the problem number and the y-
axis represents the memory usage in KB, in Figure 3(a), and
total planner time in seconds, in Figure 3(b).

PDDL vs SAS+
When assessing the efficacy of planning-based solvers in
terms of their heuristics and representations, our findings in-
dicate that no planner configuration was able to solve prob-
lems with optimal plan lengths exceeding 15 steps in the IPC
dataset. In terms of the number of problems solved, the hFF

is the best performing using PDDL representation. While
PDBs performed much better in the SAS+ representation
than in the PDDL representation. This can also be inferred
from the states expansion trend of the abstraction heuristics
shown in Figure 2.

hBlind Predictably, hBlind underperformed compared to
other heuristics in both PDDL and SAS+ representations due
to its lack of informative guidance. This is evident from the
extensive states it evaluated in Figure 2 and its rapid memory
saturation depicted in Figure 3. Even for simpler problem
instances, its resource consumption was significantly higher
than other heuristics.

hCG and hCEA RC, a puzzle-solving domain devoid of
modeled preconditions, poses challenges for heuristics like
hCG and hCEA in both representations. The domain’s com-
plexity and vast branching factor hinder the construction of

6https://github.com/ipc2023-classical/ipc2023-
dataset/tree/main/opt/rubiks-cube

Figure 2: State expansion comparison for the IPC-2023 dataset. The x-axis denotes problem numbers, and the y-axis shows
the states evaluated. A top horizontal dotted line indicates unsolved problems, while a vertical dashed line marks the problems
solved by the IPC-2023 Classical optimal track winner.

(a) Memory usage comparison. x-axis represents the problem number, while y-axis represents the memory used in KB.

(b) Run time comparison. x-axis represents the problem number, while y-axis represents the total planner time in seconds. Overall the runtime
is observed to be higher for PDDL than SAS+ representation.

Figure 3: Comparison of memory usage and runtime for different heuristics and models for IPC-2023 dataset. Plots in bold
outline are for the abstract heuristics. A top horizontal dotted line indicates unsolved problems, while a vertical dashed line
marks the problems solved by the IPC-2023 Classical optimal track winner.

a precise causal graph for hCG. Similarly, the absence of con-
textual data limits the efficacy of hCEA. This is underscored
by the irregular state evaluation trend observed in Figure 2.
Furthermore, these heuristics yield a lower percentage of op-
timal plans compared to other methods.

hMax demonstrated consistent performance across both
PDDL and SAS+ representations, solving 10 and 11 prob-
lems respectively with 100% optimality. Its approach of re-
cursively determining the maximum cost for each goal pro-
vides a balanced search guidance, as reflected in its results
in Figure 2.

hLM-Cost Similarly, hLM-Cost showcased a consistent perfor-
mance in both representations, solving 10 and 11 problems
with 100% optimality. Distributing the costs of operators
among the landmarks they achieve, hLM-Cost ensures admis-
sibility and provides a more informed estimate of the cost
to reach the goal (Karpas and Domshlak 2009). Its perfor-
mance trend can be observed in Figure 2.

hGC which estimates the number of unsatisfied goals, per-
formed optimally in both representations, solving 11 prob-
lems, which is greater than the best planner in optimal-track
from IPC-2023 classical track.

hFF derived from the FF planning system (Hoffmann
2001), emerged as one of the top performers, especially in
the PDDL representation where it solved 12 problems with
83.33% optimality. This heuristic showcased a notable dif-
ference in optimality between the PDDL and SAS+ repre-
sentations. For the SAS+ representation, while it also solved
12 problems, it achieved 100% optimality. This disparity un-
derscores the influence of the problem representation on the
heuristic’s ability to find optimal solutions. The performance
and resource utilization trends for both representations can
be observed in Figure 2 and Figure 3.

It has been observed that abstract heuristics are sensitive
to problem representation and exhibit poorer performance
in PDDL compared to SAS+ representation due to their ex-
pressivity.

hM&S exhibited similar performance for both PDDL and
SAS+ in terms of problem-solving. However, differences
emerged in resource consumption. Using the PDDL rep-
resentation, although the number of states evaluated is
less when compared to the SAS+ representation, the hM&S

showed increased memory usage and longer preprocess-
ing times, as illustrated in Figure 3. This is largely due to
the state size: 60 bytes for PDDL compared to 16 bytes
for SAS+. The M&S heuristic, which creates abstractions
by merging state variables and shrinking state spaces, is
more resource-intensive with PDDL’s larger states, leading
to quicker memory saturation and extended preprocessing.

Pattern Database Heuristic The choice of representation
has profound implications for the PDB heuristic:

• Pattern Size Limitation: The hPDB imposes constraints
on the pattern size, which directly impacts memory us-
age and the computational time for building projections.
Given that the SAS+ representation has a single variable

for each cube piece, effective patterns can be selected us-
ing a small pattern size. While this is not the case with
PDDL as there exist 24 variables for each cube piece.

