
34th International Conference on
Automated Planning and Scheduling

June 1–6, 2024, Banff, Alberta, Canada

HPlan 2024
Proceedings of the 7th ICAPS Workshop on

Hierarchical Planning

Program Committee

Ron Alford The MITRE Corporation
Gregor Behnke University of Amsterdam
Pascal Bercher The Australian National University
Maurice Dekker University of Amsterdam
Humbert Fiorino Université Grenoble Alpes
Christopher Geib SIFT LLC
Daniel Höller Saarland University, Saarland Informatics Campus
Prakash Jamakatel University of Bundeswehr München
Jane Jean Kiam Universität der Bundeswehr München
Pascal Lauer Saarland University
Songtuan Lin The Australian National University
Simona Ondrčková Charles University
Kristýna Pantucková Charles University
Mark Roberts The US Naval Research Laboratory
Enrico Scala University of Brescia
Dominik Schreiber Karlsruhe Institute of Technology
Mohammad Yousefi The Australian National University

Organizing Committee

Pascal Bercher The Australian National University
Dominik Schreiber Karlsruhe Institute of Technology
Simona Ondrčková Charles University
Ron Alford The MITRE Corporation

ii

Preface

The motivation for using hierarchical planning formalisms is manifold. It ranges from an explicit and
predefined guidance of the plan generation process and the ability to represent complex problem solving
and behavior patterns to the option of having different abstraction layers when communicating with a
human user or when planning cooperatively. This led to numerous hierarchical formalisms and systems.
Hierarchies induce fundamental differences from classical, non-hierarchical planning, creating distinct
computational properties and requiring separate algorithms for plan generation, plan verification, plan
repair, and practical applications. Many techniques required to tackle these – or further – problems in
hierarchical planning are still unexplored.

With this workshop, we bring together scientists working on many aspects of hierarchical planning to
exchange ideas and foster cooperation.

HPlan was founded in 2018 and is since then part of the annual International Conference on Auto-
mated Planning and Scheduling (ICAPS). This year’s iteration of the HPlan workshop took place as
a part of the 34th ICAPS in Alberta, Canada. The organizing committee consisted of a mix of senior
researchers (Pascal Bercher, Ron Alford) and early career researchers (Simona Ondrčková, Dominik
Schreiber). The organizers have received 10 paper submissions (9 research papers and 1 challenge
paper) in total. Following a review process with 17 PC members and three reviews per paper (i.e., 1-2
papers per PC member), 9 papers were accepted (of which one was a challenge paper). The considered
topics of submissions range from theoretical investigations over various aspects of solving hierarchical
problems efficiently, to more application-driven research such as repairing plans.

The workshop took place on June 3, 2024 with 26 participants. An invited talk was given by Daniel
Höller, awardee of the 2024 ICAPS Best Dissertation Award and one of the main developers of the
state-of-the-art hierarchical planning framework PANDA, which has dominated the HTN tracks of the
recent International Planning Competition 2023. The accepted papers were presented in the form of
teaser talks and subsequent poster sessions, which gave plenty of room for discussion and exchange.
In addition, two works already accepted or published at other venues were accepted for a presentation
at HPlan. All accepted HPlan papers, except for one simultaneously accepted at another venue, are
featured in the proceedings at hand. Presentations are made available on the YouTube channel of the
workshop https://www.youtube.com/@hplan.

Overall, we hope that HPlan 2024 has achieved its goal of bringing together researchers to exchange
new ideas and foster future research in hierarchical planning.

Pascal, Dominik, Simona, and Ron
HPlan Workshop Organizers,
June 2024

iii

https://www.youtube.com/@hplan

iv

Invited Talk

This year, our invited speaker was Daniel Höller. We invited him due to his large success in the IPC
2023, where almost all first and second placed systems were based on the progression based PANDAπ

planner, of which Daniel is one of the main developers.

HTN Planning as Heuristic Progression Search in the PANDA Framework

PANDA is a framework to solve different tasks around hierarchical planning. It comes with components
for pre-processing, solving planning problems, and techniques for related tasks like plan and goal
recognition, plan repair, and plan verification. It includes several solvers for hierarchical planning
problems, namely heuristic plan space search, compilations to propositional logic, BDDs, and classical
(i.e., non-hierarchical) planning, and heuristic progression (i.e., forward) search. In this talk, I will first
give an overview of the different parts of PANDA. Then, we will have a detailed look at the forward
progression search system: its pre-processing, search algorithm, and heuristics.

Bio

Daniel Höller, Post-doctoral researcher at the Universität des Saarlandes
Computer Science Department, Foundations of Artificial Intelligence (FAI) Group

Daniel Höller has been a post-doctoral researcher in Jörg Hoff-
mann’s Foundations of AI Group at Saarland University since 2020.
Before that, he was at the Institute of Artificial Intelligence at Ulm
University, where he did this PhD on hierarchical planning (mainly
HTN planning), supervised by Susanne Biundo. His PhD thesis on
hierarchical planning won the ICAPS Best Dissertation Award in
2024. Besides HTN planning, his work is concerned with lifted
planning, and with the combination of machine learning and plan-
ning.

He is interested in many aspects of HTN planning like the expressivity of different formalisms, trans-
lations of related problems like plan and goal recognition and plan verification, and especially solving
techniques. He has worked on grounding, heuristic plan space and progression search, translations to
classical planning, and to propositional logic. He is a main developer of the planning systems PANDA,
TOAD, and LiSAT. At the 2023 International Planning Competition, the winners of all 6 tracks on
HTN planning have been based on PANDA, as well as 5 out of 6 runner-ups.

v

vi

Table of Contents

Scientific Papers

A Comparative Analysis of Plan Repair in HTN Planning

Robert P. Goldman and Paul Zaidins and Ugur Kuter and Dana Nau .1 – 9

An ILP Heuristic for Total-Order HTN Planning

Conny Olz and Alexander Lodemann and Pascal Bercher .10 – 18

Barely Decidable Fragments of HTN Planning

Maurice Dekker and Gregor Behnke .19 – 26

Correcting Totally-Ordered Hierarchical Plans by Action Deletion and Action Insertion

Kristýna Pant̊učková and Roman Barták .27 – 35

Laying the Foundations for Solving FOND HTN problems: Grounding, Search,
Heuristics (and Benchmark Problems)

Accepted at the 33rd International Joint Conference on Artificial Intelligence (IJCAI 2024)

Mohammad Yousefi and Pascal Bercher .URL-not-yet-available

Redundant Decompositions in PO HTN Domains: Goto Considered Harmful

Roland Godet and Arthur Bit-Monnot and Charles Lesire-Cabaniols . 36 – 44

Towards Search Node-Specific Special-Case Heuristics for HTN Planning – An Empirical
Analysis of Search Space Properties under Progression

Lijia Yuan and Pascal Bercher . 45 – 53

Weighted Randomized Anytime Planning in Pyhop

Gabriel J. Ferrer . 54 – 58

Challenge Papers

Toward Planning with Hierarchical Decompositions and Time-frames

Mica Gardone and Rogelio E. Cardona-Rivera . 59 – 63

vii

URL-not-yet-available

viii

A Comparative Analysis of Plan Repair in HTN Planning

Robert P. Goldman1, Paul Zaidins2, Ugur Kuter1, Dana Nau2

1SIFT, LLC
2University of Maryland, College Park

Abstract

This paper reports an analysis of three recent hierarchical
plan repair algorithms: SHOPFIXER, IPYHOPPER, and
REWRITE. We compare these algorithms qualitatively, and
evaluate their performance, quantitatively, in a series of
benchmark planning problems, informed by our qualitative
analysis. A critical part of the qualitative comparison is that
REWRITE, a problem-rewriting technique, has a substantially
different and more restrictive definition of plan repair than
the other two systems. Understanding this distinction will be
important when choosing a repair method for any given appli-
cation. Our results explain the runtime repair performance of
these systems as well as the coverage of the repair problems
solved, based on algorithmic properties such as chronological
backtracking vs. backjumping over plan trees.

1 Introduction
Plan repair has been shown to provide advantages over gen-
erating new plans from scratch both in terms of planning
runtime and plan stability – the amount of plan content that
is retained between the original and repaired plans (Fox et al.
2006). Fox, et al. showed that plan repair could provide new
plans faster, and with fewer revisions, than replanning ab
initio in the face of disruptions. They used the term “stabil-
ity” to refer to the new plan’s similarity to the old one, by
analogy to the term from control theory. The term “minimal
perturbation” has been used synonymously (Cushing and
Kambhampati 2005). To be precise, “stability” is actually
a relation: a solver is stable if the size of the change in the
output is proportional to the size of the change in its input:
at least in theory, a minimal perturbation solver could actu-
ally be unstable. Plan stability is particularly important for
human interaction, as users are confused by radical changes
to plans introduced in response to trivial upsets.

The concept of stable plan repair has been general-
ized from classical planning to Hierarchical Task Network
(HTN) planning. Early work on hierarchical plan repair in-
troduced validation graphs in the context of hierarchical and
partial-order causal link planning, where plan repair used
validation graphs to identify disruptions and patches to the
partial-order plans (Kambhampati and Hendler 1992). Ex-
tending classical plan repair on sequences of actions, hier-
archical repair algorithms provide localization of errors and
failures and problem refinement methods that take advan-

tage of such localizations to provide better stability (Robert
P. Goldman, Ugur Kuter, and Richard G. Freedman 2020).

Over the years, there have been great strides in HTN plan
repair in which a variety of repair algorithms have been pro-
posed. The three that we consider are SHOPFIXER (Robert
P. Goldman, Ugur Kuter, and Richard G. Freedman 2020),
IPYHOPPER (Zaidins, Roberts, and Nau 2023), and an un-
named algorithm that we will call REWRITE (Höller et al.
2020b). These build on several previous methods (Ayan et al.
2007; Kuter 2012; Bansod et al. 2022; Bercher et al. 2014).

We compare SHOPFIXER, IPYHOPPER, and REWRITE
qualitatively, and evaluate their quantitative performance in
a series of benchmark planning problems in the light of our
qualitative analysis. Our results demonstrate the following:

• Because of differences in their notion of what repairs are
permissible and how to go about doing them, there are
differences in which repair problems REWRITE can solve
as opposed to IPYHOPPER and SHOPFIXER, which
share a definition. The three algorithms also differ in
what kinds of repairs they make.

• The REWRITE repair method, which must replicate
already-executed actions, involves extensive amount of
re-derivation of plans, as can be seen in its worse run-
times for all of the domains.

• Chronological backtracking during hierarchical repair in-
volves blindly trying a large number of subtrees of the
original plan tree, most of which do not contribute to re-
pairing the plan. In more complex problems, semantic
(i.e., causal) backjumping yields better performance, as
can be seen in the Openstacks domain and the more dif-
ficult Rovers problems.

• Less-expensive simulation lookahead for repair provides
a better payoff than extensive work in building data struc-
tures (e.g., explicit causal links) to speed backtracking
and backjumping in problems of modest scale, such as
the Satellite domain.

An additional contribution of our work is to provide the
first publicly-available implementation of the REWRITE re-
pair algorithm. We also extended it to work in lifted do-
mains, which is critical for completeness, since practical
grounding methods typically include problem-specific prun-
ing. Such pruning may compromise the completeness of the

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

1

plan repair method, since disturbances may render new parts
of the state space reachable.

2 Hierarchical Plan Repair Strategies
The three algorithms analyzed in this paper have impor-
tant qualitative differences that color the experimental re-
sults and are critical to their interpretation. First, REWRITE’s
definition of plan repair is more stringent than the others;
we have found benchmark planning problems IPYHOPPER
and/or SHOPFIXER solve but REWRITE does not. The sec-
ond difference is between SHOPFIXER and IPYHOPPER.
SHOPFIXER attempts to detect when a plan will be invalid,
before any actions actually fail; it invests in data structures
and computation in order to detect problems as soon as pos-
sible. IPYHOPPER’s projections are not model-based: it
relies on an external simulation to do projection for it, in-
stead of having an internal action model as most planners
do. These differences lead to different plan repair behaviors.

These differences are not simply a matter of one repair
method being “better” than another: instead, different re-
pair methods are better in different situations. The more
stringent definition offered by REWRITE is better when
an HTN method library captures important considerations
about what sequences of actions are and are not correct
plans; the more relaxed definition better when the precise
trajectory is less important. SHOPFIXER’s plan repair ap-
proach is better if the costs of wrong actions are higher than
the costs of computation, e.g. when actions are particularly
expensive, or when deferring repair could leave the agent
trapped in a dead end. When a situation is more forgiving
and when it changes frequently, SHOPFIXER’s aggressive
repair strategy will not be worthwhile. In the following, we
give simple examples that illustrate these differences.

The REWRITE paper (Höller et al. 2020b) defines a re-
paired plan as one that, among other considerations, has a
plan (decomposition) tree that is a refinement of the plan tree
of the initial plan. This definition can exclude some repairs
that seem intuitively plausible.

Consider an HTN plan domain for inter-city travel that has
two alternative methods: rail and air travel. For rail travel, we
take the bus to the station, embark, travel, and then debark.
Similarly, to fly we take the bus to the airport, get on the
plane, fly, and then deplane. Each method has the precon-
dition that the train station (resp., airport) be open. Starting
from home, Panda (Höller et al. 2021) and SHOP3 (Goldman
and Kuter 2019) both can find plans for air and rail travel.

Consider the plan repair problem that occurs when we
take the bus to the train station and discover that the train
station is closed. SHOPFIXER and IPYHOPPER will de-
tect the problem, identify that the original rail-travel
method cannot be fixed, and switch to air travel. However,
REWRITE cannot repair this plan, because the resulting plan
– bus to train station, bus to airport, embark, fly, deplane – is
ill-formed: no expansion of the top level goal contains both
“bus to train station” and “bus to airport.”

This highlights a tradeoff between flexibility and effi-
ciency that the authors of HTN domain descriptions typi-
cally face. If the HTNs use strong search-control strategies

and knowledge to make planning efficient by quickly find-
ing a good and acceptable solution, then those HTNs are
usually not flexible enough to allow exploring alternative
plans for in hierarchical plan repair. As the above example
shows, the REWRITE algorithm commits to the prefix of the
hierarchy for planning reasons, but that excludes possible re-
pairs at the higher levels of the hierarchy when a discrepancy
occurs. SHOPFIXER and IPYHOPPER are similar in that
limitation for general cases but they provide backtracking
and backjumping strategies that can alleviate this limitation
in some classes of domains. Section 4 discuss examples of
this phenomenon in our experimental results.

The REWRITE paper gives an example that shows the ra-
tionale for its more restrictive definition of plan repair. In
this example, the agent drives through a city that has con-
gestion pricing, and must pay a toll for each road segment
driven in the congestion zone. Solution plans have the form
x∗anbnx∗: there are actions before and after travel in the
congestion zone (the two x∗’s), then n segments traveled in
the congestion zone (an), followed by n toll payments (bn).
The structure of the HTN methods is the mechanism that
enforces the an-bn balance, so if extraneous actions were
allowed, incorrect (unbalanced) plans could be derived.

SHOPFIXER and IPYHOPPER share the same model of
plan repair, which holds that any HTN method may be re-
done – i.e., its plan regenerated and then executed from the
method’s beginning, as long as the method’s preconditions
hold in the state in which it begins. As we have seen above,
that means that the “intercity-travel” task may be restarted
after the agent has reached the train station and discovered
that it is closed. The difference between the two is how they
attempt to detect future action failures.

When building a repairable plan, SHOPFIXER creates a
decomposition tree that records task decompositions into
subtasks, with cross-links from actions that establish facts
to the actions and methods whose preconditions consume
those facts. This trades some pre-computation and storage
for more rapid detection of possible plan failures – and de-
tection of cases where unexpected effects do not cause plan
failures. An example SHOPFIXER tree is shown in Figure 1.

IPYHOPPER, in contrast, does not precompute any data
structures for identifying plan failures. Instead, when noti-
fied of a plan disturbance, it simulates the existing plan for-
ward in time to find impending failures. When it finds such
a failure, it unexpands the simulated action’s parent node in
the solution tree, and attempts to find a new decomposition
for that node that will not fail. If no such decomposition ex-
ists, the parent’s parent is similarly unexpanded; this contin-
ues up the solution tree until either a valid decomposition is
found or the root is reached, which means no repair exists.

If a valid decomposition is found, IPYHOPPER restarts
the simulation at the leftmost action of the decomposition
in postorder traversal. This continues until either the plan
completes successfully or another failure is simulated. If an-
other failure is simulated, the repair process is repeated and
eventually either the simulation will complete and the plan
is repaired or the root will be reached and repair has failed.

We now will briefly summarize the three hierarchical plan
repair algorithms that we have evaluated in this work.

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

2

TOP

(MOVE-TO ROVER0 DESTINATION)

ord

(MOVE-TO ROVER0 DESTINATION) (!NAVIGATE ROVER0 WAYPOINT0 WAYPOINT1)

ord

(MOVE-TO ROVER0 DESTINATION) (!NAVIGATE ROVER0 WAYPOINT1 WAYPOINT2)

ord

(MOVE-TO ROVER0 DESTINATION) (!NAVIGATE ROVER0 WAYPOINT2 WAYPOINT3)

ord

(MOVE-TO ROVER0 DESTINATION) (!NAVIGATE ROVER0 WAYPOINT3 DESTINATION)

ord

(!!INOP)

INIT

Figure 1: SHOP3 plan tree for a rover plan; decomposition
edges are in black; dependency cross-edges in dashed blue.
Edges from the diamond node represent dependencies on
initial state facts.

SHOPFIXER Plan Repair

SHOPFIXER (Robert P. Goldman, Ugur Kuter, and Richard
G. Freedman 2020) is a method for repairing plans gener-
ated by the forward-searching HTN planner, SHOP3. It uses
a graph of causal links and task decompositions to identify a
minimal subset of the plan that must be fixed. SHOPFIXER
extends the notion of plan repair stability introduced by (Fox
et al. 2006), and further develop their methods and experi-
ments, which showed the advantages of plan repair over re-
planning.

The basic idea behind SHOPFIXER’s plan repair ap-
proach is very simple: when a disturbance is introduced into
the plan, SHOPFIXER finds the minimal subtree of the plan
tree that contains the node whose preconditions are clob-
bered by that disturbance: the failure node. If there is no such
node, then the disturbance does not interfere with the suc-
cess of the plan. SHOPFIXER will then repair the plan, start-
ing with the minimal subtree. To find the minimal subtree
around a failure node, SHOPFIXER finds the first task in the
plan that is potentially “clobbered” (rendered unexecutable)
by that disturbance, and restarts the planning search from
that task’s immediate parent in the HTN plan (since that was
where that task was chosen for insertion into the plan). This
plan repair is done by backjumping into the search stack for
SHOP3 and reconstructing the compromised subtree with-
out the later tasks. Note that the first clobbered task may be
either a primitive task or a complex task. Furthermore, if p is
the parent of child c in an HTN plan, then p’s preconditions
are considered chronologically prior to c’s, because it is the
satisfaction of p’s preconditions that enables c to be intro-
duced into the plan: if both p and c fail, and we repair only
c, we will still have a failed plan, because after the distur-
bance, we are not licensed to insert c or its successor nodes.

SHOPFIXER restarts the planning search by backjump-
ing to the corresponding entry in the SHOP3 search stack,
which it retains, and updating the world state at that point

with the effects of the disturbance. When restarting the plan-
ning search, SHOPFIXER “freezes” the prefix of the plan
that has already been executed, as well as the deviation and
its effects. It may backjump to decisions prior to the devia-
tion, for example, if the immediate parent of the failed task
is the top level task of the problem, but it cannot undo the
effects of an action that is already done. SHOPFIXER re-
turns a repaired plan that is made up of the prefix before the
disturbance, the disturbance, and the repaired suffix.

IPyHOPPER Plan Repair
IPYHOPPER (Zaidins, Roberts, and Nau 2023) is a pro-
gression based HTN planner written in Python. The pri-
mary distinction between IPYHOPPER and other plan re-
pair methods is that it does not rely on a projection algo-
rithm. Instead, it uses an external simulator to predict the
effects of planned actions.

IPYHOPPER’s planning engine is an augmented version
of the prior IPyHOP planner (Bansod et al. 2022). For plan-
ning, input is in the form of an initial task list, initial state,
and domain description. The domain description includes
tasks, primitive actions, and method definitions. The initial
tasks are repeatedly decomposed into simpler tasks and then
finally actions based on the domain description. The de-
composition process forms a solution tree by a depth-first
traversal and every intermediate state is saved in the tree for
backtracking. When a task cannot be successfully decom-
posed, a new decomposition is attempted of the most recent
task expanded. When every task has been decomposed and
all actions’ preconditions are established, planning has suc-
cessfully completed and the actions of the tree in preorder
constitute the plan. If the planner backtracks to the sentinel
root node, which is the parent of all input tasks, planning has
failed: no decomposition can achieve the task list in order.