• Projection Complexity for SAS+ vs. PDDL: In SAS+,
a small pattern size can lead to many states in projec-
tions due to the multiplicity of values a single variable
can assume. For instance, representing corner cubies on
the Upper Face in SAS+ requires 4 variables, resulting
in 331776 states. In contrast, PDDL, using binary-valued
variables, needs 96 variables for the same representation.
This not only increases computational time but also sur-
passes the hPDB pattern size constraints, making PDDL
less efficient to express useful patterns. A pattern size of
4 variables in PDDL results in only 16 states in projec-
tions. This difference can be observed from the memory
usage and runtime plots in Figure 3.

Standard vs. Custom Representation
Our experiments, summarized in Table 2, contrast the per-
formance of standard (PDDL and SAS+) and custom (Deep-
CubeA) representations for the Rubik’s Cube problem.
While FastDownward with the FF heuristic excelled for
PDDL and Scorpion with Max Manual PDB for SAS+, both
were outperformed by the tailored approach of DeepCubeA,
which solved all tasks optimally. This underscores the trade-
off: standard representations offer broad applicability but
may be surpassed in efficiency by specialized solutions. The
choice hinges on the problem’s complexity and the desired
solution’s precision.

IPC Results Discussion:
In the International Planning Competition (IPC) 2023, the
PDDL 12-action version was introduced for Rubik’s Cube
PDDL domain in the Classical Track. The results from IPC-
2023 (Taitler et al. 2024) offered a revealing look into the
capabilities of various planners when faced with the Ru-
bik’s Cube domain. Planners like Ragnarok (Drexler et al.
2023), Scorpion-2023 (Seipp 2023), Odin (Drexler, Seipp,
and Speck), and Dofri (Höft, Speck, and Seipp 2013) show-
cased a similar performance by solving 10 problems out of
20. However, it was the Hapori-Stonesoup-opt (Ferber et al.)
that scored highest by solving 11 out of 20 problems. When
we compare these performances with the results of our work,
the effects of problem representation on solving complex
tasks become evident. For instance, using the Scorpion plan-
ner with Max Manual PDB in the SAS+ representation tack-
led 15 problems, all optimally. These varied performances
underscored the challenge posed by Rubik’s Cube domain
and emphasized the importance of the chosen representa-
tion.

The supplementary material provides an extended analy-
sis of the PDDL and SAS+ representations, comparing 12
and 18 action models alongside the DeepCubeA model, us-
ing datasets from (Büchner et al. 2022). It offers a detailed
exploration of the distinctions between PDDL and SAS+,
highlighting their advantages and shortcomings. Addition-
ally, a comprehensive overview of the IPC-2023 classical
track results, including the agile and satisficing sub-tracks,
is available for a broader perspective.

Planner with Heuristic PDDL

hBlind 24/30
hCEA 23/30
hCG 30/30
hMax 28/30
hLM−Cost 28/30
hGC 27/30
hFF 30/30

hM&S 30/30
hPDB−Sys 26/30

DeepCubeA 8/30*

Table 3: Comparative analysis of PDDL and DeepCubeA on
the Sokoban domain using IPC-2008 dataset. (*noting that
only 8 problems had a grid size close to 10x10, while the
remainder exceeded DeepCubeA’s grid size limit)

Beyond Rubik’s Cube
Building on our comprehensive exploration of the RC, we
shift our focus to explore how our insights can be trans-
ferred to other challenging puzzle domains. We considered
the Sokoban puzzle domain, a strategic game that challenges
players to push boxes to designated locations within a con-
fined space. Our analysis, detailed in Table 3, reveals a sig-
nificant contrast in performance: while Planner with Heuris-
tics combinations excels with PDDL representation, effec-
tively solving a substantial number of Sokoban puzzles,
DeepCubeA’s success rate is considerably lower. For this
analysis, we considered the Sokoban puzzle dataset intro-
duced in IPC-2008, comprising of 30 problems of varying
complexity.

Despite DeepCubeA’s efficiency in solving the Rubik’s
Cube, its performance in the Sokoban domain, as detailed
in Table 3, reveals a limitation in domain adaptability. With
a success rate of 8 out of 30 Sokoban puzzles, this outcome
highlights a critical aspect of learning-based approaches: the
restrictions in state representation, the challenges in gener-
alizing across diverse problem types, and the need for re-
training a new model for each new domain. DeepCubeA
supports a grid size of up to 10x10 for Sokoban problem
representation7. Recent works have explored using Trans-
former based models to solve Sokoban puzzles, with higher
efficiency and fewer search steps than traditional methods
(Lehnert et al. 2024). This approach mitigates the limitations
of problem representation encountered in RL based models
like DeepCubeA. However, it introduces a dependency on
high-quality labeled data for fine-tuning, which can be both
costly and challenging to obtain.