For plan repair, IPYHOPPER restarts the planning pro-
cess at the parent of the immediate parent of a failed action
using the current state in place of the stored state. Initially,
IPYHOPPER restricts the process to this subtree and only
backtracks further up the tree when all decompositions in the
subtree fail. Once it finds a valid decomposition, we simulate
the action execution going forward. If our simulation com-
pletes, the plan is repaired and the process is terminated. If
IPYHOPPER encounters a future simulated failure, it will
redo the repair process. This simulation-repair cycle con-
tinues until either the plan successfully repaired or root is
reached, indicating that no repaired plan is possible.

Plan Repair by Problem Rewriting
The two methods we have discussed above both share the
core pattern of resuming the planning process after some
appropriate change to the search process. They generate a
repaired plan by redoing some portion of planning process.
The rewrite method of Höller, et al. (Höller et al. 2020b) is
very different: it operates by generating a new problem and
domain definition that is solvable iff the plan can be repaired.
These definitions are generated by combining the original
problem and domain definitions, the original solution (plan),
the position reached in execution, and the disturbance. They

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

3

do not provide a method for determining whether a plan re-
pair is actually required, so a repair problem must be solved
after every disturbance. A key advantage of their algorithm
is that it is not specific to any particular HTN planner: any
planner that accepts their input format will work.

The central intuition behind the problem/domain method
is to force the planner to build a new plan that has as a pre-
fix the set of actions that were executed before the distur-
bance. The final action in this prefix is modified so that its
effects include the disturbance effects. Any decomposition
plan that is consistent with the observed actions and that con-
tains an executable suffix that performs all the initial tasks,
and achieves any specified goals.1 This definition accounts
for the distinction between repairs permitted by rewrite and
those of SHOPFIXER and IPYHOPPER. The latter systems
accept repaired plans that include methods that have been
abandoned and their tasks achieved through new decompo-
sitions not consistent with the original plan: rewrite does not.

Rewrite algorithm implementation No runnable imple-
mentation of Höller, et al. ’s algorithm was available,2 so we
implemented it ourselves; we will share our implementation
on GitHub under an open source license. Our implementa-
tion follows the original definition in using HDDL for its in-
put and output formats. Our implementation differs from the
original definition in being able to handle action and method
schemas, rather than only handling ground actions and meth-
ods (i.e., it is a lifted implementation). This required exten-
sions to some parts of the original algorithm.

REWRITE generates a new planning domain and prob-
lem, so in theory it may be coupled with any HTN planner.
In practice, since HTN problem definitions are less stan-
dardized than classical ones, there are limits to this flexi-
bility. Our implementation returns a lifted plan repair prob-
lem that can be used directly by the lifted HTN planner
SHOP3 SHOP3 (Goldman and Kuter 2019), and that can be
grounded for use with grounded planners.

We had originally intended to report on experiments that
used both SHOP3 and Panda (Höller et al. 2021) as plan-
ners for the repair problems. Unfortunately, we found that
Panda was unable to handle the benchmark domains we
have used in our experiments, namely, Rovers, Satellite, and
OpenStacks as reported next section. These domains all use
the ADL dialect of PDDL/HDDL, featuring quantified goals
and conditional effects. The parsing and grounding methods
used in Panda were not able to handle the demands of ADL
domains (we confirmed this with Panda developers), so we
had to limit ourselves to using only SHOP3.3 We refer to this
combination as Rewrite-SHOP3. However, since SHOP3 and
Panda would be solving the same problems, we are still test-
ing the essential features of the rewrite algorithm.

1Their HDDL (Höller et al. 2020a) input notation permits prob-
lems that have both initial task networks and goals.

2Daniel Höller, personal communication, 26 September 2023.
3None of the satellite problems could be parsed by Panda in

5 minutes, only 7 of the rovers, and 9 of the openstacks. The 7
rovers problems could be grounded, but only 7 of the 9 openstacks
problems. Details available upon request.

Summary The REWRITE algorithm is most appropriate
for problems where the structure of the plan tree is criti-
cal to correctness (e.g., the toll example, where movements
and payments must be balanced by the tree), but it may fail
where disturbances put the agent into a dead end that it will
have to “back out” of. IPYHOPPER and SHOPFIXER will
be the opposite: both allow for deviations in the plan tree,
so both will easily handle cases that involve backing up to
reverse a deviation and then resuming. They differ in that
IPYHOPPER will more efficiently handle deviations with
immediate impact, and SHOPFIXER can better handle de-
viations with delayed impact, at the expense of computation
that will be wasted on simple cases.

3 Experimental Design
We tested SHOPFIXER, IPYHOPPER, and Rewrite-
SHOP3 on a set of identical initial plans and disturbances
from three domains: rover, satellite, and openstacks. These
are all HTN domains, formalized equivalently in HDDL
and in SHOP3’s input language. All of these domains were
adapted from International Planning Competition (IPC)
PDDL domains predating the HTN track, with HTN meth-
ods added and PDDL goals translated into tasks. These do-
mains (with slightly different disturbances) were used in a
previously published evaluation of the SHOPFIXER plan re-
pair method (Robert P. Goldman, Ugur Kuter, and Richard
G. Freedman 2020).

The Satellite and Rover domains each have 20 problems,
and the Openstacks domain has 30. For each domain, we
ran 50 batches, where each batch was a run of each prob-
lem with one injected disturbance, randomly chosen and ran-
domly placed in the original plan. All original plans were
generated by SHOP3; they were translated into HDDL for
IPYHOPPER and Rewrite-SHOP3. For IPYHOPPER, all
inputs were translated into JSON to avoid the need for a
new HDDL parser. We wish to emphasize that each repair
method started with the same plan and same disturbance in
each batch. So for each problem there are 50 disturbance
examples, which we ran on all three of the algorithms. Run-
times were measured to the nearest hundredth of a second.
All runtimes were wall-clock times, not CPU times: we were
concerned that comparing Python CPU times with Common
Lisp CPU times might not be valid. In the event, differences
between CPU times and wall-clock times were negligible.

Planning Domains
Here we briefly introduce the domains and deviation oper-
ators used in our experiments. All three domains used the
PDDL/HDDL ADL dialect. Domains were modeled equiv-
alently in both HDDL and SHOP3; we have indicated be-
low where the SHOP3 and HDDL domains diverged. All the
original, to-be-repaired plans were generated by SHOP3.

Deviations were modeled similarly to actions, with pre-
conditions. Deviation preconditions and effects were defined
in ways that aimed to avoid making repair problems unsolv-
able. Non-trivial plan disturbances were difficult to model
without rendering problems unsolvable because the lim-
ited expressive power of PDDL (and by extension HDDL)

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

4

forced ramifications to be “compiled into” action effects
(e.g., counting the number of open stacks in the Openstacks
domain), introducing dependencies that often could not be
undone (e.g. failing the “send” operation in Openstacks had
to also restore the relevant order to “waiting”).

Rovers The Rovers domain is taken from the third IPC in
2002. Long & Fox say it is “motivated by the 2003 Mars Ex-
ploration Rover (MER) missions and the planned 2009 Mars
Science Laboratory (MSL) mission. The objective is to use
a collection of mobile rovers to traverse between waypoints
on the planet, carrying out a variety of data-collection mis-
sions and transmitting data back to a lander. The problem
includes constraints on the visibility of the lander from var-
ious locations and on the ability of individual rovers to tra-
verse between particular pairs of waypoints.” (Long and Fox
2003) Rovers problems scale in terms of size of the map,
number of goals, and the number of rovers. Disturbances
applied include losing collected data; decalibration of cam-
eras; and loss of visibility between points on the map. For
the Rovers problem, the SHOP3 domain uses a small set of
path-finding axioms to guide navigation between waypoints.
To avoid infinite loops in the navigation search space, IPY-
HOPPER does not use lookahead in the waypoint map, but
it does check for and reject cycles in the state space.

Satellite The Satellite problem also premiered in 2002,
and is described as “inspired by the problem of scheduling
satellite observations. The problems involve satellites col-
lecting and storing data using different instruments to ob-
serve a selection of targets.” (Long and Fox 2003) Distur-
bances used were changes in direction of satellites, decali-
bration, and power loss. Problems scale by number of instru-
ments, satellites and image acquisition goals.

Openstacks Openstacks was introduced, as a translation
of a standard optimization problem, in IPC 2006:

The Openstacks domains are ... based on the
“minimum maximum open stacks” combinatorial op-
timisation problem ... A manufacturer has a number
of orders, each for a combination of different prod-
ucts. Only one product can be made at a time, but the
total required quantity of that product is made at that
time. From the time that the first product requested by
an order is made to the time that all products included
in the order have been made, the order is said to be
“open” and during this time it requires a “stack”
The problem is to order the making of the different
products so that the maximum number of stacks that
are in use simultaneously ... is minimised. (Gerevini
et al. 2009)

Problems scale by number of orders, number of products,
and number of products in a single order. Deviations include
removing products that were previously made and causing
the shipping operation to fail. Deviations were particularly
difficult to add to Openstacks without introducing dead ends
into the search space, because there are consistency con-
straints on the state that are only implicit in the operators.
Therefore, to make repair possible, we needed to add a “re-
set” operation that would reset an order to “waiting” mode

from “started.” The SHOP3 domain for Openstacks included
axioms for a cost heuristic. Note that this is a common dif-
ficulty in plan repair: typically domains are not written in
such a way that recovery is possible if a plan encounters
disturbances because limitations in expressive power means
that ramifications must be programmed into the operator
definitions. Furthermore, since state constraints (e.g., graph
connectivity in the logistics domain) are not and cannot be
captured in PDDL, one can inadvertently make dramatic
changes to problem structure by introducing disturbances;
cf. Hoffmann (2011) on problem topology.

4 Results
Satellite The Satellite domain was the easiest for all
three repair methods. Both IPYHOPPER and SHOPFIXER
solved all of the repair problems in our data set, and solu-
tions were found quickly. Rewrite-SHOP3 solved the major-
ity of the problems, between 60% and 85% of them (Fig-
ure 2). Inspection showed that it correctly solved all the
problems that did not need repair (i.e., did not time out re-
deriving the plan). Figure 3 gives the runtimes for all three
methods, using log10 because of the range of values. IPY-
HOPPER runtimes are slightly better than SHOPFIXER
on average. The rewrite times are almost uniformly worse,
and scale worse as the problem size grows. The results for
Rewrite-SHOP3 are not surprising, since proving unsolvabil-
ity may take longer. Indeed, plotting the runtimes for success
and failure separately, demonstrates that (Figure 5). Interest-
ingly, there are no failures due to timeout: Rewrite-SHOP3
is able to prove unsolvable all of the unrepairable problems).
While the IPYHOPPER times are generally the best on av-
erage, its times vary more widely: see Figure 4.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Problem Index

50

55

60

65

70

75

80

85

90

Su
cc

es
s

all
needs rewrite

Figure 2: Rewrite-SHOP3 success rates for the satellite re-
pair problems (note the y axis runs only from 50-90%).

Rovers The Rovers repair problems were more difficult
than Satellite, and none of the repair methods solved all of
them. Figure 6 shows success percentages. Note the out-
liers for IPYHOPPER and SHOPFIXER in problems 3,
and 6 and for IPYHOPPER in problems 10 and 20. Gen-

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

5

0

1

2

3

4

SHOPFixer

0

1

2

3

4

IPyHOPPER

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Problem

0

1

2

3

4

Rewrite-SHOP3

Figure 3: Satellite problem runtimes for all repair algo-
rithms, in msecs (rounded up), plotted in log10.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Problem Index

0.0

0.1

0.2

0.3

0.4

Re
al

 T
im

e

Satellite runtime variances for SHOPFixer

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Problem Index

Satellite runtime variances for IPyHOPPER

Figure 4: Variance of Satellite problem runtimes.

erally, SHOPFIXER is more successful than IPYHOPPER,
as shown in Table 1.

Generally, while Rewrite-SHOP3 was less successful than
the other algorithms, it tracks their results except for prob-
lems 14 and 15, where the other two are uniformly success-
ful, but Rewrite-SHOP3 is only 84% (42/50) successful.

Runtimes are graphed in Figures 7, and 8. We plot the
successful and failed runs separately, because the failed runs
include both cases where an algorithm proves that the prob-
lem is unsolvable and cases where it simply runs out of time
(time limit was set at 300s).

Again, IPYHOPPER is generally faster, but SHOP-
FIXER scales better with problem difficulty. For IPYHOP-
PER, problem 3 is an outlier in elapsed time, SHOPFIXER
has issues with problem 6, and for Rewrite-SHOP3 the last
two problems, and especially problem 20, are notably more
difficult. As before, on the successful problems, IPYHOP-
PER has a higher runtime variance than SHOPFIXER (see
Figure 9; variance plotted in seconds, not transformed).

Openstacks For Openstacks, both SHOPFIXER and
Rewrite-SHOP3 solved all the repair problems. IPYHOP-
PER solved almost all, but failed for a small number (see
Table 2). The runtimes, graphed in Figure 10 clearly show
that Rewrite-SHOP3 and IPYHOPPER do not scale well
on the more difficult problems, with Rewrite-SHOP3 no-
tably worse. IPYHOPPER runtimes for problems 3, 6, and
12 are outliers: they are much more difficult than similarly-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Problem Index

102

103

104

105

Re
al

 T
im

e

Success
False
True

Figure 5: Satellite problem runtimes for Rewrite-SHOP3,
comparing successful trials versus failed trials, plotted in
log10(msec).

60

80

100

%
 S

uc
ce

ss

SHOPFixer

60

80

100
%

 S
uc

ce
ss

IPyHOPPER

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Problem

60

80

100

%
 S

uc
ce

ss

Rewrite-SHOP3

Figure 6: Success rates for the Rovers repair problems for
each of the three algorithms.

numbered problems.

5 Discussion
Common Features Across all of the domains, REWRITE
is less time-efficient than the other two repair methods. This
is due to the fact that it replans ab initio, albeit against a new
problem that forces the plan to replicate already-executed
actions. This involves an extensive amount of rework, as
can be seen very clearly in the Openstacks problems, which
have the highest runtimes for generating initial plans. Note
that this could likely be substantially improved by heuristic
guidance that would direct the early part of planning towards
methods that replicate actions previously seen and that avoid
infeasibly introducing new actions.

Satellite It is unsurprising that REWRITE cannot solve
some problems that the other two algorithms solve. Many of
the repairs for satellite simply involve immediately restoring
a condition deleted by a disturbance—and if it was a con-
dition that the plan established, a re-establishment typically
will not work (see Section 2). Perhaps the surprise is that any

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

6

0

1

2

3

SHOPFixer

0

1

2

3

IPyHOPPER

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Problem

0

1

2

3

Rewrite-SHOP3

Figure 7: Runtimes for the Rovers repair problems in
log10(msec) for each algorithm. These include only those
problems solved successfully by the algorithm in question.

Solver
IPyHOPPER SHOPFixer

Problem % Success % Success
3 62% 72%
5 100% 94%
6 64% 80%
7 96% 100%
9 92% 100%
10 72% 100%
13 96% 100%
20 24% 100%

Table 1: Success rates for Rover problems where either IPY-
HOPPER or SHOPFIXER did not solve all repairs. Prob-
lems not listed were all solved by both repair methods.

of these scenarios are successfully repaired by REWRITE.
We investigated further, and found that REWRITE could han-
dle all of the cases that did not require repair (where the dis-
turbance did not defeat any action preconditions). Removing
those cases gives the success rates shown in Figure 2.

Here is an example of how REWRITE’s definition of repair
makes it unable to solve a problem handled by the other two
systems. In this repair problem , instrument0 becomes
decalibrated after it has been calibrated and pointed at its ob-
servation target (phenomenon6). The way the domain is
written, calibration occurs only in a sequence of calibration
then observation. Thus there is no plan in which two calibra-
tion operations are not separated by an observation, so repair
by rewrite is impossible. The other two methods simply treat
the preparation task as having failed, and re-execute the cal-
ibration, because their repair definition is more permissive.

For this domain, IPYHOPPER is generally faster than
SHOPFIXER, although it is implemented in interpreted
Python rather than compiled Common Lisp. This is prob-
ably accounted for by the fact that SHOPFIXER invests

0

1

2

3

4

5

SHOPFixer

0

1

2

3

4

5

IPyHOPPER

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Problem

0

1

2

3

4

5

Rewrite-SHOP3

Figure 8: Runtimes for the Rovers repair problems in
log10(msec) for each algorithm. These are only the prob-
lems not solved successfully by the algorithm in question.

1 2 3 4 5 6 7 8 9 1011121314151617181920
Problem Index

0

100

200

300

Re
al

 T
im

e

Rover runtime variances for SHOPFixer

1 2 3 4 5 6 7 8 9 1011121314151617181920
Problem Index

Rover runtime variances for IPyHOPPER

Figure 9: Variance in runtimes for the Rovers repair prob-
lems for IPYHOPPER and SHOPFIXER. Only success-
fully solved problems are plotted.

in building complex plan trees that include dependency in-
formation (see Figure 1) in order to more rapidly iden-
tify the location of precondition violations and their impli-
cations. SHOPFIXER also uses this information to back-
jump (Dechter 2003; Gaschnig 1979) to the point of failure,
instead of relying on chronological backtracking, as does
IPYHOPPER. For these simple problems, SHOPFIXER’s
added effort is generally not worthwhile. We note that the
variance of IPYHOPPER’s runtimes is wider than that of
SHOPFIXER, and that there are more outliers (Figure 4).

Rovers There were several Rovers problems where even
IPYHOPPER and SHOPFIXER could not find solutions—
but the three algorithms behaved quite differently in these
cases. There were 99 Rovers problems that Rewrite-SHOP3
could not repair. Of these, only 2 were due to timeouts,
both on problem 6, showing that the algorithm usually could
prove problems unrepairable. As before, SHOPFIXER’s
more permissive definition of “repairable” meant that it
solved more problems: it found only 35 unrepairable, and of
these only 3 were due to timeouts, as with Rewrite-SHOP3
these were both for problem 6. SHOPFIXER’s backjumping
appeared to serve it well in the Rovers domain: IPYHOP-
PER had much more difficulty with these problems. It failed
to repair 97 cases, of which 78 were due to timeouts. Time-

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

7

Problem Success Rate
10 98%
19 98%
28 90%
29 92%
30 96%

Table 2: Openstacks problems where IPYHOPPER did not
solve all of the problems.

0

1

2

3

4

5

SHOPFixer

0

1

2

3

4

5

IPyHOPPER

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Problem

0

1

2

3

4

5

Rewrite-SHOP3

Figure 10: Runtimes for the Openstacks repair problems in
log10(msec) for each algorithm. These include only those
problems solved successfully by the algorithm in question.

outs are not a simple matter of scale: the greatest number of
timeouts (by a factor of 2) is for problem 20, but the runners-
up are 3, 6, and 10, in declining order of number of timeouts.
Since the problems are intended to scale from first to last, the
outcomes are not due only to raw scale.

Repair difficulties in the Rovers domain are due to the
nature of the disturbances in our model. The “obstruct-
visibility” disturbance can render the waypoint graph no
longer fully connected, in terms of rover reachability. Losing
a sample may also give rise to an unrepairable problem.

Openstacks The hardest of the domains, Openstacks
shows the benefit of SHOPFIXER’s more expensive tree
representation in runtime. We can see this even more clearly
if we plot the two algorithms directly against each other
(Figure 11). Indeed, IPYHOPPER’s failures in this domain
are all due to timeouts. Specific problems are indicated in
Table 2. The more difficult search space here heavily penal-
izes IPYHOPPER’s simple chronological backtracking.

In a reversal of the previous patterns, REWRITE solves all
of the problems. This is due to a difference in the way the
domain was formalized compared to the other two domains.
Recall that we had to add a new action to prevent distur-
bances from making the Openstacks problems unsolvable.
That modification had the effect of also helping REWRITE
as did the fact that action choice is primarily constrained by
preconditions, rather than by method structure, which also

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Problem Index

0

10

20

30

40

Re
al

 T
im

e

Solver
IPyHOPPER
SHOPFixer

Figure 11: Direct comparison of runtimes for IPYHOPPER
and SHOPFIXER on Openstacks problems. Note that these
are plotted in seconds, and not on a log scale.

avoided issues with this algorithm. Note that this relatively
unconstrained planning also made it more difficult to gener-
ate the initial plans for this domain.

6 Conclusions and Future Directions
We have presented an analysis of three recent hierarchical
repair algorithms from the AI planning literature; namely,
SHOPFIXER, IPYHOPPER, and REWRITE. Qualitatively,
our analyses highlighted significant differences among these
methods: First, REWRITE’s definition of plan repair is
more stringent than the others; we have identified bench-
mark planning problems that are solvable for IPYHOPPER
and/or SHOPFIXER that cannot be solved by REWRITE.
Secondly, SHOPFIXER attempts to detect when a plan will
be invalid, before any actions actually fail; i.e., SHOPFIXER
invests in both data structures and computation in order to
detect compromise to a plan as soon as possible. IPYHOP-
PER, on the other hand, is not a model-based projective
planner in the same sense: it relies on an external simula-
tion to do projection for it, instead of having an internal ac-
tion model as most planners do. This difference in planning
approaches leads to different plan repair behaviors.

Our results on the efficiency of the REWRITE algorithm
should be taken with a large grain of salt. The original de-
velopers of this algorithm point out that their characteriza-
tion is intended to be conceptually correct and clean, and
that they have not yet taken into account the efficiency of
the formulation. In addition to tuning the formulation, its ef-
ficiency could be improved by improved heuristics for plan-
ner when they run against rewrite problems. In particular, a
planner searching the decomposition tree top-down should
take into account the position of its leftmost child when de-
ciding whether to choose the original methods, or methods
whose leaves are taken from the executed prefix of the plan.

Our experiences also highlight unresolved issues in ap-
plying REWRITE in grounded planning systems. How best
to schedule re-grounding vis-à-vis generation of the rewrit-

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

8

ten repair problem remains to be determined. While there
were some subtleties to resolve in developing our lifted im-
plementation, it did not have this chicken-and-egg problem.

Another interesting research direction is studying how
HTN domain engineering affects the tradeoffs between effi-
ciency and flexibility. At present, repair problems are gen-
erally created by modifying previously-existing planning
problems (including IPC problems), which are not designed
for execution, let alone to be repairable. In connection with
the general concept of stability, this may yield a new insights
in search-control for plan repair and for repairable plans; de-
riving properties from how preconditions and effects enable
planning heuristics and repairability as well as how those
preconditions and the task structure enable search control at
higher levels of the plan trees. Similar to refineability prop-
erties (Bacchus and Yang 1992; Yang 1997), this approach
can be examined formally, theoretically, and experimentally.

Acknowledgments. This project is sponsored by the Air
Force Research Laboratory (AFRL) under contract FA8750-
23-C-0515 for the HI-DE-HO STTR Phase 2 program. Dis-
tribution Statement A. Approved for public release: distri-
bution is unlimited. Any opinions, findings and conclusions,
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the
AFRL. Thanks to the anonymous reviewers for their helpful
feedback.

References
Ayan, F.; Kuter, U.; Yaman, F.; and Goldman, R. P. 2007.
HOTRiDE: Hierarchical Ordered Task Replanning in Dy-
namic Environments. In ICAPS-07 Workshop on Planning
and Plan Execution for Real-World Systems.

Bacchus, F.; and Yang, Q. 1992. The expected value of hi-
erarchical problem-solving. In AAAI, 369–374. Citeseer.

Bansod, Y.; Patra, S.; Nau, D.; and Roberts, M. 2022. HTN
Replanning from the Middle. The International FLAIRS
Conference Proceedings, 35.

Bercher, P.; Biundo, S.; Geier, T.; Hoernle, T.; Nothdurft, F.;
Richter, F.; and Schattenberg, B. 2014. Plan, Repair, Ex-
ecute, Explain — How Planning Helps to Assemble Your
Home Theater. In Proceedings of the International Confer-
ence on Automated Planning and Scheduling, volume 24,
386–394.

Cushing, W.; and Kambhampati, S. 2005. Replanning:
A New Perspective. In Proceedings of the International
Conference on Automated Planning and Scheduling, 13–16.
Monterey, CA USA: AAAI Press.

Dechter, R. 2003. Constraint Processing. San Francisco:
Morgan Kaufmann Publishers. ISBN 978-1-55860-890-0.

Fox, M.; Gerevini, A.; Long, D.; and Serina, I. 2006. Plan
Stability: Replanning versus Plan Repair. In ICAPS.

Gaschnig, J. 1979. Performance Measurement and Analysis
of Certain Search Algorithms. Technical Report CMU-CS-
79-124, Carnegie-Mellon University. Reference for back-
jumping, cited in Ginsberg’s texbook.

Gerevini, A.; Haslum, P.; Long, D.; Saetti, A.; and Di-
mopoulos, Y. 2009. Deterministic Planning in the Fifth In-
ternational Planning Competition: PDDL3 and Experimen-
tal Evaluation of the Planners. Artif. Intell., 173(5-6): 619–
668.
Goldman, R. P.; and Kuter, U. 2019. Hierarchical Task Net-
work Planning in Common Lisp: The Case of SHOP3. In
Proceedings of the 12th European Lisp Symposium. Genova,
Italy.
Hoffmann, J. 2011. Analyzing Search Topology without
Running Any Search: On the Connection between Causal
Graphs and h+. Journal of Artificial Intelligence Research,
41: 155–229.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2021.
The PANDA Framework for Hierarchical Planning. KI -
Künstliche Intelligenz, 35.
Höller, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.;
Pellier, D.; and Alford, R. 2020a. HDDL: An Extension to
PDDL for Expressing Hierarchical Planning Problems. In
Proceedings of the 34th AAAI Conference on Artificial In-
telligence (AAAI 2020). AAAI Press.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2020b.
HTN Plan Repair via Model Transformation. In Schmid, U.;
Klügl, F.; and Wolter, D., eds., KI 2020: Advances in Arti-
ficial Intelligence, volume 12325 of Lecture Notes in Com-
puter Science, 88–101. Cham: Springer International Pub-
lishing. ISBN 978-3-030-58284-5 978-3-030-58285-2.
Kambhampati, S.; and Hendler, J. A. 1992. A Validation-
Structure-Based Theory of Plan Modification and Reuse.
AIJ, 55: 193–258.
Kuter, U. 2012. Dynamics of Behavior and Acting in Dy-
namic Environments: Forethought, Reaction, and Plan Re-
pair. Technical Report 2012-1, SIFT.
Long, D.; and Fox, M. 2003. The 3rd International Planning
Competition: Results and Analysis. Journal of Artificial In-
telligence Research, 20: 1–59.
Robert P. Goldman; Ugur Kuter; and Richard G. Freedman.
2020. Stable Plan Repair for State-Space HTN Planning. In
HPlan 2020 Working Notes. Nancy, France.
Yang, Q. 1997. Generating Abstraction Hierarchies. In-
telligent Planning: A Decomposition and Abstraction Based
Approach, 189–206.
Zaidins, P.; Roberts, M.; and Nau, D. 2023. Implicit Depen-
dency Detection for HTN Plan Repair. In Proceedings of
the 6th ICAPS Workshop on Hierarchical Planning (HPlan
2023), 10–18.

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

9

An ILP Heuristic for Total-Order HTN Planning

Conny Olz1, Alexander Lodemann1, Pascal Bercher2

1Ulm University
2The Australian National University (ANU)

conny.olz@uni-ulm.de, alexander.lodemann@uni-ulm.de, pascal.bercher@anu.edu.au

Abstract

Heuristic Search is still the most successful approach to hi-
erarchical planning, both for finding any and for finding an
optimal solution. Yet, there exist only a very small handful
heuristics for HTN planning – so there is still huge poten-
tial for improvements. It is especially noteworthy that there
does not exist a single heuristic that’s tailored towards spe-
cial cases. In this work we propose the very first specialized
HTN heuristic, tailored towards totally ordered HTN prob-
lems. Our heuristic builds on an existing NP-complete and
admissible delete-and-ordering relaxation ILP heuristic but
partially incorporates ordering constraints while reducing the
number of ILP constraints. It exploits inferred preconditions
and effects of compound tasks and is also admissible. Our
current heuristic proves to be more efficient than the one we
build on, though it still performs worse than other existing
(admissible) heuristics.

Introduction
As witnessed by already having the second track on Hier-
archical Task Network (HTN) Planning in the International
Planning Competition (IPC), solving HTN problems quickly
or optimally is a prominent research field. Collectively, ten
HTN planners participated at the IPCs (not counting vari-
ous configurations per planner), and further planners exist
as well. Among all the various approaches, heuristic pro-
gression search (Höller et al. 2020; Olz and Bercher 2023b)
is still the most efficient approach, both for optimal and for
suboptimal planning – as witnessed by the most recent IPC
(Höller 2023a,b; Olz, Höller, and Bercher 2023).

The success of these search methods is tied directly to
the quality of the heuristics deployed. Despite the success of
heuristic search, only a very small number of HTN heuris-
tics exist. One of the first was a TDG-based heuristic that
estimates the minimal number of tasks that can be obtained
by decomposing the compound tasks in the current search
node (Bercher et al. 2017), one finds refinements to delete-
and ordering-relaxed problems encoded by an Integer Lin-
ear Program (ILP) (Höller, Bercher, and Behnke 2020), an-
other bases on landmarks (Höller and Bercher 2021), and
the last – but most successful – heuristic is the relaxed com-
position heuristic (Höller et al. 2018, 2020), which encodes
each search node into a classical problem allowing to deploy
classical heuristics.

All of these heuristics are designed to cope with the most
general case of an arbitrary partial order. However, there are
significantly more specialized total-order (TO) planners than
planners for general partial order planning, yet no heuristic
for this important special case exists. It is however notable
that there exists a pruning technique for total-order HTN
problems (Olz and Bercher 2023b), which further shows the
potential of this special case as its exploitation further im-
proved the total-order planner on top of which the pruning
was implemented and won the total-order HTN track of IPC
2023 (Olz, Höller, and Bercher 2023).

In this paper we propose the – to the best of our knowl-
edge – first HTN planning heuristic tailored towards totally
ordered problems. It exploits inferred preconditions and ef-
fects of compound tasks (Olz, Biundo, and Bercher 2021)
(which also serve as the basis for the TO pruning tech-
nique (Olz and Bercher 2023b; Olz, Höller, and Bercher
2023)) and deploys them in a simplified variant of the ILP-
based (NP-complete) delete- and ordering relaxation heuris-
tic (DOF) by Höller, Bercher, and Behnke (2020). Like the
original heuristic, our variant is admissible. Similarly, it can
also be computed in polytime (by relaxing the integer vari-
ables to real-valued ones), but it naturally loses some of its
informedness and hence pruning power if that is done.

We compare our new heuristic against the original ILP
heuristic and the currently best-performing RC heuristic
(Höller et al. 2020, 2018), using Add (Bonet and Geffner
2001) as the inner classical heuristic in satisficing planning
and the RC heuristic with the admissible LM-cut (Helmert
and Domshlak 2009) in optimal planning since our pro-
posed heuristic is admissible. Our results show that while the
ILP-based heuristics are not competitive with the RC(Add)
heuristic1, our new version generally outperforms DOF and
also RC(lmc) in some domains in optimal planning

We hope that future work – further improvements to our
technique – could bring our novel heuristic on par or even
beat the RC(LM-cut) heuristic as well and discuss ideas for
doing so at the end of the paper.

1When the DOF heuristic was published, it was on par with
RC(Add) but a different (smaller) set of domains was used in the
evaluation.

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

10

Theoretical Background
We start with providing the necessary definitions for total-
order HTN planning and inferred effects of compound tasks.

HTN Planning Formalism
Our heuristic for totally ordered HTN planning is grounded
in the formalisms introduced by Geier and Bercher (2011)
and Behnke, Höller, and Biundo (2018). A total-order HTN
planning domain is defined as a tuple D = (F,A,C,M),
which includes a finite set of facts F , finite sets of primitive
tasks A and compound tasks C (alternatively referred to as
abstract tasks), and decomposition methods M ⊆ C × T ∗.2
The collective set of tasks, both primitive and compound,
is denoted by T = A ∪ C. Actions or primitive tasks
a = (prec, add , del) ∈ A are characterized by their precon-
ditions prec(a) ⊆ F and their effects add(a), del(a) ⊆ F
(namely, the add and delete effects). An action a ∈ A
is applicable in a state s ∈ 2F if prec(a) ⊆ s. Upon
application, it transitions the state s to a successor state
δ(s, a) = (s \ del(a)) ∪ add(a). This concept extends to
action sequences ā = ⟨a0 . . . an⟩ with each ai ∈ A, deemed
applicable in an initial state s0 if a0 is applicable in s0 and
sequentially for each 1 ≤ i ≤ n, ai is applicable in the resul-
tant state si = δ(si−1, ai−1). Compound tasks within HTN
planning, denoted by c ∈ C, represent a higher-level ab-
straction of primitive and/or compound tasks, further spec-
ified by decomposition methods m = (c, t̄) ∈ M . These
methods decompose a compound task c within a given task
network tn1 = ⟨t̄1 c t̄2⟩ ∈ T ∗ into another task network
tn2 = ⟨t̄1 t̄ t̄2⟩, denoted as tn1 →c,m tn2, where task net-
works are finite (possibly empty) sequences of tasks. A se-
quence of methods that transforms tn into tn ′ is represented
as tn → tn ′, with tn ′ being called a refinement of tn . For a
compound task c ∈ C we also write c → tn ′ if we refer to
⟨c⟩ → tn ′. A TOHTN planning problem Π = (D, sI , cI , g)
is defined by the domain D, an initial state sI ∈ 2F , an
initial task cI ∈ C, and a goal description g ⊆ F . A so-
lution is a sequence of actions tn = ⟨a0 . . . an⟩ ∈ A∗ if
cI → tn holds, tn is applicable in sI , and it leads to a goal
state s ⊇ g.

Preconditions and Effects of Compound Tasks
In our version of the ILP heuristic we incorporate the con-
cept of inferred negative effects of compound tasks as in-
troduced by Olz, Biundo, and Bercher (2021). Compound
tasks, both according to the formalism we base upon (Geier
and Bercher 2011; Behnke, Höller, and Biundo 2018), and
as described by HDDL (Höller et al. 2020), lack direct ef-
fects and serve primarily as placeholders for task networks
to which they decompose into during the planning process.
A detailed examination of the potential decompositions of
compound tasks allows for the inference of state features re-
quired prior to any task refinement execution and the state
features that result from all possible refinements. Olz, Bi-
undo, and Bercher (2021) categorize such effects into sev-
eral types, including possible and guaranteed effects, as well

2The Kleene star notation T ∗ represents the set that includes
the empty sequence and all finite sequences of tasks from T .

as positive and negative ones, in addition to preconditions.
Our focus here is specifically on guaranteed negative effects,
hence we limit our recap to them.

The set of executability-enabling states for a compound
task c ∈ C is defined as E(c) = {s ∈ 2F | ∃ ā ∈
A∗ : c → ā and ā is applicable in s}. Moreover, the set
of states that could result from executing task c in state
s ∈ 2F is Rs(c) = {s′ ∈ 2F | ∃ ā ∈ A∗ : c →
ā, ā is applicable in s and leads to s′}.

Now, facts that are deleted after every successful execu-
tion of a refinement of a compound task c are called state-
independent negative effects (cf. Def. 4, (Olz, Biundo, and
Bercher 2021)) and are defined as follows:

eff −
∗ (c) := ∩s∈E(c)(F \∩s′∈Rs(c)s

′)

if E(c) ̸= ∅, otherwise eff −
∗ (c) := undef .

Computing these “precise” effects for compound tasks
is often too computationally expensive for the exploitation
in heuristics, as it essentially requires solving certain plan-
ning problems (Olz, Biundo, and Bercher 2021). However,
a more computationally feasible approach exists, based on
precondition-relaxation. The precondition-relaxed effects,
denoted as eff ∅−

∗ (c), are defined similarly to the original ef-
fects but rely on a precondition-relaxed version of the do-
main D′ = (F,A′, C,M), where A′ = {(∅, add , del) |
(prec, add , del) ∈ A}. This approach considers only the
presence and sequence of primitive tasks in the computation.
Procedures for computing these effects in polynomial time
have been provided by Olz, Biundo, and Bercher (2021) and
are also implemented in the PANDADealer planning system
(Olz and Bercher 2023b; Olz, Höller, and Bercher 2023),
which we employ for our evaluation.

ILP Encoding for Delete-relaxed TO-HTN
Search Nodes

Höller, Bercher, and Behnke (2020) introduced the first HTN
planning heuristic based on an ILP. They encode a delete
and ordering free (DOF) HTN planning problem, for which
the plan existence problem is NP-complete to decide. The
encoding can be divided into two parts: Constraints that en-
sure the successful execution of a sequence of actions (or a
relaxed version of it) and constraints to ensure the proper de-
composition leading to it. For the first part, Höller, Bercher,
and Behnke use the encoding by Imai and Fukunaga (2015)
(for classical planning) representing a delete-relaxed plan-
ning graph. Here, we introduce a different idea outlined fur-
ther below. The latter part we take from the work by Höller,
Bercher, and Behnke without changes, which we recap next.

Figure 1 outlines the set of ILP variables. The model by
Höller, Bercher, and Behnke for the executability of actions
needs five types of variables, but we could restrict our ver-
sion to just one (the first one; the second and third are used
to encode the decomposition). The objective function is the
same, calculating the goal distance by minimizing the num-
ber of applied primitive actions and method applications:

min
∑

a∈A

CAa +
∑

m∈M

Mm (O)

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

11

• {CAt | t ∈ T} (int) – value indicating how often a cer-
tain primitive or abstract task is in the solution.

• {Mm | m ∈ M} (int) – value indicating how often a
certain method is in the solution.

• {TNIt | t ∈ T} (bool) – flag indicating whether a certain
task is the initial task.

Figure 1: The variable set used in our ILP model. It is a
subset of the ones by Höller, Bercher, and Behnke (2020).
The first variable is renamed, the last adapted to initial task
instead of task network.

In order to simplify our constraints, we encode the cur-
rent state s and goal description as actions, known from
partial-order causal link (POCL) planning (McAllester and
Rosenblitt 1991; Bercher 2021). Specifically, we introduce
aI = (∅, s, ∅) and ag = (g, ∅, ∅). Since they need to be or-
dered before and after, respectively, all other tasks, we ad-
ditionally add a new compound task cI with one method
mI = (cI , ⟨aI , tnI , ag⟩), which replaces the current task
network of the search node.

Task Decomposition Constraints
A solution to an HTN planning problem needs to be a re-
finement of the initial task. The following two constraints by
Höller, Bercher, and Behnke (2020) encode this criterion. If
a (primitive) task is contained in the solution, then it is the
initial task and/or a method has been applied, which intro-
duced the task into the plan:
Definition 1 (mst). Let mst(t) be the multiset of methods
where the task t ∈ T is contained as a subtask. A method
m ∈ M is as often in mst(t) as t is a subtask in m.

∀t ∈ T : CAt = TNIt +
∑

m∈mst(t)

Mm (C7)

However, methods can not be applied arbitrarily, there
also needs to be a suitable abstract task for every applied
method.
Definition 2 (mdec). Let mdec(c) be the set of methods de-
composing the abstract task c ∈ C.

∀c ∈ C : CAc =
∑

m∈mdec(c)

Mm (C8)

According to Höller, Bercher, and Behnke (2020) the two
constraints are sufficient to encode the proper decomposi-
tion (more precisely, encoding a so-called decomposition
tree) leading to a sequence of tasks for acyclic problems. For
cyclic domains further constraints are necessary to handle
strongly connected components. This means that the encod-
ing without those additional constraints can also be used for
cyclic domains but the solutions can encode (shorter) plans
that can not be obtained by a proper sequence of decom-
positions. To simplify the presentation of this paper, we do
not repeat or use them since the evaluation results by Höller,
Bercher, and Behnke do not show significant improvements
by them.

Achiever Constraints
The ILP model by Höller, Bercher, and Behnke (2020) uses
the constraints by Imai and Fukunaga (2015) to simulate
a delete-relaxed planning graph. Therefore, for every time
point there exist ILP variables for every action and fact, stat-
ing whether an action is executed at that time point and the
facts being true or false. If an action is applied at some time
point, its preconditions need to be true beforehand. If a fact
needs to be true at some time point, there must be an action
adding it if it is not already true in the initial state. The ILP
solver tries to find an order of the actions so that precondi-
tions and goal facts are satisfied (under delete relaxation).
The resulting order might not meet the ordering constraints
of tasks within methods. Thus, especially in total-order do-
mains a lot of information gets lost.