The comparative analysis with PDDL planners in the
Sokoban domain further emphasizes the need for continued
research into hybrid models that can leverage the strengths
of both learning-based and planning-based approaches for
broader domain applicability.

7For the Sokoban model available in the DeepCubeA GitHub
repository. Nevertheless, one can re-train the model with the re-
quired parameters.

6 Discussion and Conclusion

In our research, we compared planning-based and learning-
based methods for solving the 3x3x3 RC. We introduced
the first PDDL representation for RC and assessed the effi-
cacy of various heuristics across SAS+ and PDDL represen-
tations. Our findings suggest that the SAS+ representation
is approximately 75% more memory efficient than PDDL,
making it the preferred choice among standard represen-
tations. However, the best planner configuration achieved
only 75% problem-solving with 100% optimality. On the
other hand, the learning-based DeepCubeA approach solved
all problems optimally using its default 12-action set. Yet,
our efforts to train it for an 18-action set were thwarted by
out-of-memory/ training errors running over a week. This
highlights the challenge with learning-based approaches
and adaptability of standard representations like PDDL and
SAS+. Moreover, DeepCubeA’s solutions lack an explana-
tion about how the solution was found or why it may work.

The adoption of PDDL as a representation has its distinct
advantages. It makes complex RC problems more tractable
and offers a platform for a clearer explanation of the gen-
erated plans. The introduction of ontologies for automated
planning, as highlighted by Muppasani et al. (2023), further
augments this advantage. Ontologies, with their structured
representation of knowledge, can provide a semantic frame-
work that aids in the generation of explanations. This not
only enhances the understandability of the plans but also fa-
cilitates the integration of domain-specific knowledge, mak-
ing the explanations more contextually relevant and compre-
hensive.

Future of Rubik’s Cube with AI Planning

Though PDBs that can quickly find optimal solutions to the
Rubik’s cube have been constructed, such as the PDBs used
to find its longest shortest path (Rokicki et al. 2014), these
PDBs use domain-specific knowledge based on group the-
ory. As a result, they are limited in their ability to general-
ize to other domains. On the other hand, this study shows
that solving the Rubik’s cube with domain-independent ap-
proaches while maintaining optimality guarantees is still an
open problem. Results show that though learned heuristics
are not guaranteed to find a shortest path, they often do so,
in practice. Results also show that though traditional plan-
ning heuristics have optimality guarantees, they may suffer
from slow solving times. Future work can now build on both
learning and traditional planning approaches given the cus-
tom DeepCubeA representation of the Rubik’s cube and our
standard representation of the Rubik’s cube in PDDL. Such
a combination could potentially offer solutions to the RC
that are both efficient and accompanied by a comprehen-
sive explanation. Recent advancements introduce a method
for training heuristic functions to estimate distances to a set
of goal states, instead of having a fixed predetermined goal
state, without needing retraining for new goals (Agostinelli,
Panta, and Khandelwal 2024). This technique leverages deep
reinforcement learning to specify goals more expressively,
using first-order logic and answer-set programming.