Our intention was to improve the existing ILP heuristic
in terms of accuracy by incorporating (at least some of) the
ordering constraints imposed by the methods. We observed
that adding additional constraints could improve the heuris-
tic value but the additional time needed to solve the ILP
did not pay off (this was done in a pre-evaluation, not re-
ported here). To encode the planning graph, already quite
a lot of variables and constraints are necessary. Therefore,
in our proposed approach we made the model more simple
by calculating necessary information outside of the ILP up-
front. We ended up with only one (new) constraint (cl is a
large constant):

∀a ∈ A,∀f ∈ prec(a) : cl ·
∑

p∈achiever(f ,a)

CAp ≥ CAa

(C1)
This constraint ensures that for every action a ∈ A in the

plan and every of its preconditions there is an action “achiev-
ing” the precondition. So, the influence of this constraint
heavily depends on the definition of the set achiever(f , a).
A naive approach might be the following: Let a ∈ A be
a primitive task and f ∈ F a precondition, then the set
of possible achievers is achiever(f , a) = {a′ ∈ A | f ∈
add(a′)}. However, in this case the solutions of the ILP are
not very restricted. Neither are the methods’ ordering con-
straints taken into account nor does it guarantee that there
is an executable ordering of the actions (even under delete
relaxation). In the next section we present algorithms to re-
strict the set of achievers for an action a further so that it
only contains actions that appear before a according to the
method’s total order. Moreover, by exploiting the inferred
effects, we can even partially consider delete effects. Thus,
we do not present further changes to the ILP model, we only
discuss several options of how to calculate the set of possible
achievers and their impact on the set of ILP solutions.

Determining Achiever Actions
Given a TOHTN planning problem, we can determine for a
given action the set of actions that can be ordered before that
action in a possible refinement of the initial task. We will see
that we can calculate this with different levels of accuracy.

To start we define the set of reachable actions
reachable(c) = {a ∈ A | ∃ t̄ ∈ T ∗ : c → t̄ and a ∈ t̄}

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

12

Algorithm 1: Calculating Predecessor Actions
Input: A problem Π = (D, sI , cI , g)
Output: Sets of possible predecessors pred(a)∀ a ∈ A

1: pred(a) = ∅ for all a ∈ A
2: for all methods m = (c, ⟨t0, . . . , tn⟩) ∈ M do
3: for i = 1 to n do
4: for all a ∈ reachable(ti) do
5: for j = i− 1 to 0 do
6: pred(a) = pred(a) ∪ reachable(tj)

of a compound tasks c ∈ C, which are the actions reach-
able via decomposition. For primitive actions a ∈ A, we
define reachable(a) = {a}. The sets can be calculated in
polynomial time, e.g., by a depth-first search with a closed
list of already visited compound tasks to prevent infinite cy-
cles. The RC heuristic does this in a preprocessing step; it’s
a one-time computation. Given that set for every compound
task, we can compute for every primitive action the set of
actions that can possibly appear as predecessor in a refine-
ment of the initial compound task (and are thus candidates
for achiever actions) as shown in Algorithm 1.

The algorithm considers every method once. So let m =
(c, ⟨t0, . . . , tn⟩) ∈ M be a method. For each task ti (i > 1)
in the method, all of its reachable actions are considered. All
reachable actions of preceding tasks tj , j < i are added to
their sets of predecessors.

Proposition 1. Let Π = (D, sI , cI , g) be an total-order
HTN planning problem, a ∈ A, and pred(a) be computed
by Algorithm 1. Then it holds a′ ∈ pred(a) if and only if
there exists a refinement ā of cI (not necessarily executable)
so that a, a′ ∈ ā and a′ ≺ a.

Proof Sketch. We assume that all methods are reachable by
decomposition from the initial task, otherwise the uncon-
nected methods should not be considered in the algorithm.

“⇒” Let a, a′ ∈ A and a′ ∈ pred(a). Consider the
method m = (c, ⟨t0, . . . , tn⟩) ∈ M in line 2 for which
a′ was added to pred(a) in line 6. Since there there are
0 ≤ j, i ≤ n with j < i, a ∈ reachable(ti), and a′ ∈
reachable(tj) there must be a refinement of ⟨t0, . . . , tn⟩
in which a′ is ordered before a. Moreover, by assumption,
there must be a refinement of cI that contains c which can
be decomposed using m, which proves the first direction.

“⇐” Let ā be a refinement of cI and a, a′ ∈ ā two prim-
itive tasks with a′ ≺ a. If we consider the two sequences
of decompositions (more specifically, the used methods)
leading from cI to a and from cI to a′ in ā, then the
two sequences have the same prefix of methods. The suf-
fix may differ. However, the last common method m =
(c, ⟨t0, . . . , tn⟩) ∈ M must have two tasks tj ≺ ti with
a′ ∈ reachable(tj) and a ∈ reachable(ti) so that a′ will get
added to pred(a) in line 6.

Algorithm 1 can be extended to restrict the set of possible
achievers for the preconditions of an action achiever(f , a)
based on the total-order of the method set and inferred neg-
ative effects, given in Algorithm 2.

Algorithm 2: Calculating Achiever Actions
Input: A problem Π = (D, sI , cI , g)
Output: achiever(f , a) for all a ∈ A, f ∈ prec(a)

1: achiever(f , a) = ∅ for all a ∈ A, f ∈ prec(a)
2: for all methods m = (c, ⟨t0, . . . , tn⟩) ∈ M do
3: for i = 1 to n do
4: for all a ∈ reachable(ti) do
5: for all p ∈ prec(a) do
6: for j = i− 1 to 0 do
7: if p ∈ eff −

∗ (tj)/del(tj) then
8: break
9: achiever(a, p) = achiever(a, p) ∪

{a′ ∈ reachable(tj) | p ∈ add(a′)}

Again, every method m = (c, ⟨t0, . . . , tn⟩) ∈ M is con-
sidered once. Now, for each task ti (i > 1), all of its reach-
able actions and their preconditions are considered. Preced-
ing tasks tj , j < i are checked for reachable actions that can
add these preconditions, updating the achiever sets. If some
preceding task tk, k < i deletes a precondition (according to
its (inferred) delete effects), we do not consider its reachable
actions nor the reachable actions of its predecessors (line 8).

Algorithm 2 runs in polynomial time in O(|M | ·
n2 · (reachmax)

2 · precmax), where n is the size of
the largest task network within methods, reachmax =
maxt∈T |reachable(t)| and precmax = maxa∈A |prec(a)|.
Proposition 2. Let Π = (D, sI , cI , g) be a problem, a ∈ A
a primitive task, and achiever(a, p), pred(a) be calculated
according to Algorithms 1 and 2. Then it holds

•
⋃

p∈prec(a) achiever(a, p) ⊆ pred(a) and
• for all refinements ā of cI it holds if a, a′ ∈ ā, a′ ≺ a,
p ∈ prec(a) ∩ add(a′) and p is not deleted in between
then a′ ∈ achiever(a, p).

Proof Sketch. Since Algorithm 2 collects only actions that
add one of the preconditions, the set of achievers is a subset
of the predecessors calculated by Algorithm 1. Since for the
achievers some of the delete effects are taken into account in
line 8 even less actions are added.

For the second point, let us consider a refinement ā of
cI with a, a′ ∈ ā, a′ ≺ a, p ∈ prec(a) ∩ add(a′), where
no other action deletes p in between. According to Proposi-
tion 1 we know that a′ ∈ pred(a). Since no action in be-
tween deletes p, the condition for line 8 is not satisfied. So,
a′ is also added to achiever(a, p) since p ∈ prec(a) and
p ∈ add(a′).

We can now define our first version of our heuristic based
on the ILP presented in the last section with the set of pos-
sible achiever achiever(a, p) calculated by Algorithm 2,
which we denote hTOILP .

Theorem 1. For every solution of a TOHTN planning prob-
lem there exists a valid assignment of the ILP model.

Proof. Höller, Bercher, and Behnke (2020) already showed
for every solution of a DOF HTN planning problem, there

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

13

is a valid assignment of their ILP model. Since every solu-
tion of a TOHTN planning problem is also a solution under
delete and ordering relaxation, we know that there is a valid
assignment of our model that satisfies the task decomposi-
tion constraints C7 and C8. So we only need to check C1.
For all primitive tasks t ∈ A the variables CAt are set ac-
cording to how often the task is in the solution. Consider a
primitive task a with CAa > 0 and precondition f . Since
the plan is executable there must be an action a′ in the plan
adding f and no action deletes f in between. According to
Proposition 2 it holds a′ ∈ achiever(a, f) and therefore C1
is satisfied since also CAa′ > 0.

The next question to ask is whether hTOILP performs
some relaxations or whether all valid assignments of the ILP
model correspond to some solution of an TOHTN problem.
From a theoretical point of view this is “unlikely” (or even
impossible, depending on the exact relationship of complex-
ity classes, which are still unknown) since TOHTN plan-
ning is EXPTIME-complete in general and still PSPACE-
complete for acyclic domains (Alford, Bercher, and Aha
2015). ILPs can only solve problems in NP. Basically two
relaxations are performed. Since we only check for achiev-
ers of preconditions and ignore most of the delete effects we
perform some delete-relaxation. Moreover, the total-order of
tasks is partially relaxed. Consider for example a method
containing a compound task c twice. Assume that c has two
methods m1 = (c, ⟨a1⟩) and m2 = (c, ⟨a2⟩), where a1 can
support a precondition of a2 and vice versa. Then the two
primitive actions are in the achiever sets of each other and
in a solution of a corresponding ILP the two actions could
support each other. However, actually only one of the pre-
conditions is satisfied because one action is applied before
the other, so the first one needs another action adding its
precondition.

To overcome this limitation one could duplicate primi-
tive and compound tasks so that every task occurs just once
over all methods task networks. So in the example above,
we then have two compound tasks c and c′, m1 and m2 un-
changed but two additional methods m′

1 = (c′, ⟨a′1⟩) and
m′

2 = (c′, ⟨a′2⟩), where a′1 and a′2 have the same precon-
ditions and effects as a1 and a2, respectively. In the worst
case such a transformation introduces exponential many new
tasks. If a transformation is possible with polynomial many
new tasks, we can actually encode an acyclic, delete-relaxed
TOHTN problem. Therefore, we call a TOHTN planning
problem Π = (D, sI , cI , g) a unique tasks problem if for all
tasks t ∈ A∪C there is at most one method m = (c, t̄) ∈ M
with t ∈ t̄ and additionally t is contained only once in t̄.

Theorem 2. Consider an acyclic, delete-relaxed total-order
HTN planning problem with unique tasks. Then, for every
valid assignment of the ILP model, there exists a corre-
sponding solution to the underlying TOHTN problem.

Proof Sketch. Consider an acyclic, delete-relaxed, unique
tasks TOHTN problem and a valid assignment of the cor-
responding ILP model. According to Höller, Bercher, and
Behnke (2020) the constraints C7 and C8 ensure that there
is a refinement of the initial task that contains exactly the

number of primitive tasks as indicated by the variables CAt .
Since the constraints C1 are satisfied, for all actions in the
plan and their preconditions there is an action adding it. So
we only need to verify that the actions appear in the correct
order so that all preconditions are satisfied. Since every task
(primitive or compound) appears exactly once in all meth-
ods there is only one sequence of decompositions leading to
that task. This implies that if for two actions a, a′ it holds
a′ ∈ pred(a) then a /∈ pred(a ′). This does also hold for
the achiever sets since they are subset of the predecessors.
So the achievers already encode some total-order over all
tasks and the refinement of the initial task is executable un-
der delete-relaxation.

Since we take some of the (inferred) delete effects into
account when we calculate the achievers (line 8, Alg. 2)
not every solution of an acyclic, delete-relaxed, unique tasks
TOHTN problem has a valid assignment of the ILP model.
Some of the non-executable ones (when considering delete
effects) are missing, which is beneficial for the heuristic
since they are recognizes as not being correct solutions.

If we remove line 8 (what we should not do in practice)
the ILP can exactly encode acyclic, delete-relaxed, unique
tasks TOHTN problems, which is the first encoding for this
class so far. This is also in line with the result by Alford
et al. (2014) that acyclic and delete-relaxed (t.o.) HTN plan-
ning is NP-complete. The result by Alford et al. actually tells
us that there must be an encoding in general without relying
on the unique tasks property. The hardness proof by Alford
et al. does not rely on unique tasks but we can adapt a reduc-
tion by Olz and Bercher (2023a) to show NP-hardness of
acyclic and regular, delete- and precondition-relaxed prob-
lems to unique tasks so that we can conclude that our studied
problem is also already NP-hard (and complete).

For our situation now, it needs to be evaluated empiri-
cally whether the transformation to unique tasks pays off
but a preliminary evaluation showed no positive effect. The
heuristic can be used nevertheless, it just relaxes the problem
a bit more in case of non-unique tasks as discussed above.

Admissibility
We saw that for every solution of a TOHTN planning prob-
lem there exist a valid assignment of the ILP model, so the
heuristic is safe. The objective function of the ILP minimizes
the number of primitive actions and methods that need to
be applied. So it estimates the distance to the goal and not
the length of a minimal plan. However that can easily be
changed by setting the objective function to just minimizing
the number of primitive tasks. Then the heuristic value is
bounded from above by the length of an optimal plan, which
makes it admissible. The artificial actions encoding the ini-
tial state and goal should be excluded in that function.

Corollary 1. The heuristic is admissible, goal aware, and
safe with the objective function min

∑
a∈A CAa .

Evaluation
We evaluated our proposed heuristic in satisficing planning,
where one tries to find a solution as fast as possible within

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

14

a given time limit, as well as optimal planning. Therefore,
we integrated the heuristic into the progression-based ver-
sion of the PANDAπ system34 (Höller et al. 2020). We used
the currently best-performing configuration according to the
last IPC in 2023, which is GBFS (and A⋆ for optimal plan-
ning, respectively) with loop detection (Höller and Behnke
2021) and dead-end analysis with look-aheads and early
refinements (Dealer) (Olz and Bercher 2023b; Olz, Höller,
and Bercher 2023). For completeness reasons we also in-
cluded the results without the latter, though below we focus
our report on results with Dealer since those yield overall
better results.

We compared our heuristic, called TOILP, against the
ILP-based heuristic DOF by Höller, Bercher, and Behnke
(2020) and the currently best-performing heuristics. For sat-
isficing planning, this is the Relaxed Composition (RC)
heuristic (Höller et al. 2020) in combination with the classi-
cal Add heuristic (Bonet and Geffner 2001) as RC(Add), and
for optimal planning, RC combined with LM-cut (Helmert
and Domshlak 2009) as RC(lmc), which is the only other
existing admissible HTN planning heuristic.

We run the evaluation on a machine with a Xeon E5-2660
v3 with 2.60GHz and 40 CPUs. As a benchmark set, we used
all problems of the 24 domains in the benchmark set of the
IPC 20205. Each planning problem was granted one core, a
maximum of 8 GiB RAM, and a time limit of 1800 seconds.

Satisficing Planning
In Table 1 we report results for satisficing planning: The
number of solved instances within the time and memory
limits (coverage), normalized coverage, where equal signif-
icance is assigned to all domains, ensuring that domains
with a multitude of instances do not overshadow those with
fewer instances, and the IPC score, which is computed by
min{1, 1 − log(t)/log(1800)}, where t is the time required
to solve the problem in seconds. It rewards solving problems
quickly.

The RC(Add) heuristic outperforms both other heuristics
over all in terms of solved instances (744 versus 496 and
415, respectively) and IPC score (15.32 versus 8.21 and
7.02, respectively). When the DOF heuristic was published
it was on par with the the RC(Add) heuristic on the bench-
mark set of that time. It is interesting to see that this pic-
ture changed completely with the new domains. There is not
a single domain in which the DOF solves more instances
than RC(Add). The TOILP heuristic can at least outperform
RC(Add) in two domains, namely Depots and Transport,
with 2 and 3 more solved problems, respectively.

Our main intention was to improve the DOF heuristic
so we compare it with the TOILP next. We observe that
TOILP could solve 19.5% more problems and the IPC score
was improved by around 17%. Looking at individual do-
mains, we can see that in the Logistics-Learned, Multiarm-
Blocksworld, and Towers domains, TOILP solved around
twice as many problems as DOF. In the Hiking domain,

3http://panda.hierarchical-task.net
4https://github.com/ipc2023-htn/PandaDealer
5https://ipc2020.hierarchical-task.net/

RC(lmc)−Dealer

TO
IL

P
−

D
ea

le
r

100 101 102 103 104 105 106 107 108

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Assembly
Barman−BDI
Blocksw.−GTOHP
Blocksw.−HPDDL
Childsnack
Depots
Elevator−Learned
Entertainment
Factories
Freecell−Learned
Hiking
Logistics−Learned
Minecraft Pl.
Minecraft Reg.

Monroe FO
Monroe PO
Multiarm−Blocksw.
Robot
Rover

Satellite
Snake
Towers
Transport
Woodworking

Figure 2: Number of generated search nodes for optimal
planning. Be aware of the log scale.

TOILP solved 10 problems where DOF was only able to
solve 1 problem. So we can conclude that, indeed, overall
the TOILP performs better than the DOF heuristic on total-
order domains.

We evaluated the satisficing setting for reasons of com-
pleteness. Given that non-admissible heuristics often out-
perform admissible ones here, it is not too surprising that
TOILP does not emerge as the best overall.

Optimal Planning
Given the limited number of admissible HTN planning
heuristics available to date the TOILP heuristic has poten-
tial in optimal planning. As indicated in Table 2, the perfor-
mance gap between the RC heuristic and ILP-based heuris-
tics is indeed narrower in optimal planning than in satisficing
planning. Although the RC(lmc) heuristic still surpasses the
others in terms of coverage, with scores of 360 compared to
302 and 261, and in IPC scores, with 6.93 versus 5.56 and
4.71, respectively, the TOILP heuristic demonstrates supe-
rior performance in several domains. Notably, in 13 out of
24 domains, TOILP matched or exceeded the performance
of RC(lmc). The Childsnack domain stands out, where the
RC heuristic failed to solve any problems, whereas TOILP
and DOF solved 5.

The RC(lmc) heuristic runs in polynomial time, while
the ILP-based heuristics are capable of encoding and solv-
ing NP-hard problems. From a theoretical perspective, this
suggests that the ILP-based heuristics are more informed at
the cost of increased computation time. While with greedy
search such additional runtime often does not pay off since
we just want to find any solution, in optimal planning the en-
hanced information can prove valuable in narrowing down
the search space. This is supported by the data in Figure 2,
which shows that TOILP generally requires fewer search
nodes than RC(lmc) for most problems, with significant dif-

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

15

domain RC(Add)-Dealer RC(Add) TOILP-Dealer TOILP DOF-Dealer DOF
Coverage IPC Coverage IPC Coverage IPC Coverage IPC Coverage IPC Coverage IPC

Assembly 30 30 0.89 30 0.88 29 0.42 25 0.36 24 0.33 20 0.28
Barman-BDI 20 16 0.75 16 0.68 12 0.36 10 0.30 14 0.38 11 0.29
Blocksw.-GTOHP 30 30 0.86 30 0.94 25 0.75 25 0.71 27 0.76 25 0.68
Blocksw.-HPDDL 30 30 0.76 26 0.68 21 0.39 20 0.28 20 0.33 19 0.26
Childsnack 30 23 0.64 23 0.65 18 0.24 18 0.24 17 0.19 17 0.19
Depots 30 22 0.73 22 0.73 24 0.70 24 0.67 22 0.52 21 0.48
Elevator-Learned 147 147 0.75 147 0.60 124 0.43 108 0.35 107 0.35 95 0.30
Entertainment 12 12 0.94 12 0.95 12 0.87 12 0.86 12 0.81 12 0.80
Factories 20 11 0.37 8 0.32 6 0.22 5 0.17 6 0.20 4 0.15
Freecell-Learned 60 16 0.10 18 0.06 0 0.00 0 0.00 0 0.00 0 0.00
Hiking 30 25 0.67 25 0.68 10 0.16 10 0.22 1 0.01 1 0.01
Logistics-Learned 80 80 0.79 48 0.45 47 0.33 46 0.26 22 0.24 22 0.20
Minecraft Pl. 20 4 0.08 4 0.08 0 0.00 0 0.00 0 0.00 0 0.00
Minecraft Reg. 59 42 0.58 42 0.59 40 0.47 40 0.46 40 0.43 40 0.42
Monroe FO 20 20 0.50 20 0.50 0 0.00 0 0.00 0 0.00 0 0.00
Monroe PO 20 13 0.28 11 0.24 0 0.00 0 0.00 0 0.00 0 0.00
Multiarm-Blocksw. 74 74 0.89 74 0.80 35 0.18 14 0.10 16 0.11 12 0.08
Robot 20 20 0.93 20 0.91 20 0.75 11 0.53 20 0.76 20 0.74
Rover 30 27 0.57 29 0.65 9 0.24 9 0.24 9 0.23 9 0.23
Satellite 20 19 0.66 19 0.68 10 0.35 10 0.35 10 0.31 10 0.31
Snake 20 20 0.91 20 0.90 4 0.12 3 0.09 3 0.07 3 0.02
Towers 20 13 0.49 13 0.46 5 0.19 6 0.20 3 0.12 3 0.11
Transport 40 22 0.54 25 0.58 28 0.58 28 0.57 25 0.45 25 0.42
Woodworking 30 28 0.66 27 0.64 17 0.45 16 0.39 17 0.40 17 0.39

Overall 892 744 15.32 709 14.63 496 8.21 440 7.34 415 7.02 386 6.33
Normalized Coverage 19.50 18.85 12.23 11.03 10.89 10.24

Table 1: Coverage and IPC score for satisficing planning

ferences observed in several cases. This indicates that the
TOILP heuristic provides more precise heuristic values, al-
though the computation time remains slightly too high, re-
sulting in overall superior performance by RC(lmc).

Despite having considerably fewer variables and con-
straints than the DOF heuristic, the TOILP heuristic’s per-
formance, in terms of calculated search nodes, is comparable
to that of DOF, as illustrated in Figure 3, only a few prob-
lems need more search nodes. This suggests that TOILP’s
unique constraint ensuring executability, coupled with the
precalculated task ordering, delivers results of similar qual-
ity to those of the DOF constraints but faster.

Future Work
We already discussed some future work, which we briefly
recap now together with further ideas:

• The constraints for strongly connected components, as
proposed by Höller, Bercher, and Behnke (2020) in their
ILP model, could be incorporated to better handle cyclic
domains.

• We can introduce new tasks so that every task appears
just once over all methods, which makes the calculation
of achiever actions more precise. However, it also in-
creases the model, which might slow down the ILP solver
significantly.

DOF−Dealer

TO
IL

P
−

D
ea

le
r

100 101 102 103 104 105 106

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Assembly
Barman−BDI
Blocksw.−GTOHP
Blocksw.−HPDDL
Childsnack
Depots
Elevator−Learned
Entertainment
Factories
Freecell−Learned
Hiking
Logistics−Learned
Minecraft Pl.
Minecraft Reg.

Monroe FO
Monroe PO
Multiarm−Blocksw.
Robot
Rover
Satellite
Snake
Towers
Transport
Woodworking

Figure 3: Number of generated search nodes for optimal
planning. Be aware of the log scale.

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

16

domain RC(lmc)-Dealer RC(lmc) TOILP-Dealer TOILP DOF-Dealer DOF
Coverage IPC Coverage IPC Coverage IPC Coverage IPC Coverage IPC Coverage IPC

Assembly 30 4 0.11 4 0.10 5 0.12 4 0.10 5 0.10 4 0.09
Barman-BDI 20 10 0.32 10 0.29 6 0.14 5 0.11 5 0.11 5 0.08
Blocksw.-GTOHP 30 26 0.68 23 0.61 25 0.73 25 0.66 24 0.71 23 0.62
Blocksw.-HPDDL 30 5 0.12 5 0.11 5 0.11 4 0.09 5 0.10 4 0.09
Childsnack 30 0 0.00 0 0.00 5 0.05 4 0.03 5 0.03 3 0.01
Depots 30 18 0.55 18 0.52 19 0.51 19 0.48 18 0.38 18 0.33
Elevator-Learned 147 92 0.33 112 0.39 67 0.24 64 0.22 55 0.20 53 0.19
Entertainment 12 5 0.42 5 0.42 9 0.58 9 0.57 8 0.53 8 0.52
Factories 20 6 0.23 5 0.20 5 0.20 4 0.15 5 0.18 4 0.14
Freecell-Learned 60 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
Hiking 30 6 0.05 6 0.05 12 0.14 5 0.04 3 0.03 2 0.02
Logistics-Learned 80 27 0.25 27 0.25 22 0.20 22 0.18 22 0.20 22 0.17
Minecraft Pl. 20 2 0.03 1 0.02 1 0.01 0 0.00 1 0.00 0 0.00
Minecraft Reg. 59 33 0.33 33 0.33 38 0.35 38 0.35 33 0.27 33 0.27
Monroe FO 20 19 0.37 12 0.23 0 0.00 0 0.00 0 0.00 0 0.00
Monroe PO 20 10 0.15 7 0.14 0 0.00 0 0.00 0 0.00 0 0.00
Multiarm-Blocksw. 74 12 0.13 12 0.12 13 0.11 8 0.08 9 0.08 8 0.07
Robot 20 11 0.55 11 0.55 11 0.51 11 0.50 11 0.51 11 0.51
Rover 30 8 0.22 8 0.21 8 0.21 8 0.21 8 0.20 8 0.20
Satellite 20 6 0.21 6 0.21 10 0.34 10 0.33 10 0.29 10 0.28
Snake 20 20 0.76 20 0.68 4 0.13 4 0.10 3 0.07 3 0.02
Towers 20 13 0.48 12 0.45 6 0.19 6 0.19 3 0.10 3 0.10
Transport 40 10 0.15 9 0.14 15 0.28 14 0.27 13 0.24 13 0.19
Woodworking 30 17 0.51 16 0.50 16 0.40 13 0.34 15 0.37 15 0.35

Overall 892 360 6.93 362 6.51 302 5.56 277 5.00 261 4.71 250 4.25
Normalized Coverage 10.00 9.33 7.99 7.30 6.99 6.66

Table 2: Coverage and IPC score for optimal planning

• Currently we calculate the set of achiever tasks once in
the beginning, but one could update the sets according
to the reachable tasks of the current search node. Since
some methods may not be reachable anymore, the sets
can become smaller and more accurate. Whether this ad-
ditional computation time pays off is an open question.

• The ILP (Integer Linear Program) can be relaxed to a LP,
where the variables can be assigned real numbers instead
of integers. LPs are solvable in polynomial time but the
solution might not correspond to a plan anymore. Since
the objective value of an LP is always less or equal to
the one of the corresponding ILP the heuristic is still ad-
missible. It needs to be evaluated whether the speedup
of calculation time can compensate the loss of informa-
tion. In the original work by Höller, Bercher, and Behnke
(2020) the ILP version was slightly better.

Conclusion
We proposed a novel ILP-based HTN planning heuristic tai-
lored to total-order domains. The ordering information is
calculated in advance and integrated into the ILP model so
that the number of constraints can be significantly reduced
compared to an existing ILP heuristic, which ignores the or-
dering completely. Empirical results indicate that the new
heuristic outperforms the original one clearly, dominating

it in terms of solved instances (coverage) and IPC score
on every existing total-order domain. When comparing our
NP-complete heuristic against the currently best performing
admissible HTN heuristic that can be computed in polyno-
mial time, RC(lmc), results are mixed. When looking at the
overall sum of solved instances and IPC score, RC(lmc) per-
forms better than the one proposed. However, neither dom-
inates the other. This shows the higher informedness of our
proposed heuristic pays out in several domains, but it too
costly in several others. It will be interesting to see how the
proposed heuristic performs with further progress on the re-
search question on how to compute inferred effects of com-
pound tasks. The informed of the heuristic depends on the
amount of effects computed, so the heuristic will automati-
cally become more informed when more preconditions and
effects can be identified in the preprocessing step that this
heuristic and the Dealer technique depend upon.

Acknowledgements

Pascal Bercher is the recipient of an Australian Research
Council (ARC) Discovery Early Career Researcher Award
(DECRA), project number DE240101245, funded by the
Australian Government.

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

17

References
Alford, R.; Bercher, P.; and Aha, D. W. 2015. Tight Bounds
for HTN Planning. In Proceedings of the 25th International
Conference on Automated Planning and Scheduling (ICAPS
2015), 7–15. AAAI Press.
Alford, R.; Shivashankar, V.; Kuter, U.; and Nau, D. 2014.
On the Feasibility of Planning Graph Style Heuristics for
HTN Planning. In Proceedings of the 24th International
Conference on Automated Planning and Scheduling (ICAPS
2014), 2–10. AAAI Press.
Behnke, G.; Höller, D.; and Biundo, S. 2018. totSAT –
Totally-Ordered Hierarchical Planning through SAT. In Pro-
ceedings of the 32nd AAAI Conference on Artificial Intelli-
gence (AAAI 2018), 6110–6118. AAAI Press.
Bercher, P. 2021. A Closer Look at Causal Links: Com-
plexity Results for Delete-Relaxation in Partial Order Causal
Link (POCL) Planning. In Proceedings of the 31st Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2021), 36–45. AAAI Press.
Bercher, P.; Behnke, G.; Höller, D.; and Biundo, S. 2017.
An Admissible HTN Planning Heuristic. In Proceedings of
the 26th International Joint Conference on Artificial Intelli-
gence (IJCAI 2017), 480–488. IJCAI.
Bonet, B.; and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence, 129(1-2): 5–33.
Geier, T.; and Bercher, P. 2011. On the Decidability of HTN
Planning with Task Insertion. In Proceedings of the 22nd
International Joint Conference on Artificial Intelligence (IJ-
CAI 2011), 1955–1961. AAAI Press.
Helmert, M.; and Domshlak, C. 2009. Landmarks, Criti-
cal Paths and Abstractions: What’s the Difference Anyway?
In Proceedings of the 19th International Conference on Au-
tomated Planning and Scheduling (ICAPS 2009), 162–169.
AAAI Press.
Höller, D. 2023a. The PANDA λ System for HTN Plan-
ning in the 2023 IPC. In Proceedings of the 11th Interna-
tional Planning Competition: Planner Abstracts – Hierar-
chical Task Network (HTN) Planning Track, IPC 2023.
Höller, D. 2023b. The PANDA Progression System for HTN
Planning in the 2023 IPC. In Proceedings of the 11th Inter-
national Planning Competition: Planner Abstracts – Hier-
archical Task Network (HTN) Planning Track, IPC 2023.
Höller, D.; and Behnke, G. 2021. Loop Detection in the
PANDA Planning System. In Proceedings of the 31st Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS 2021), 168–173. AAAI Press.
Höller, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.;
Pellier, D.; and Alford, R. 2020. HDDL: An Extension to
PDDL for Expressing Hierarchical Planning Problems. In
Proceedings of the 34th AAAI Conference on Artificial In-
telligence (AAAI 2020), 9883–9891. AAAI Press.
Höller, D.; and Bercher, P. 2021. Landmark Generation in
HTN Planning. In Proceedings of the 35th AAAI Conference
on Artificial Intelligence (AAAI 2021), 11826–11834. AAAI
Press.

Höller, D.; Bercher, P.; and Behnke, G. 2020. Delete- and
Ordering-Relaxation Heuristics for HTN Planning. In Pro-
ceedings of the 29th International Joint Conference on Arti-
ficial Intelligence (IJCAI 2020), 4076–4083. IJCAI.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2018.
A Generic Method to Guide HTN Progression Search with
Classical Heuristics. In Proceedings of the 28th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2018), 114–122. AAAI Press.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2020.
HTN Planning as Heuristic Progression Search. Journal of
Artificial Intelligence Research (JAIR), 67: 835–880.
Imai, T.; and Fukunaga, A. 2015. On a Practical, Integer-
Linear Programming Model for Delete-Free Tasks and its
Use as a Heuristic for Cost-Optimal Planning. Journal of
Artificial Intelligence Research (JAIR), 54: 631–677.
McAllester, D. A.; and Rosenblitt, D. 1991. Systematic
Nonlinear Planning. In Proceedings of the 9th National
Conference on Artificial Intelligence (AAAI 1991), 634–639.
AAAI Press.
Olz, C.; and Bercher, P. 2023a. Can They Come Together?
A Computational Complexity Analysis of Conjunctive Pos-
sible Effects of Compound HTN Planning Tasks. In Pro-
ceedings of the 33rd International Conference on Automated
Planning and Scheduling (ICAPS 2023), 314–323. AAAI
Press.
Olz, C.; and Bercher, P. 2023b. A Look-Ahead Technique
for Search-Based HTN Planning: Reducing the Branching
Factor by Identifying Inevitable Task Refinements. In Pro-
ceedings of the 16th International Symposium on Combina-
torial Search (SoCS 2023), 65–73. AAAI Press.
Olz, C.; Biundo, S.; and Bercher, P. 2021. Revealing Hid-
den Preconditions and Effects of Compound HTN Planning
Tasks – A Complexity Analysis. In Proceedings of the 35th
AAAI Conference on Artificial Intelligence (AAAI 2021),
11903–11912. AAAI Press.
Olz, C.; Höller, D.; and Bercher, P. 2023. The PANDADealer
System for Totally Ordered HTN Planning in the 2023 IPC.
In Proceedings of the 11th International Planning Competi-
tion: Planner Abstracts – Hierarchical Task Network (HTN)
Planning Track (IPC).

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

18

Barely Decidable Fragments of HTN Planning

P. Maurice Dekker,
Gregor Behnke

University of Amsterdam
p.m.dekker@uva.nl, g.behnke@uva.nl

Abstract

Unrestricted HTN planning is undecidable. However some
fragments of HTN planning – such as totally-ordered or tail-
recursive HTNs – are decidable. Studying these restricted
fragments has lead to valuable insights, which ultimately gave
rise to the development of new efficient HTN planning algo-
rithms.
We identify new decidable fragments of HTN planning. In
a one-hole-digging problem, every task network contains at
most a single compound task. In an initial problem, com-
pound tasks are order-minimal in all task networks, while
in a final problem, they are order-maximal. We precisely
determine the complexity of these fragments – they are
Ackermann-complete. This remains true even under the re-
striction that there is only one compound task and only two
methods for it.

Introduction
Hierarchical Task Network (HTN) planning (Sacerdoti
1975; Erol, Hendler, and Nau 1994) is an expressive for-
malism for planning. It allows for describing the physics
of the domain in terms of both the preconditions and ef-
fects of actions but also allows for specifying a grammar-
like refinement-structure that valid plans must follow. HTN
planning has over the past decades been studied both from
theoretical and practical views. In several cases, theoreti-
cal insights have informed practical planning methods and
have lead to new algorithms. This includes for example
Erol’s insight that totally-ordered HTN planning is decid-
able (Erol, Hendler, and Nau 1996), which has lead to ded-
icated total-order HTN planners (Nau et al. 1999; Mag-
naguagno, Meneguzzi, and de Silva 2021; Schreiber 2021;
Behnke, Höller, and Biundo 2018; Alford et al. 2016; Al-
ford, Kuter, and Nau 2009), but also the complexity analysis
of tail-recursive HTN problems (Alford, Bercher, and Aha
2015) and the idea of relating HTN planning to formal lan-
guages (Höller et al. 2014), which have lead to dedicated
planning algorithms (Alford et al. (2016) and Höller (2021)
respectively).

These innovations were, at least to some degree, driven
by researchers wanting to better understand the complexity-
landscape of HTN planning. As HTN planning in general
is undecidable (Erol, Hendler, and Nau 1996), this at least
includes identifying expressive but still decidable fragments

of HTN planning. This had lead to discovering, e.g., totally-
ordered and tail-recursive HTN problems.

We present a new class of decidable HTN planning prob-
lems: that of one-hole-digging problems. This class is or-
thogonal to the previously investigated classes and thus il-
luminates a new island of decidability. While being decid-
able, one-hole-digging problems are only barely decidable:
we show that they are complete for the class of Fω , i.e., for
all problems whose runtime is limited by an Ackermann-
function. Our completeness proof also goes through for
other fragments of HTN planning, most notably initial, fi-
nal, and clean problems. See Table 3 at the end of the paper.

Preliminaries
In order to present the new fragments and results, we first
formally define the notion of HTN planning. We then in-
troduce Petri nets, which we will use in our reduction, and
lastly introduce the required concepts of computational com-
plexity theory.

HTN Planning
In this section, we set up the HTN formalism following
Geier and Bercher (2011). This is a simple way of adding
hierarchy to the STRIPS formalism, and is hence comfort-
able for proving complexity results.

A task network over a set N of task names is a triple t =
(T,≺,α) where
• T is a finite set of tasks;
• ≺ is a strict partial order on T ;
• α : T → N assigns a task name to each task in the net-

work.
Let TN be the set of all task networks over N. If T ′ ⊆ T , we
define the task subnetwork

t|T ′ =
(
T ′,≺ ∩(T ′×T ′),α|T ′

)
∈ TN .

For t ∈ T we write T r t = T \{t}. We write tr t as a short-
hand for

t|(T r t).

An embedding φ : t ↪→ t′ of task networks t= (T,≺,α) and
t′ = (T ′,≺′,α ′) is an injection φ : T ↪→ T ′ that preserves
the partial order both ways and satisfies α ′ ◦φ = α . An iso-
morphism is a bijective embedding. Let 0 = (/0, /0, /0) be the

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

19

empty task network. The symbol t denotes the union of dis-
joint sets. A task network t= (T,≺,α) is a disjoint union of
a family {ti : i ∈ I} of task networks if there exist embed-
dings φi : ti ↪→ t such that

T =
⊔

i∈I

Imφi

and φi(ti) 6≺ φ j(t j) whenever i, j ∈ I are distinct.
An HTN problem is a tuple Π = (F,C,O,M,δ , t0,s0)

where
• F is a finite set of (propositional) variables;
• C is a finite set of compound task names;
• O is a finite set of primitive task names;
• M⊆C×TCtO is a finite set of (decomposition) methods;
• δ : O→P(F)4 is an action mapping;1

• t0 ∈ TCtO is an initial task network;
• s0 ⊆ F is an initial propositional state.

A propositional state of Π is a subset of F . For better read-
ability, we will adopt the following style guide: facts are
typewriter blue, compound task names in bold and brown,
primitive task names in sans serif pink and decomposition
methods in green. Let t = (T,≺,α) be a task network over
C tO. It is called a task network of Π if either t = t0 or
(c, t) ∈M for some c ∈C. We call a task t ∈ T compound if
α(t) ∈C and primitive if α(t) ∈ O. We call t primitive if all
tasks in T are primitive (i.e. t is a task network over O).

Applying a decomposition method changes a non-
primitive task network into another task network. Suppose
that t1 = (T1,≺1,α1), t2 = (T2,≺2,α2) and t = (T,≺,α)
are task networks, t ∈ T1 and µ =

(
α1(t), t

)
is a method.

We write t1 →t/µ t2 provided there exists an embedding
φ : t ↪→ t2 such that

T2 = (T1 r t)t Imφ

and for all t1 ∈ T1 r t and t ′ ∈ T and ∗ ∈ {≺,�} it holds

t1∗1t ⇔ t1∗2φ(t ′).

Intuitively this means that t got replaced by t. The task net-
work t2 exists and is unique up to isomorphism.

The search space of the problem Π is

ΩΠ = TCtO×P(F).

If pr ∈ O with δ (pr) = (π+,π−,e+,e−) and s ⊆ F satisfies
π+⊆ s and π−∩s= /0, we say pr is applicable in s and define
γ(s,pr) = s∪ e+ \ e−. Let (t,s) ∈ ΩΠ be an HTN state with
t = (T,≺,α) and let t ∈ T be a primitive ≺-minimal task
such that α(t) is applicable in s. Then write

(t,s) Π

(
tr t,γ

(
s,α(t)

))
∈ΩΠ.

If t1→t/µ t2 for some t and µ ∈M, also let

(t1,s) Π (t2,s).

1We include negative preconditions, but it is well-known that
these can be compiled away in linear time; cf. (Gazen and
Knoblock 1997, section 2.6).

The search graph of Π is ΦΠ =
(
ΩΠ, Π ,(t0,s0)

)
, where

(t0,s0) is the initial HTN state. For the relation with other
views on HTN search, we refer to (Alford et al. 2012). The
problem Π is solvable if for some propositional state sω , the
state (0,sω) is reachable in ΦΠ. If it is, it can be reached
by first applying only decomposition methods until the task
network is primitive, and then applying only actions.

If Q is a class of HTN problems, let PLANEX(Q) be the
problem of deciding whether or not a given member of Q
is solvable. This problem has been studied in the literature
for various classes Q. The complexities range from poly-
nomial time to undecidable ((Erol, Hendler, and Nau 1994),
(Geier and Bercher 2011), (Alford 2013), (Alford, Bercher,
and Aha 2015)).

Petri Nets
A Petri net is a pair N = (P,Θ) where P is a finite set of
places and Θ is a finite set of transitions, which are functions
P→ Z. The Petri net N is called ordinary if

∣∣θ(p)
∣∣ ≤ 1

for all θ ∈ Θ and p ∈ P. Ordinary Petri nets have the same
modelling power as arbitrary Petri nets (see (Murata 1989,
section IV.A)). The search space ΩN of N is the set of
all functions P→ N. We work with pointwise addition of
functions P→ Z. For σ ,σ ′ ∈ ΩN , we define σ N σ ′ iff
there exists a transition θ ∈ Θ such that σ + θ = σ ′. This
is called a firing of θ . Let ΦN = (ΩN , N) be the search
graph. A state σ ∈ΩN is called a unit state of N if σ(p)≤
1 for all p ∈ P.

Petri nets are often imagined to include an unlimited pool
of tokens. State σ encodes that there are σ(p) tokens at each
place p ∈ P.

PETRI is the problem of deciding given an ordinary Petri
net N and unit states τ0,τ1 of N whether or not τ1 can be
reached from τ0 in ΦN .