References
Agostinelli, F.; McAleer, S.; Shmakov, A.; and Baldi, P.
2019. Solving the Rubik’s cube with deep reinforcement
learning and search. Nature Machine Intelligence, 1(8):
356–363.
Agostinelli, F.; Panta, R.; and Khandelwal, V. 2024. Spec-
ifying goals to deep neural networks with answer set pro-
gramming. In 34th International Conference on Automated
Planning and Scheduling.
Büchner, C.; Ferber, P.; Seipp, J.; and Helmert, M. 2022.
A Comparison of Abstraction Heuristics for Rubik’s Cube.
In ICAPS 2022 Workshop on Heuristics and Search for
Domain-independent Planning.
Bäckström, C. 1995. Expressive equivalence of planning
formalisms. Artificial Intelligence, 76(1): 17–34. Planning
and Scheduling.
Drexler, D.; Gnad, D.; Höft, P.; Seipp, J.; Speck, D.; and
Ståhlberg, S. 2023. Ragnarok. In Tenth International Plan-
ning Competition (IPC-10): Planner Abstracts.
Drexler, D.; Seipp, J.; and Speck, D. ???? Odin: A Planner
Based on Saturated Transition Cost Partitioning.
Ferber, P.; Katz, M.; Seipp, J.; Sievers, S.; Borrajo, D.; Cen-
amor, I.; de la Rosa, T.; Fernandez-Rebollo, F.; López, C. L.;
Nunez, S.; et al. ???? Hapori Stone Soup.
Fikes, R. E.; and Nilsson, N. J. 1971. STRIPS: A New Ap-
proach to the Application of Theorem Proving to Problem
Solving. In Proceedings of the 2nd International Joint Con-
ference on Artificial Intelligence, IJCAI’71, 608–620. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
Fox, M.; and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. Journal
of Artificial Intelligence Research, 20: 61–124.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research, 26: 191–246.
Helmert, M. 2009. Concise Finite-Domain Representations
for PDDL Planning Tasks. Artif. Intell., 173(5–6): 503–535.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R.
2014. Merge-and-shrink abstraction: A method for gener-
ating lower bounds in factored state spaces. Journal of the
ACM (JACM), 61(3): 1–63.
Hoffmann, J. 2001. FF: The fast-forward planning system.
AI magazine, 22(3): 57–57.
Höft, P.; Speck, D.; and Seipp, J. 2013. Dofri: Planner Ab-
stract. In Proc. IJCAI, volume 2357, 2364.
Howey, R.; and Long, D. 2003. VAL’s Progress: The Au-
tomatic Validation Tool for PDDL2.1 used in the Interna-
tional Planning Competition. In ICAPS 2003 workshop
on ”The Competition: Impact, Organization, Evaluation,
Benchmarks”, Trento, Italy.
Karpas, E.; and Domshlak, C. 2009. Cost-Optimal Planning
with Landmarks. In IJCAI, 1728–1733. Pasadena, CA.
Korf, R. E. 1997. Finding optimal solutions to Rubik’s Cube
using pattern databases. In AAAI/IAAI, 700–705.

Lehnert, L.; Sukhbaatar, S.; Mcvay, P.; Rabbat, M.; and
Tian, Y. 2024. Beyond A*: Better Planning with Trans-
formers via Search Dynamics Bootstrapping. arXiv preprint
arXiv:2402.14083.
McAleer, S.; Agostinelli, F.; Shmakov, A.; and Baldi, P.
2018. Solving the Rubik’s Cube with Approximate Policy
Iteration. In International Conference on Learning Repre-
sentations.
McDermott, D. 2000. The 1998 AI Planning Systems Com-
petition. AI Magazine, 21(2): 35–35.
McDermott, D.; Ghallab, M.; Knoblock, C.; Wilkins, D.;
Barrett, A.; Christianson, D.; Friedman, M.; Kwok, C.;
Golden, K.; Penberthy, S.; Smith, D.; Sun, Y.; and Weld, D.
1998. PDDL - The Planning Domain Definition Language.
Technical report, Technical Report.
Muppasani, B.; Pallagani, V.; Srivastava, B.; Mutharaju, R.;
Huhns, M. N.; and Narayanan, V. 2023. A Planning Ontol-
ogy to Represent and Exploit Planning Knowledge for Per-
formance Efficiency. arXiv preprint arXiv:2307.13549.
Nissim, R.; Hoffmann, J.; and Helmert, M. 2011. Comput-
ing perfect heuristics in polynomial time: On bisimulation
and merge-and-shrink abstraction in optimal planning. In
Twenty-Second International Joint Conference on Artificial
Intelligence.
Pednault, E. P. D. 1994. ADL and the State-Transition
Model of Action. Journal of Logic and Computation, 4(5):
467–512.
Pommerening, F.; Röger, G.; and Helmert, M. 2013. Getting
the most out of pattern databases for classical planning.
Rokicki, T.; Kociemba, H.; Davidson, M.; and Dethridge, J.
2014. The diameter of the rubik’s cube group is twenty. siam
REVIEW, 56(4): 645–670.
Russell, S.; and Norvig, P. 2005. AI a modern approach.
Learning, 2(3): 4.
Seipp, J. 2023. Scorpion 2023. Tenth International Planning
Competition (IPC-10): Planner Abstracts.
Seipp, J.; Keller, T.; and Helmert, M. 2020. Saturated cost
partitioning for optimal classical planning. Journal of Arti-
ficial Intelligence Research, 67: 129–167.
Sievers, S.; Wehrle, M.; and Helmert, M. 2014. Generalized
label reduction for merge-and-shrink heuristics. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol-
ume 28.
Sievers, S.; Wehrle, M.; and Helmert, M. 2016. An analy-
sis of merge strategies for merge-and-shrink heuristics. In
Twenty-Sixth International Conference on Automated Plan-
ning and Scheduling.
Taitler, A.; Alford, R.; Espasa, J.; Behnke, G.; Fišer, D.;
Gimelfarb, M.; Pommerening, F.; Sanner, S.; Scala, E.;
Schreiber, D.; and Segovia-Aguas, J. 2024. The 2023 In-
ternational Planning Competition.