PETRIGEN is the same problem but without the “ordi-
nary” and “unit” assumptions. For more information on this
and similar problems we refer to (Esparza 1998). It is easy
to see that PETRIGEN reduces to PETRI in polynomial time.
Moreover, the following is standard:
Lemma 1. Given a finite set P of instances of PETRI we can
compute in polynomial time another instance of PETRI that
has answer “yes” iff some instance in P has answer “yes”.

Complexity Theory
In this paper, we will consider complexity classes that lie
beyond the typically considered hierarchy of complexity
classes starting with L,NL,P,NP,PSPACE,EXP, We
introduce the notion of Ackermann-completeness follow-
ing (Schmitz 2016).

We define F0(n) = n+2 and

Fk(n) = Fn
k−1(k) = Fk−1(. . .(Fk−1(︸ ︷︷ ︸

n time

k)) . . .).

(We pass k as an argument here to ensure that
limk→∞ Fk(0) = ∞.) As a result, we get that F1(n) ≥ 2n,
F2(n)≥ 2n and

F3(n)≥ 22...
2

︸︷︷︸
n high

.

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

20

Lastly we define Fω(n) = Fn(n), which is the Ackermann
function. Let ACKERMANN be the class of all decision
problems that can be solved by a deterministic Turing ma-
chine with a time bound of Fω

(
Fk(n)

)
for an input length

n for some k ≥ 1. A problem solvable by a program with
runtime F3(n) for an input length n, already need not be in
the class ELEMENTARY which contains all problems solv-
able with run-time limited to some fixed height exponenti-
ation tower. Problems in ACKERMANN can be still much
harder.

A problem Π is ACKERMANN-hard if for every prob-
lem Π′ ∈ ACKERMANN there exists k ∈ N such that there
exists a program that reduces any instance of Π′ of some size
n to an instance of Π in time at most Fk(n). The intuition be-
hind this definition is that any function Fk is negligibly small
in comparison to the Ackermann function Fω in the limit. As
we can choose k = 2, it follows that exponential time reduc-
tions are valid for proving ACKERMANN-hardness.

Leroux and Schmitz (2019) proved that PETRI ∈
ACKERMANN. Recently, Czerwiński and Orlikowski
complemented this result with hardness:
Theorem 2. (Czerwiński and Orlikowski 2022) PETRI is
ACKERMANN-complete.

New Fragments
Let Π = (F,C,O,M,δ , t0,s0) be an HTN problem and t0 =
(T0,≺0,α0).
• Π is initial if any compound task in any task network of

Π is minimal w.r.t. the task network’s order:

∀t= (T,≺,α) :
(
∃c : (c, t) ∈M

)
or t0 = t

=⇒ ∀t ≺ t ′ : α(t) ∈ O.

• Π is final if any compound task in any task network of Π
is order-maximal.

• Π is clean if it is initial and final.
• Π is one-hole-digging if every (initial or method) task

network contains at most one compound task:
∣∣α−1

0 [C]
∣∣≤ 1 & ∀

(
c,(T,≺,α)

)
∈M :

∣∣α−1[C]
∣∣≤ 1.

• Π is bottomless if every primitive method task network
is empty:

∀(c, t) ∈M : t ∈ TO =⇒ t= 0.

• Π is loop-unrolling, if it only contains one compound
task name and two methods:

|C| ≤ 1 & |M| ≤ 2.

Note that a problem is clean iff compound tasks are isolated.
For a one-hole-digging problem, decomposition is a sin-

gle sequence of methods that are successively applied to the
only present compound task, and the number of compound
tasks never exceeds 1 while moving through ΦΠ.

If some loop-unrolling Π with at least one compound task
in the initial task network t0 is solvable, there can only be
one method – call it cont – with a non-primitive task net-
work. The other method – call it stop – serves to end recur-
sion. Consider some subcases:

• If Π is additionally one-hole-digging, the only choice to
make for the decomposition of Π is how often to apply
cont before applying stop.

• If Π is additionally bottomless, then

M =
{

cont = (comp, t),stop = (comp,0)
}

(1)

for some comp and t. If Π is additionally clean, let tpr
(0)

be the largest primitive task subnetwork of t(0); then
the primitive task networks obtainable from t0 with the
decomposition methods in M are precisely the disjoint
unions of tpr

0 with any number of copies of tpr.

Example 3. Imagine we want to bury an object. The pro-
cedure is to dig a hole in the ground, put the object in it,
and then cover it with the dirt that was dug up. The hole can
be of any depth. Let F = {hole,buried}, C = {bury},
O = {dig,put,cover},

M =
{

deeper = (bury, tdeeper),bottom = (bury, tbottom)
}

where tdeeper is the task network consisting of three tasks
tdig
deeper ≺ tbury

deeper ≺ tcover
deeper with names αdeeper(t

dig
deeper) = dig,

αdeeper(t
bury
deeper) = bury and αdeeper(tcover

deeper) = cover, tbottom
is the task network consisting of one task tbottom with name
αbottom(tbottom) = put, δ (dig) =

〈
/0, /0,{hole}, /0

〉
, δ (put) =〈

{hole}, /0,{buried}, /0
〉
, δ (cover) = 〈 /0, /0, /0, /0〉, t0 is the

task network consisting of one task t0 with name α0(t0) =
bury and s0 = /0. Then Π = (F,C,O,M,δ , t0,s0) is a one-
hole-digging loop-unrolling problem. Every path of ΦΠ
leads to the goal, except when one immediately applies the
bottom method or when one applies the deeper method for-
ever.

Let I be the class of initial problems. Let F be the class
of final problems. Let C be the class of clean problems. Let
H1 be the class of one-hole-digging problems. Let B be the
class of bottomless problems. Let L be the class of loop-
unrolling problems.

All regular problems, introduced by (Erol, Hendler, and
Nau 1994), are final and one-hole-digging. However, not all
final one-hole-digging problems are regular (there can be
multiple maximal tasks). Still, if all task networks of some
final problem are totally ordered, it is regular.

We call an HTN problem Π quasi-final if removing all
maximal tasks from all task networks of Π results in an
acyclic problem (see again (Erol, Hendler, and Nau 1994)).
Then the remaining compound tasks can be compiled away
in exponential time; thus we can compute a final prob-
lem that is solvable iff Π is solvable. Let F ′ be the class
of quasi-final problems. Then it follows from the results
below that PLANEX(F ′) ∈ ACKERMANN. Similar re-
marks hold for initial problems. Out of the IPC 2023,
the domains AssemblyHierarchical, Blocksworld-HPDDL,
Multiarm-Blocksworld, Robot, and Tower were quasi-final.
However, as the task networks of these examples are totally
ordered, they are actually in EXP (Erol, Hendler, and Nau
1996), so much easier than Ackermann.

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

21

Results
Intuitively, the class H1 might be complexity-wise close to
other HTN classes or even classical planning as the restric-
tions to the allowed decompositions are severe. A method
application either seems to “move the problem” by replac-
ing the compound task with a new compound task and some
primitive tasks, or readily creates a primitive task network.
Example 3 is trivial, but this is largely caused by the to-
tal order in the method task network tdeeper. We will prove
that the complexity with partial order is high: the problem
PLANEX(H1) is ACKERMANN-complete. It is thus sig-
nificantly more complex than any other known decidable
HTN class and only barely easier than undecidable prob-
lems. The proof heavily relies on Theorem 2, by showing
equivalence of PLANEX(H1) to PETRI. As a bonus, our re-
ductions work for I and F as well.

Membership
The idea of the membership proof is to use bi-directional
search, a common technique in planning that already exists
since (Pohl 1969). If Π = (F,C,O,M,δ , t0,s0) is an HTN
problem, its bi-directional search space is

Ωbi
Π = TCtO×P(F)2.

The first propositional state in a triple in Ωbi
Π is understood

as the propositional state in forward search and the sec-
ond in backward search. The search graph Φbi

Π = (Ωbi
Π, bi

Π)
over the bi-directional search space inherits the arrows Π
(where the propositional state in backward search does not
change) with the addition of regression:

(
t,s,γ(s1,α(t)

))
 bi

Π (tr t,s,s1)

whenever t = (T,≺,α) and t ∈ T is ≺-maximal. It is easy
to see that Π is solvable iff (0,s,s) can be reached from
(t0,s0,sω) in Φbi

Π for some propositional states s,sω .
If Π ∈H1, we also inherit the property that the number

of compound tasks remains at most 1 while moving through
Φbi

Π.
Proposition 4. PLANEX(H1∪I ∪F) reduces to PETRI in
exponential time.

Proof. For each Q ∈ {H1,I ,F} it is polynomial to decide
whether a given HTN problem is in Q. Hence it suffices to
show for each such Q that PLANEX(Q) reduces to PETRI in
at most exponential time.

In view of Lemma 1, it suffices to reduce the problem
of determining whether (0,sω) can be reached in ΦΠ given
Π ∈ Q and a propositional state sω . This is equivalent to
asking whether there exists a propositional state s1 such that
(0,s1,s1) can be reached from (t0,s0,sω) in Φbi

Π. Again by
Lemma 1 we can assume s1 is given and reduce the problem
of determining whether

(0,s1,s1) can be reached from (t0,s0,sω) in Φbi
Π. (2)

Let Π = (F,C,O,M,δ , t0,s0) be an HTN problem. Let X
be the set of all nonempty task subnetworks of (initial or
method) task networks of Π. For each x ∈ X, introduce a

Petri place p(x). For each s ⊆ F and υ ∈ {0,1}, introduce
a Petri place p(s,υ). Let P be the set of all places. A state
σ : P→ N satisfying

∑
s∈P(F)

σ
(

p(s,υ)
)
= 1

for each υ < 2, will encode an element of the bi-directional
search space of Π. Namely, the task network is a disjoint
union of σ

(
p(x)

)
copies of x for each x ∈ X; the propo-

sitional state in forward search is the unique s such that
σ
(

p(s,0)
)
= 1 and the propositional state in backward

search is the unique s′ such that σ
(

p(s′,1)
)
= 1. Accord-

ingly, let τ0 be the unit state that encodes (t0,s0,sω) (natu-
rally with τ0

(
p(t0)

)
= 1), and τ1 the unit state that encodes

(0,s1,s1).
Suppose that s⊆ F and pr ∈ O is applicable in s. Also let

x= (X ,≺,α) ∈ X and x ∈ X with name α(x) = pr. If x ∈ X
is ≺-minimal, we define the transition θ s,x,x

0 by

θ s,x,x
0

(
p(y)

)
=

1 (y= xr x)
−1 (y= x)

0 (otherwise),

θ s,x,x
0

(
p(s′,0)

)
=

1
(
s′ = γ(s,pr)

)

−1
(
s′ = s)

0 (otherwise),

θ s,x,x
0

(
p(s′,1)

)
= 0,

This transition corresponds to executing task x in forward
search. If x ∈ X is ≺-maximal, define the transition θ s,x,x

1 by

θ s,x,x
1

(
p(y)

)
=

1 (y= xr x)
−1 (y= x)

0 (otherwise),

θ s,x,x
1

(
p(s′,0)

)
= 0,

θ s,x,x
1

(
p(s′,1)

)
=

1
(
s′ = s)

−1
(
s′ = γ(s,pr)

)

0 (otherwise).

This transition corresponds to executing task x in backward
search.

We shall see that firing transitions θ s,x,x
υ gets rid of primi-

tive tasks until a compound task is isolated. For each method
µ = (c, t) ∈M and x = (X ,≺,α) ∈ X such that there exists
an ≺-isolated x ∈ X with name α(x) = c, introduce a transi-
tion θx,x,µ with

θx,x,µ
(

p(y)
)
=

1 (y= t)

1 (y= xr x)
−1 (y= x)

0 (otherwise),

θx,x,µ
(

p(s,υ)
)
= 0.

(We have to include the subscript x because if Q 6= H1 the
initial task network t0 ∈ X may contain multiple tasks with
name c.) Note that x is isolated in the encoded task network

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

22

because x is assumed to be isolated in x and there is no order
between the various x. Hence it should be clear that firing
θx,x,µ corresponds to an application of the method µ to x in
one of the copies of x in the encoded task network.

Let Θ be the set of all transitions introduced above and
N = (P,Θ).

We claim that (2) holds iff τ1 can be reached from τ0 in
the search space ΦN .

Since the firings of N translate into movements of Φbi
Π,

the direction “⇐” is clear. This direction of the proof actu-
ally works for any HTN problem Π.

Conversely, assume (2). First consider the case Π ∈H1.
Then any task network reachable from (t0,s0,sω) in Φbi

Π has
at most one compound task. Decomposing a compound task
x with a method can always be deferred until x is isolated:
if there is a (primitive) predecessor task t ≺ x, then t can be
executed in forward search before decomposing x, since all
primitive tasks executed before t have to be already present
in the task network because there is no compound task be-
sides x in the task network; similarly, if there is a (primitive)
successor task, it can be executed in backward search before
decomposing x. Such a solution is exactly what N captures.

Next suppose that Π∈I . Then solving Π with backward
search and deferring decompositions for as long as possible
implies that again only isolated compound tasks will be de-
composed. Thus N encodes the solution. The argument for
F is analogous using forward search.

Hardness
Next, we turn from showing membership (and thus decid-
ability) of I ,H1, and F to showing hardness. While from
Example 3, one might suspect that these problems could
be computationally easy, we show that even clean, bottom-
less, one-hole-digging, loop-unrolling problems are in gen-
eral much more complex. To be precise, we show that even
this highly restricted class of problems is also hard for the
class ACKERMANN.

To establish this result, we show that the reachability
problem for Petri nets can be encoded in such an HTN plan-
ning problem. For transparency, we don’t reduce from the
general PETRIGEN, but restrict ourselves to ordinary Petri
nets with unit states, i.e. PETRI.

Note that parts of the construction – notably the concept
of trashing – are only necessary as we want to establish hard-
ness even for loop-unrolling problems. This proof translates
to an easier version without the loop-unrolling property and
without trashing.

In Figure 1 we provide an example for a plan that sim-
ulates a concrete Petri net, which might be helpful to the
reader. An explanation of the example can be found at the
end of the proof. Further Figure 2 shows the tasks contained
in the construction’s only recursive method task network
while Table 2 shows the preconditions and effects of all ac-
tions compactly.
Proposition 5. PETRI reduces to PLANEX(C ∩H1 ∩L ∩
B) in polynomial time.

Proof. Let N = (P,Θ) be an ordinary Petri net and τ0 and
τ1 unit states of N . We define Π = (F,C,O,M,δ , t0,s0) ∈

C ∩H1∩L ∩B. Let C = {comp} and M as in (1). τ1 will
be reachable from τ0 in ΦN iff a large number of applica-
tions of cont yields a solution to Π.

Let

F =
{
searchMode,pTrashMode,rTrashMode, (3)

transInProg,pTrashInProg,

inc(p),dec(p) : p ∈ P
}
.

We shall design our problem in such a way that any solu-
tion to Π can be split into three phases, that are charac-
terized by the truth of the variables in (3) and separated
by the tasks in Omain. searchMode simulates the search
in ΦN , pTrashMode trashes unused place tokens and
rTrashMode trashes any remaining tasks.

Omain = {startPTrashMode,startRTrashMode},
O′ =

{
inc(p),dec(p),startPTrash,endPTrash,

startTrans,endTrans,
requestInc(p),checkInc(p),

requestDec(p),checkDec(p),
fakeInc(p), fakeDec(p) : p ∈ P

}
,

O = OmaintO′.
The cont network t is given by Figure 2 where α removes
subscripts. For any p ∈ P, the tasks inc(p) (to be read “in-
crement p”) and dec(p) (to be read “decrement p”) of t to-
gether encode a single occurrence of a token at place p (at
least during searchMode). Specifically, for each p ∈ P,
the value of p in a state of N is given by the number of
copies of t of which task inc(p) has been performed but task
dec(p) has not. δ is given by Table 2 and t0 = (T0,≺0,α0)
with

T0 = {comp}t({
requestInc(p)≺0 checkInc(p) : p∈ P & τ0(p) = 1

}
≺0

(4){
requestDec(p)≺0 checkDec(p) : p∈P & τ1(p)= 1

}
≺0
(5)

Omain

)
,

α0 = id and s0 = {searchMode}.
Observe that in searchMode we can only execute “to-

ken tasks” (inc(p), dec(p)), “transition tasks” (right-most
columns in Figure 2) and “boundary tasks” ((4)–(5)). The
boundary tasks (4) generate τ0 and the boundary tasks (5)
consume τ1. It is w.l.o.g. that a plan starts with (4) and
the searchMode ends with (5) (both accompanied by ex-
ecutions of token tasks). Firing a transition θ corresponds
to executing an entire chain of six transition tasks of θ ,
also accompanied by executions of token tasks. The vari-
able transInProg prevents that we work on two tran-
sitions at the same time. I.e. once startTransθ is exe-
cuted, the task endTransθ in the same copy of t has to
be executed before any other startTransθ ′ can be executed.
The intermediate transition tasks ensure that the Petri net
state encoded by the HTN state is updated appropriately.
All boundary tasks have to be executed before we execute

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

23

cont,stop,
startTransθ , requestInc(p)θ , inc(p),checkInc(p)θ ,endTransθ ,
requestDec(p),dec(p),checkDec(p),
startPTrashMode,
startPTrashq, requestInc(q), inc(q),checkInc(q),
requestDec(q),dec(q),checkDec(q),endPTrashq,
startRTrashMode,
startPTrashp, requestInc(p), fakeInc(p),checkInc(p),
requestDec(p), fakeDec(p),checkDec(p),endPTrashp,
fakeInc(q), fakeDec(q),
startTransη , requestInc(q)η , fakeInc(q)η ,checkInc(q)η ,endTransη ,

fakeInc(p)θ

Figure 1: Example solution to Π (tasks in T0).

p q
θ 1 0
η 0 1
τ0 0 0
τ1 1 0

Table 1: Example instance of PETRI.

comp inc(p)

dec(p)

startPTrashp

requestInc(p)

checkInc(p)

requestDec(p)

checkDec(p)

endPTrashp

fakeInc(p)

fakeDec(p)

requestDec(p−)θ

startTransθ

checkDec(p−)θ

requestInc(p+)θ

checkInc(p+)θ

endTransθ

fakeDec(p−)θ

fakeInc(p+)θ

Figure 2: Task network t= (T,≺,α) (include instances for all p, p−, p+ ∈ P, θ ∈Θ with θ(p+) = 1, θ(p−) =−1).

pr π+ π− e+ e−
startPTrashMode searchMode transInProg pTrashMode searchMode
startRTrashMode pTrashMode pTrashInProg rTrashMode pTrashMode

startPTrash searchMode pTrashInProg
pTrashInProg

endPTrash pTrashInProg
startTrans pTrashMode transInProg

transInProg
endTrans transInProg

inc(p) inc(p) rTrashMode inc(p)
dec(p) dec(p) rTrashMode dec(p)

requestInc(p) inc(p) inc(p)
checkInc(p) inc(p)

requestDec(p) dec(p) dec(p)
checkDec(p) dec(p)

fakeInc(p) rTrashMode inc(p)
fakeDec(p) rTrashMode dec(p)

Table 2: Action mapping δ (pr) = (π+,π−,e+,e−).

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

24

startPTrashMode. Hence the crucial claim is that an HTN
state without remaining boundary tasks and with proposi-
tional state {searchMode} encodes the zero state of N
iff executing startPTrashMode allows one to reach 0 in
ΦΠ. But in pTrashMode, only token tasks and tasks in the
third column of Figure 2 can be executed. Hence in view of
pTrashInProg, for each p ∈ P, equally many copies of
inc(p) as dec(p) are executed in this phase, so (since they
cannot be executed in the final phase) the HTN state must
encode the zero state of N when entering pTrashMode.
Conversely, it is easy to show that after trashing the tokens
all remaining tasks can be finished in rTrashMode using
the “fake” tasks.

As an example, suppose that P = {p,q} and Θ = {θ ,η}
and τ0,τ1 are as in Table 1. Then τ1 is reachable from τ0 by
firing just θ . Hence to solve Π only one copy of t is needed.
See Figure 1. Notice that at the start of pTrashMode, both
slot tasks for p have been executed while neither slot task
for q has been executed; at the start of rTrashMode, all
slot tasks have been executed.

The method task network t in Figure 2 has the shape of
parallel sequences. This type of structure occurs frequently
in HTN planning; cf. (Behnke et al. 2022).

Conclusion and Future Work
We introduced several new fragments of HTN planning and
proved that multiple combinations of them are complete for
the large class ACKERMANN of decidable problems:

Theorem 6. Let C ∩H1 ∩L ∩B ⊆ Q ⊆H1 ∪I ∪F .
Then PLANEX(Q) is ACKERMANN-complete.

Proof. Theorem 2 and Propositions 4 and 5.

Table 3 lists some natural fragments of HTN planning.
Notice that the new fragments have higher computational
complexity than the previously known ones. Our proof relies
on the recently established ACKERMANN-completeness
of the Petri net reachability problem. In future work we hope
to further investigate the relationship between HTN plan-
ning and Petri nets, and use it to invent new algorithms for
HTN planning. In particular, the construction in the proof of
Proposition 4 can be carried out for any HTN problem, and
may provide a heuristic.

Moreover, we would like to investigate the class H2 of
two-hole-digging problems, that have two compound tasks
in the initial task network but only one compound task
per method task network. It is known that PLANEX(H2)
is undecidable; see (Höller et al. 2023). However, is
PLANEX(H2∩L) decidable?

References
Alford, R. 2013. Search complexities for HTN planning.
Ph.D. thesis.
Alford, R.; Behnke, G.; Höller, D.; Bercher, P.; Biundo, S.;
and Aha, D. W. 2016. Bound to Plan: Exploiting Classi-
cal Heuristics via Automatic Translations of Tail-Recursive
HTN Problems. In Proceedings of the 26th International

Conference on Automated Planning and Scheduling, (ICAPS
2016), 20–28. AAAI Press.
Alford, R.; Bercher, P.; and Aha, D. W. 2015. Tight Bounds
for HTN Planning. In Proceedings of the 25th International
Conference on Automated Planning and Scheduling (ICAPS
2015), 7–15. AAAI Press.
Alford, R.; Kuter, U.; and Nau, D. 2009. Translating HTNs
to PDDL: A Small Amount of Domain Knowledge Can Go
a Long Way. In Proceedings of the 21st International Joint
Conference on Artificial Intelligence (IJCAI 2009), 1629–
1634. AAAI Press.
Alford, R.; Shivashankar, V.; Kuter, U.; and Nau, D. S. 2012.
HTN Problem Spaces: Structure, Algorithms, Termination.
In Proceedings of the 5th Annual Symposium on Combina-
torial Search (SoCS 2012), 2–9. AAAI Press.
Behnke, G.; Höller, D.; and Biundo, S. 2018. totSAT –
Totally-Ordered Hierarchical Planning through SAT. In Pro-
ceedings of the 32nd AAAI Conference on Artificial Intelli-
gence (AAAI 2018), 6110–6118. AAAI Press.
Behnke, G.; Pollitt, F.; Höller, D.; Bercher, P.; and Alford, R.
2022. Making Translations to Classical Planning Competi-
tive With Other HTN Planners. In Proceedings of the 36th
AAAI Conference on Artificial Intelligence (AAAI 2022),
9687–9697. AAAI Press.
Czerwiński, W.; and Orlikowski, L. 2022. Reachability in
Vector Addition Systems is Ackermann-complete. In 2021
IEEE 62nd Annual Symposium on Foundations of Computer
Science (FOCS), 1229–1240.
Erol, K.; Hendler, J.; and Nau, D. 1994. HTN Planning:
Complexity and Expressivity. In Proceedings of the Associ-
ation for the Advancement of Artificial Intelligence.
Erol, K.; Hendler, J.; and Nau, D. 1996. Complexity results
for HTN planning. Annals of Mathematics and AI, 18(1):
69–93.
Esparza, J. 1998. Decidability and Complexity of Petri Net
Problems – an Introduction. Lecture Notes in Computer Sci-
ence, 1491: 374–428.
Gazen, B.; and Knoblock, C. 1997. Combining the expres-
sivity of UCPOP with the efficiency of graphplan. In Pro-
ceedings of the European Conference on Planning: Recent
Advances in AI Planning, volume 4, 221–233. Springer.
Geier, T.; and Bercher, P. 2011. On the Decidability of HTN
Planning with Task Insertion. In Proceedings of the 22nd
International Joint Conference on Artificial Intelligence (IJ-
CAI 2011), 1955–1961. AAAI Press.
Höller, D. 2021. Translating Totally Ordered HTN Planning
Problems to Classical Planning Problems Using Regular Ap-
proximation of Context-Free Languages. In Proceedings of
the 31st International Conference on Automated Planning
and Scheduling (ICAPS 2021), 159–167. AAAI Press.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2014.
Language Classification of Hierarchical Planning Problems.
In Proceedings of the 21st European Conference on Artifi-
cial Intelligence (ECAI 2014), volume 263, 447–452. IOS
Press.

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

25

Fragment Q Complexity of PLANEX(Q) Reference
All HTN problems Undecidable (Erol, Hendler, and Nau 1994)

H1 (one-hole-digging) ACKERMANN Theorem 6
I (initial) ACKERMANN Theorem 6
F (final) ACKERMANN Theorem 6
C (clean) ACKERMANN Theorem 6

Tail-recursive EXPSPACE (Alford, Bercher, and Aha 2015)
Acyclic NEXP (Alford, Bercher, and Aha 2015)

Total order EXP (Alford, Bercher, and Aha 2015)
Regular PSPACE (Erol, Hendler, and Nau 1994)

Table 3: Some fragments of HTN planning and their complexities.

Höller, D.; Lin, S.; Erol, K.; and Bercher, P. 2023. From PCP
to HTN Planning Through CFGs. The 10th International
Planning Competition – Planner and Domains Abstracts.
Leroux, J.; and Schmitz, S. 2019. Reachability in Vector Ad-
dition Systems is Primitive-Recursive in Fixed Dimension.
In Proceedings of the 34th Annual ACM/IEEE Symposium
on Logic in Computer Science, 50, 1–13.
Magnaguagno, M. C.; Meneguzzi, F.; and de Silva, L. 2021.
HyperTensioN: A three-stage compiler for planning. In Pro-
ceedings of 10th International Planning Competition: plan-
ner and domain abstracts (IPC 2020).
Murata, T. 1989. Petri Nets: Properties, Analysis and Appli-
cations. In Proceedings of the IEEE, volume 77, 541–580.
Nau, D.; Cao, Y.; Lotem, A.; and Munoz-Avila, H. 1999.
SHOP: Simple hierarchical ordered planner. In Proceedings
of the 16th International Joint Conference on Artificial In-
telligence (IJCAI 1999), 968–973.
Pohl, I. 1969. Bi-directional and Heuristic Search in Path
Problems.
Sacerdoti, E. D. 1975. A structure for plans and behav-
ior. Ph.D. thesis, Department of Computer Science, Stan-
ford University.
Schmitz, S. 2016. Complexity Hierarchies beyond Elemen-
tary. ACM Transactions on Computation Theory, 8(1).
Schreiber, D. 2021. Lifted Logic for Task Networks: TO-
HTN Planner Lilotane in the IPC 2020. In Proceedings of
10th International Planning Competition: planner and do-
main abstracts (IPC 2020).

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

26

Correcting Totally Ordered Hierarchical Plans by Action Deletion and Insertion

Kristýna Pantůčková, Roman Barták
Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic

{pantuckova, bartak}@ktiml.mff.cuni.cz

Abstract

Hierarchical planning extends classical planning by capturing
the hierarchical structure of tasks. Plan correction, an exten-
sion of plan verification, involves assessing the validity of a
given plan. When an input plan is invalid, the solver searches
for a valid alternative plan closest to the original plan. Cur-
rently, the only approach for plan correction solely supports
action deletion from the original plan. This paper presents the
first approach supporting action insertion and deletion within
totally ordered hierarchical domain models. Moreover, this
new approach is more efficient than the existing technique
when only action deletion is allowed.

Introduction
Hierarchical planning (Erol, Hendler, and Nau 1996) ex-
tends classical planning by modeling the natural hierarchy
of tasks. Complex tasks decompose into simpler subtasks
until the simple executable tasks (actions) are reached. The
goal of a hierarchical planner is to find such a decomposi-
tion for a given root task. Conversely, plan verification aims
to determine whether a given sequence of actions is a valid
decomposition of any task. Plan correction extends plan ver-
ification by providing a valid plan that can be obtained from
the invalid plan by a minimum number of corrections.

In real-world scenarios, observations of plans are fre-
quently incomplete or even incorrect. Such observations
may encompass actions that have not been executed, or the
observer might overlook some actions, leading to an incom-
plete plan. In this case, a mere statement that the observed
plan is invalid may not be the desired answer. Plan correction
techniques provide a valid alternative plan that is as close to
the observed sequence of actions as possible.

The pioneering work introducing hierarchical plan cor-
rection (Barták et al. 2021) defined two possible correction
steps: action deletion and action insertion. However, the cor-
rection technique presented there supported action deletion
only. This paper proposes a novel approach to correct to-
tally ordered hierarchical plans by action deletion and inser-
tion. In totally ordered hierarchical domain models, complex
tasks decompose into totally ordered sequences of subtasks.
Totally ordered domains can naturally describe many prob-
lems. For example, the International Planning Competition
(IPC) 2020 used 33 hierarchical domain models, of which
24 were totally ordered.

This paper presents the first approach to correcting to-
tally ordered hierarchical plans supporting both action dele-
tion and insertion. Moreover, if the proposed solver corrects
plans solely by action deletion, it is faster than the only ex-
isting approach (Barták et al. 2021). HTN plan correction by
action deletion and action insertion leads to many possible
applications including:

• HTN plan verification (when neither action deletion nor
action insertion is enabled), see (Pantůčková, Ondrčková,
and Barták 2024);

• correcting an HTN plan for a known goal (when the pos-
sible top-level task is given);

• HTN plan recognition with full observability (when ac-
tion deletion is disabled and action insertion is enabled
only after the observed plan prefix), see (Pantůčková and
Barták 2023);

• HTN plan recognition with partial observability (when
action deletion is disabled and action insertion is enabled
anywhere in the observed sequence);

• HTN plan recognition with full or partial observability
and with noise (when action deletion is enabled);

• HTN planning (when action insertion is enabled and the
input plan is empty).

The paper is organized as follows. We first provide the
necessary background on hierarchical plan correction and
summarize the related work. Then, we describe the novel
plan correction algorithm based on Earley parser, and fi-
nally, we present empirical evaluation results. We compare
the performance of plan correction by action deletion with
the existing technique (Barták et al. 2021). Then, we study
the performance of action deletion and action insertion sep-
arately, and finally, we assess the performance of our solver
when both means of plan correction are allowed.

Background on hierarchical plan correction
Hierarchical planning focuses on planning problems where
complex (abstract) tasks decompose into simpler subtasks
until a sequence of indecomposable tasks (actions) is
reached. Similarly to classical planning, actions are defined
by preconditions (propositions that must hold in the state
where the action will be executed) and effects (propositions

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

27

that will hold after the action is executed). Hierarchical plan-
ning is often described by the formalism of hierarchical task
networks (HTN).

A domain model can be defined as D = (P, T,A,R),
where P is a set of predicates, T is a set of abstract tasks,
A is a set of actions and R is a set of decomposition rules.
A rule T → T1, ..., Tn [C] decomposes the task T into sub-
tasks T1, ..., Tn. C is a set of rule constraints, which can con-
tain ordering conditions, before-constraints, and between-
constraints:
• an ordering constraint Ti ≺ Tj enforces the order of ac-

tions into which the tasks Ti and Tj will be decomposed;
i.e., the last action of the task Ti must be executed before
the first action of the task Tj ;

• before(T ′, p), indicates that the proposition p must hold
in the state in which the first action of the first task in the
set T ′ is executed; and

• between(T ′, T ′′, p) indicates that p must hold in all states
between the execution of the last action of the tasks in T ′

and the execution of the first action of the tasks in T ′′.
In a totally ordered domain model, actions into which the
subtasks decompose must be executed in the given order,
i.e., all actions of Ti are executed before the actions of Ti+1.

Given an observed sequence of actions, plan correction
aims to find a task that decomposes into a sequence of ac-
tions closest to the observed sequence, where the number of
corrections measures the distance between plans. We allow
corrections of two types: deleting one of the observed ac-
tions or inserting a new action into the observed plan (Barták
et al. 2021).

Formally, a plan correction problem is defined as P =
(D, C, I,O), where D is a domain model, C is a set of con-
stants, O =< o1, ..., on > is a sequence of observed ac-
tions and I is the initial state (a set of propositions that were
valid before the actions were executed). A (optimal) solu-
tion to the plan correction problem is an action sequence
π =< a1, ..., am > such that:
• π is a valid plan with respect to the domain model, that

is, π is executable at state I and there exists some task
that decomposes to π with respect to domain model D,

• there is a function f : {1, ..., n} → {1, ...,m} ∪ {nil}
such that
– ∀i < j : f(i) < f(j) ∨ f(i) = nil ∨ f(j) = nil

(actions are not swapping positions),
– ∀i : f(i) ̸= nil =⇒ oi = af(i) (actions preserved in

the plan),
– del = {i|f(i) = nil} (actions deleted from O),
– add = {j|¬∃i : f(i) = j} (actions added to π),
– |del|+ |add| is minimal among all plans π.

Example 1. Figure 1 contains an example of a hierarchi-
cal task network where the goal is to deliver the package
pkg1 to the location loc3. The root task deliver(pkg1, loc3)
decomposes into three subtasks: load the package at the lo-
cation loc1 (pickup(pkg1, loc1)), go to the target location
loc3 (get to(loc3)) and unload the package at the location
loc3 (drop(pkg1, loc3)). The middle subtask get to(loc3) is

Figure 1: An example of a hierarchical task network.

realized by driving from the location loc1 to loc3 through
the location loc2, therefore, it decomposes into two sub-
tasks: drive(loc1, loc2), drive(loc2, loc3). The leaf tasks
(pickup(pkg1, loc1), drive(loc1, loc2), drive(loc2, loc3), and
drop(pkg1, loc3)) are actions, which can be executed, the
internal nodes (deliver(pkg1, loc3) and get to(loc3)) are ab-
stract tasks.

The decomposition tree includes two decomposition rules:
one rule decomposes the top-level task deliver(pkg1, loc3)
into three subtasks, and the other rule decomposes the mid-
dle subtask get to(loc3) into two subtasks. Subtasks of both
rules are totally ordered. The preconditions of the action
pickup(pkg1, loc1) ensure that both the package pkg1 and
the truck are at the location loc1 and its effect states that
pkg1 is loaded into the truck. Similarly, preconditions of
drop(pkg1, loc3) ensure that the truck is at loc3, and after
this action is executed, pkg1 will no longer be loaded into
the truck. Each action drive must be executed in the first lo-
cation so the truck will move to the second location.

Related works
The problem of deciding whether a given HTN plan is
valid is tackled by plan verification techniques. Existing ap-
proaches are based on parsing (Lin et al. 2023), compilation
to SAT (Behnke, Höller, and Biundo 2017), or compilation
of HTN plan verification problems to planning problems
(Höller et al. 2022). Another related problem is HTN plan
recognition, where a prefix of an HTN plan is given as part
of the input, and the goal is to find an abstract task that can
be decomposed into a plan with the given prefix. Similarly
to plan verification, recent existing approaches are based ei-
ther on parsing (Barták, Maillard, and Cardoso 2020) or on
compilation to HTN planning (Höller et al. 2018). The Ear-
ley parser used in this paper was first proposed for HTN plan
recognition by Pantůčková and Barták (2023).

The only other existing approach to HTN plan correction
(Barták et al. 2021) corrects plans by action deletion. This
parsing-based approach greedily composes from the bottom
upward all abstract tasks that can be composed of the avail-
able actions using the decomposition rules from the domain
model while deleting actions from the input plan that violate
preconditions of the actions used in the composition. The
algorithm exhaustively performs all such compositions until
no new tasks can be composed. In contrast to the approach
from this paper, the existing solver (Barták et al. 2021) can
be used on partially ordered domain models. On the other
hand, our approach supports both action insertion and action
deletion; therefore, it can also be used for plans with missing
(unobserved) actions in addition to plans with noisy obser-
vations. Our solver also demonstrates superior performance

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

28

if only action deletion is allowed, as top-down parsing in
our solver leads to fewer intermediate solutions than greedy
bottom-up parsing.

Another weakly related problem is plan repair (Zaidins,
Roberts, and Nau 2023), (Goldman, Kuter, and Freedman
2020), (Höller et al. 2020), which aims to make changes in a
not-yet executed suffix of a previously created plan at a point
of execution when conditions change and it is not possible
to continue with execution of the plan. This problem differs
from plan correction, which modifies an action sequence to
obtain a valid hierarchical plan.

Aho and Peterson (1972) proposed an approach to find
a minimum edit distance string in context-free grammars,
which is based on a similar idea as our approach. They ex-
tend the given grammar by rewriting rules representing all
types of corrections and then they use the Earley parser
straightforwardly. However, the search progresses differ-
ently. The approach of Aho and Peterson (1972) fills the
table of the original Earley parser (i.e., finds all possibil-
ities how the input sequence can be corrected). Then, the
decomposition with the fewest corrections is found in the
table. In contrast, our search is based on a priority queue,
which takes into account the number of corrections required
in each intermediate solution. Therefore, the search can ter-
minate earlier – when there are no states which could lead
to a better solution than the one that has already been found.
Moreover, our approach does not insert new rewriting rules
into a grammar. In contrast to the work the work of Aho
and Peterson (1972), we generate correction rules one by
one when they are needed. While Aho and Peterson (1972)
works exclusively with context-free grammars, we include
also evaluation of constraints. Furthermore, our approach is
lifted (tasks have attributes).

Correction by action deletion and insertion
We present a lifted HTN plan correction approach based on
top-down parsing. By omitting constraints of decomposition
rules in a totally ordered domain model, we obtain an ab-
straction to a context-free grammar (CFG). CFG is a formal
grammar whose rewriting rules are A → α, where A is a
non-terminal symbol and α is a sequence of symbols (ter-
minal and non-terminal). We propose a totally ordered HTN
plan correction algorithm inspired by the Earley parser (Ear-
ley 1970), a top-down CFG parser. In contrast to (Barták
et al. 2021), where parsing progresses from the bottom (from
the available actions) upwards, the Earley parser progresses
from the possible top-level tasks downwards to actions. Top-
down parsing provides a considerable advantage for action
insertion as it allows one to determine which actions must
be generated to decompose candidate goals.

Earley parser starts by decomposing all possible top-level
tasks into subtasks and then decomposing these abstract
tasks until the actions are reached. The parser is based on
dynamic programming. The input sequence is parsed from
the left to the right as the parser systematically processes
states by the index of the last symbol covered in the input
sequence. The systematic left-to-right approach is unsuit-
able for optimal plan correction since we need to process
states based on the number of corrections and not the end

index. Therefore, we use a priority queue instead of a table.
In addition to the priority queue, we also need to remember a
set of all states that have been generated. For each state, we
define its cost as the minimum number of corrections that
will be done in the plan if the rule is used. The priories of
enqueued states correspond to their costs, i.e., states from
the queue are dequeued based on their cost (states with the
lowest cost are dequeued first).

In the plan correction setting, the actions can be selected
from the input plan or inserted into the plan. Successful
lower-level decompositions can be used to complete higher-
level decompositions until a decomposition of a top-level
task is found.

The priority queue contains states of the following form:

s = (T1 → T2...Tr • Ts...Tt, i, j).

This state represents a decomposition rule, which decom-
poses task T1 into subtasks T2, ..., Tt. Symbol • separates
subtasks that have been already successfully decomposed
(i.e., some lower-level rules decomposing T2, ..., Tr have
been completely decomposed into actions) from subtasks
that still remain to be decomposed. Each state is supposed to
represent a possible coverage of a continuous subsequence
of actions from the input plan; i is the index of the last ac-
tion covered before this state (i.e., i indicates where in the
input plan the decomposition of the first subtask of this rule
should start) and j is the index of the last action covered by
this state so far (i.e., the last action into which the last task
before • decomposes).

The plan correction algorithm starts by enqueueing a state

(I → •T, 0, 0)
for each abstract task T , where I is a dummy starting task.
Therefore, we do not need to know the goal task for which
the input plan was generated as we take into account all pos-
sible goals. All these states have cost equal to zero, corre-
sponding to zero corrections introduced so far.

The Earley parser defines three procedures for process-
ing states of three different types: completer, predictor and
scanner. Scanner processes states, where the first task, that
has not been decomposed yet, is an action. For a state

s = (T1 → T2... • Tm..., i, j),

where Tm is an action, we can create multiple new states.
The corresponding action can be either taken from the in-
put plan, where some actions from the plan may have to be
skipped, or the action is inserted into the plan. If there is
action aj+1 in the input plan unifiable with with (partially)
instantiated primitive task Tm, we create a new state (with •
shifted after Tm)

s′ = (T1 → T2...Tm • ..., i, j + 1).

The state s′ will be enqueued into the priority queue with the
priority equal to priority(s).

The possible corrections that can be generated by a scan-
ner state (T1 → T2... • Tm..., i, j) are the following (k can
also be zero):
• delete k actions (aj+1, ..., aj+k) from the input sequence

and unify action aj+k+1 with Tm with cost = k;

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

29

• delete k actions (aj+1, ..., aj+k) from the input sequence
and insert a new action Tm after the deleted actions (be-
tween aj+k and aj+k+1, if aj+k was not the last action
in the input sequence) with cost = k + 1.

A scanner state will generate one correction at a time and
enqueue itself into the priority queue again.

Let d be the number of deleted actions. If the action for
Tm was selected from the plan, we will generate a new state

s′′ = (T1 → T2...Tm • ..., i, j + d+ 1),

whose priority will be equal to priority(s)+d (d corrections
introduced). If the new action had to be inserted into the
plan, the priority of the new state

s′′′ = (T1 → T2...Tm • ..., i, j + d)

will be equal to priority(s) + d+ 1.
Our approach does not require a grounded domain as an

input. At the beginning, the priority queue is filled with the
artificial initial starting rules for all possible uninstantiated
abstract tasks. When scanner selects an action from the input
plan, its variables will be propagated upwards into the newly
created states. When a new action is inserted into the plan,
it will be (partially) instantiated with variables propagated
downwards from partially instantiated rules (by predictor).

When a scanner state is dequeued, we perform the next
correction (the correction with the lowest priority) and en-
queue the scanner state back into the queue with an in-
creased priority and with the information which correction
should be performed next.

Predictor is used to process states where the first task that
has not been decomposed yet is an abstract task. For a state

s = (T1 → T2... • Tm..., i, j),

where Tm is an abstract task, we create a state

s′ = (Tm → •Tm
o ...Tm

p , j, j)

for each decomposition rule decomposing the task Tm. As
the priority of states in the queue should be equal to the
minimum number of corrections, we will enqueue s′ with
the priority equal to the priority of s as if the state s′ is used
in a decomposition, the state s must also have been used be-
fore. If the same state as s′ is generated later by another state
s′′ with a priority lower than s, the priority of s′ will be up-
dated to the priority of s′′. If the state s′ already exists, we
do not enqueue it again; we only update its priority.

Completed states (states, where all subtasks have been de-
composed) are processed by completer. A state

s = (T1 → T2...Tm•, i, j)
represents a possible decomposition of the task T1 covering
actions ai+1, ..., aj . This state can be used to decompose the
task T1 whose decomposition should start by ai+1. There-
fore, for each state (containing T1 right after •)

s′ = (T0 → ... • T1..., k, i)

we create a new state (with shifted •)

s′′ = (T0 → ...T1 • ..., k, j).

The number of corrections in s′′ will be equal to the number
of corrections in s′ + the number of corrections in s. The
priority of s′′ will be equal to its number of corrections +
the minimum priority of the predictor states that generated
the decomposition of T0. If the state s′′ already exists, we
will remember the new relation between the completing and
completed state (this information will be used later to build a
decomposition tree for a candidate solution) and recompute
its priority. Instead of adding the number of corrections in s,
we will use the minimum number of corrections of all states
providing a complete decomposition of T1.

Each state
(I → T•, 0, j),

covering a prefix of the plan up to the index j represents a
candidate top-level task (actions starting with aj , if any, are
supposed to be deleted from the input plan). When the queue
does not contain a state with a priority lower than the priority
of the best solution found so far, the algorithm stops as no
better candidate top-level task can be found. The algorithm
may be terminated earlier and return the best candidate top-
level task found so far. Hence, the algorithm can be seen as
an anytime technique.

During search, completer builds an AND/OR tree for each
candidate top-level task, where OR-nodes are abstract tasks,
which can be decomposed by multiple decomposition rules,
AND-nodes are decomposition rules, which decompose the
task into the given subtasks, and leaves are actions. A com-
pleter links a decomposition rule to an abstract subtask in
another decomposition rule. To extract a solution from an
AND/OR tree, it needs to be checked whether we can choose
one decomposition rule in each OR-node and ground all un-
grounded variables in all nodes of the tree such that precon-
ditions of all actions and all constraints of all decomposition
rules are satisfied (with respect to the initial state and to state
transitions after each action). We traverse AND-OR trees in
a DFS-like manner.
Example 2. Consider the HTN from Figure 1, let the initial
state define all roads as road(loc1, loc2), road(loc2, loc3)
and road(loc4, loc3) and let pickup(pkg1, loc1), drive(loc1,
loc2), drive(loc4, loc3), drop(pkg1, loc3) be the invalid input
plan. At the beginning, our algorithm will enqueue two states
into an empty priority queue (assuming that there are only
two abstract tasks in the domain):

[(I → •deliver(?, ?), 0, 0), priority = 0] (1)

[(I → •get to(?), 0, 0), priority = 0].

When state (1) is dequeued from the queue, predictor will
create one new state:
[(deliver(?, ?) → •pickup(?, ?), get to(?), drop(?, ?),

0, 0), priority = 0].
(2)

State (2) will be processed by scanner. As the first action
in the input plan can be used as the desired pickup action, a
new state can be created without any corrections:

[(deliver(pkg1, ?) → pickup(pkg1, loc1), •get to(?),
drop(pkg1, ?), 0, 1), priority = 0].

(3)

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

30

For state (3), predictor will create a new state based on
available decomposition rules. The decomposition of the
new state should start by the second action in the input plan,
as the first action is already covered:

[(get to(?) → •drive(?, ?), drive(?, ?), 1, 1),
priority = 0].

(4)

Again, scanner can use the second action in the plan to
cover the first subtask in state (4) and create the next state:

[(get to(?) → drive(loc1, loc2), •drive(loc2, ?), 1, 2),
priority = 0].

(5)

However, the next action in the plan drive(loc4, loc3) is
not unifiable with drive(loc2, ?). The desired action can
be inserted into the plan and so the scanner will insert
drive(loc2, ?) before drive(loc4, loc3). Since the resulting
state required 1 correction, its priority value will be higher
than the priority of state (5):

[(get to(?) → drive(loc1, loc2), drive(loc2, ?)•, 1, 2),
priority = 1].

(6)

State (6) will be processed by completer and used to com-
plete the next subtask of state (3):

[(deliver(pkg1, ?) → pickup(pkg1, loc1), get to(?),

•drop(pkg1, ?), 0, 2), priority = 1].
(7)

The next action of state (7) is again not unifiable with the
next action in the input plan (drive(loc4, loc3)). Scanner will
firstly insert the required action drop(pkg1, ?) into the input
plan before drive(loc4, loc3), thus increasing the number of
corrections, and enqueue the new state:

[(deliver(pkg1, ?) → pickup(pkg1, loc1), get to(?),

drop(pkg1, ?)•, 0, 2), priority = 2].
(8)

As another possible correction, the scanner can skip the ac-
tion drive(loc4, loc3) and select the next action from the
plan. Therefore, it will enqueue again the state 7 with pri-
ority equal to 2:

[(deliver(pkg1, ?) → pickup(pkg1, loc1), get to(?),

•drop(pkg1, ?), 0, 3), priority = 2].
(9)

Completer can then use the completed state (8) to com-
plete the state 1 and create a candidate top-level rule:

[(I → deliver(pkg1, ?)•, 0, 2), priority = 2]. (10)

We will then attempt to extract a solution from state (10). The
missing variable (the location to which the package pkg1
will be delivered) can be chosen arbitrarily from the set of
the locations to which the truck can drive from loc2. How-
ever, the resulting plan will require two more corrections
(four corrections in total) as the last two actions from the
input plan will be deleted. As there is still a state with fewer
than four corrections (state (9)), the algorithm continues to
find a better correction.

Scanner will then process state (9) and create a new state,
where the action drive(loc4, loc3) will be deleted from the
plan and the last action in the plan will be covered:

[(deliver(pkg1, ?) → pickup(pkg1, loc1), get to(loc3),

drop(pkg1, loc3)•, 0, 4), priority = 2].
(11)

State (11) will be processed by completer and another
candidate top-level rule will be created:

[(I → deliver(pkg1, loc3)•, 0, 4), priority = 2]. (12)

State (12) can be used to extract the desired valid plan,
which can be created from the input plan by two corrections:
deleting the third action from the plan and inserting a differ-
ent action into its position.

Theorem 1. The plan correction algorithm is sound.

Sketch of proof. The correctness is implied by the sound-
ness of the Earley algorithm. The modified Earley algorithm
builds AND/OR trees representing all possible decomposi-
tions and then the algorithm selects in the internal nodes the
decomposition rules whose constraints are satisfied and in
the leaves actions which are executable with respect to their
preconditions and effects.

Theorem 2. The plan correction algorithm is complete.

Sketch of proof. We will first prove that the algorithm termi-
nates. Each scanner state can only generate a finite number
of descendant states (with nondecreasing costs), where the
last state is created by the insertion of the requested action
after the sequence of observed actions (skipping all preced-
ing actions).

As completer and predictor procedures work similarly as
in the original Earley parser, finiteness of the Earley parser
implies finiteness of the HTN plan correction algorithm. Let
us note that finiteness is guaranteed even for models with re-
cursive decomposition rules as predictor does not create and
enqueue states that already exist. If the requested descen-
dant state (T → •..., with the suitable starting index) has
already been created by another predictor, predictor will not
generate the state again, preventing infinite recursion. This
is one of the basic principles of the original Earley parser.
E.g., if there are two rules T1 → T2 and T2 → T1, the
predictor state s = T1 → •T2 will generate a new state
s′ = T2 → •T1, but when s′ is processed, s will not be
generated again.

Therefore, if there does not exist any plan that can be gen-
erated by the rules available in the domain model, the plan
correction algorithm will terminate when the queue is ex-
hausted. If a valid plan exists, the algorithm is guaranteed to
find it (which is implied by the completeness of the original
Earley parser), in the worst case by deleting all input actions
and inserting new ones. In this case, the shortest possible
plan will be found as the algorithm terminates when a plan
with a lower cost cannot be found.

Theorem 3. The plan correction algorithm is optimal.

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

31

Figure 2: The number of problems solved within given time
(logarithmic x-axis) in the domain Satellite. KR2021 is the
solver from (Barták et al. 2021), Earley is our solver.

Figure 3: The number of problems solved within given time
(logarithmic x-axis) in the domain Monroe. KR2021 is the
solver from (Barták et al. 2021), Earley is our solver.

Sketch of proof. For each state, we know the minimum
number of flaws of a solution that can be extracted from this
state. The algorithm halts and returns a plan only if there
remain no untried top-level states which could yield a plan
with a lower cost and if there are no states with a lower cost
in the queue. As a state with cost c can only contribute to
solutions with a cost c′ ≥ c, the solution is optimal.

Empirical evaluation
The experiments were executed on a computer with the In-
tel Core i7-8550U CPU @ 1.80GHz processor and 16 GB
of RAM. Maximum allowed runtime was set to five min-
utes for one problem. For the experiments, we assumed that
the root task is not known, which is the same setting which
was used for the plan correction by action deletion approach
(Barták et al. 2021). This setting corresponds to HTN plan
recognition with partial observability and noise.

We used domains and plans from the International Plan-
ning Competition (IPC) 2020. The valid plans consisted of 9
– 28 actions in the domain Satellite, 18 – 71 in Transport, 15
– 68 in Monroe and 22 – 168 in Blocksworld. For the task
of correcting plans by action deletion, we added noise to
the plans by inserting extra actions into valid plans. For plan
correction by action insertion, we deleted some actions from

Figure 4: The number of problems solved within given time
(logarithmic x-axis) in the domain Transport. KR2021 is the
solver from (Barták et al. 2021), Earley is our solver.

Figure 5: The number of problems solved within given time
(logarithmic x-axis) in the domain Blocksworld. KR2021 is
the solver from (Barták et al. 2021), Earley is our solver.

valid plans. Let us note that the solution does not have to be
the original valid plan as there may be a different valid plan
which can be obtained from the modified plan by a lower
or equal number of corrections. The resulting plans used for
experiments are accessible on-line1.

Correcting plans by action deletion
We have compared the performance of our approach with the
approach of Barták et al. (2021). As this approach supports
only action deletion, we have compared it with our approach
also restricted to action deletion.

We have run both solvers on valid plans and on invalid
plans, which were created from valid plans by inserting at
least one and at most five extra actions. Adding more noise
to the plans does not seem beneficial as it would lead the
solvers to longer valid plans that could be achieved by delet-
ing fewer actions. In the domain Blocksworld, the solvers
already found valid plans which were longer than the origi-
nal plan by one or two actions.

Figures 2, 4, 3 and 5 show how the total number of prob-
lems grows with runtime. Each figure shows results from a
different domain. Each domain contains 60 plans: 10 differ-
ent valid plans and 50 plans created by inserting extra ac-

1https://github.com/krpant/Plan-correction-benchmarks

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

32

Figure 6: The number of problems solved within given time
(logarithmic x-axis) from the domain Satellite using action
deletion or insertion or by both means of correction.

Figure 7: The number of problems solved within given time
(logarithmic x-axis) from the domain Monroe using action
deletion or insertion or by both means of correction.

tions into the valid plans. The graphs consider the runtime
after which the computation stopped and provided the cor-
rect plan. Solver runs which found the correct solution but
did not terminate before the time limit has passed are dis-
played with runtime equal to the time limit. Our approach
outperformed the approach of Barták et al. (2021) on all four
domains.

Correcting plans by action deletion and insertion
Action deletion vs action insertion Additional experi-
ments were performed to assess how demanding is action
insertion in comparison to action deletion. We have created

domain ins ins* del del*
Satellite 32 19 50 50
Transport 23 19 50 49
Monroe 44 40 44 40
Blocksworld 23 23 47 47
total 122 101 193 188

Table 1: Number of solutions found within 5 minutes by ac-
tion insertion (ins) and deletion (del) and number of solu-
tions where the optimality was proven(ins* and del*).

Figure 8: The number of problems solved within given time
(logarithmic x-axis) from the domain Transport using action
deletion or insertion or by both means of correction.

Figure 9: The number of problems solved within given time
(logarithmic x-axis) from the domain Blocksworld using ac-
tion deletion or insertion or by both means of correction.

another 50 invalid plans for each domain by deleting at least
one and at most five actions from valid plans and we have
measured how fast our solver corrected these plans solely
by action insertion.

Figures 6, 8, 7 and 9 show how fast our solver solves
action insertion problems in comparison to action deletion
problems and problems of plan correction by action inser-
tion and deletion simultaneously. Table 1 compares the num-
ber of problems solved within the given time limit solely by
action insertion or deletion, considering separately all solu-
tions with the expected number of corrections which were
found within the time limit, and solutions where also the
proof of optimality was found (i.e., the solver terminated
before the time limit has passed). In general, action inser-
tion seems to be more demanding than action deletion. In
the domains Satellite, Transport and Blocksworld, the solver
corrected significantly less plans by action insertion than by
action deletion within the given time limit.

On the contrary, in the domain Monroe the solver eventu-
ally arrived to the same result for both types of problems and
most action insertion problems were even solved faster than
the action deletion problems. The domain Monroe defines
a complex hierarchy of object types and a variety of spe-
cialized decomposition rules, while the plans from the other
three domains consist of sequences of rather simple tasks

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

33

which can be composed using many different combinations
of objects. Therefore, we assume that in these three domains
it was more difficult to find the missing actions as there were
too many possible actions that could be generated in order
to complete the rules of the parser. On the other hand, plan
correction with only action deletion limits completed rules
to those that can be completed by existing actions.

In the domain Monroe, however, the number of possible
decompositions of a rule was significantly lower; therefore,
the solver was guided by the domain model to insert only
the most relevant actions. Action deletion could then require
more time simply because the input plan was longer, which
resulted in more completed subtrees which could not be used
to complete the decomposition of a top-level task.

Figure 10 shows how the number of problems from the
domain Transport solved by different numbers of correc-
tions grows with runtime. The figure consider the runtime
after which the computation stopped and provided the cor-
rect plan. Solver runs, which found the correct solution but
did not terminate before the time limit has passed, are dis-
played with runtime equal to the time limit. As expected,
plans requiring more corrections were usually more difficult
to correct. The difference was more noticeable on action in-
sertion.

Both corrections simultaneously To assess the perfor-
mance of the solver when both means of correction are en-
abled simultaneously, we have created more invalid input
plans by deleting one or two actions and inserting one or
two actions into valid plans; therefore, we have generated
four invalid plans for each valid plan. However, for some
plans it was possible to find a valid plan by less corrections
than intended. Figures 6, 8, 7 and 9 show how the number of
problems solved solely by action deletion or insertion or by
both means of correction grows with runtime. The graphs
consider the runtime after which the computation stopped
and provided the correct plan. Solver runs which found the
expected solution but did not terminate before the time limit
has passed are displayed with runtime equal to the time
limit. Unsurprisingly, the solver runs slower as more rules
are created by the scanner. The solver was most successful
in the domain Satellite, which contains in general the short-
est plans. In this domain, the number of solved problems
was close to the number of problems solved solely by action
insertion. In the other domains, the solver corrected signifi-
cantly less plans than by only one mean of correction. Even
in the domain Monroe, where the complexity of both means
of correction seems to be similar, the performance decreased
considerably when both means of correction were enabled.

Solution quality over time Our algorithm incrementally
improves the quality of its result in order to be able to pro-
vide the best possible result any time it is terminated. There-
fore, it attempts to extract a solution from each candidate
top-level rule whenever such a rule is found that could pro-
vide a solution with fewer corrections than the best solution
found so far. Often the optimal solution was found early,
though the algorithm required much more time to dismiss
candidate partial solutions with less corrections and there-
fore prove that the solution is optimal (see the difference

Figure 10: The number of problems solved withing given
time (logarithmic x-axis) from the domain Transport using
different means and numbers of corrections.

of solved problems with and without proof of optimality
in Table 1). When only action insertion was allowed, the
algorithm found for all problems in all domains only one
complete solution. When action deletion was enabled, a se-
quence of solutions with improving quality was often found
as more possible top-level tasks could be sometimes found
simply by covering a prefix of the input plan and deleting
the rest of the actions.

Conclusion
We propose a novel approach to correcting totally ordered
HTN plans, the first approach facilitating both action dele-
tion and action insertion. Furthermore, our approach outper-
forms the existing HTN plan correction approach when only
action deletion is enabled. Future work may aim to enhance
the efficiency of the solver when both means of correction
are enabled, as the performance is better when only action
deletion or insertion is allowed. Another possible research
direction could focus on extending the algorithm to partially
ordered HTN plans.

Acknowledgements
Research is supported by the Charles University, project GA
UK number 156121, by TAILOR, a project funded by EU
Horizon 2020 research and innovation programme under
GA No 952215 and by SVV project number 260 698.

References
Aho, A. V.; and Peterson, T. G. 1972. A minimum distance
error-correcting parser for context-free languages. SIAM
Journal on Computing, 1(4): 305–312.
Barták, R.; Maillard, A.; and Cardoso, R. C. 2020. Parsing-
based Approaches for Verification and Recognition of Hier-
archical Plans. In The AAAI 2020 Workshop on Plan, Activ-
ity, and Intent Recognition.

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

34

Barták, R.; Ondrčková, S.; Behnke, G.; and Bercher, P. 2021.
Correcting hierarchical plans by action deletion. In Proceed-
ings of the International Conference on Principles of Knowl-
edge Representation and Reasoning, volume 18, 99–109.
Behnke, G.; Höller, D.; and Biundo, S. 2017. This is a so-
lution! (... but is it though?) - verifying solutions of hierar-
chical planning problems. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling,
volume 27.
Earley, J. 1970. An efficient context-free parsing algorithm.
Communications of the ACM, 13(2): 94–102.
Erol, K.; Hendler, J. A.; and Nau, D. S. 1996. Complexity
Results for HTN Planning. Annals of Mathematics and AI,
18(1): 69–93.
Goldman, R. P.; Kuter, U.; and Freedman, R. G. 2020. Stable
plan repair for state-space HTN planning. In Proceedings of
the 3rd ICAPS Workshop on Hierarchical Planning (HPlan
2020), 27–35.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2018.
Plan and goal recognition as HTN planning. In 2018 IEEE
30th International Conference on Tools with Artificial Intel-
ligence, 466–473.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2020.
HTN plan repair via model transformation. In KI 2020: Ad-
vances in Artificial Intelligence: 43rd German Conference
on AI, Bamberg, Germany, September 21–25, 2020, Pro-
ceedings 43, 88–101. Springer.
Höller, D.; Wichlacz, J.; Bercher, P.; and Behnke, G. 2022.
Compiling HTN plan verification problems into HTN plan-
ning problems. In Proceedings of the International Con-
ference on Automated Planning and Scheduling, volume 32,
145–150.
Lin, S.; Behnke, G.; Ondrčková, S.; Barták, R.; and Bercher,
P. 2023. On total-order HTN plan verification with method
preconditions–an extension of the CYK parsing algorithm.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 37, 12041–12048.
Pantůčková, K.; and Barták, R. 2023. Using Earley Parser
for Recognizing Totally Ordered Hierarchical Plans. In Pro-
ceedings of 26th European Conference on Artificial Intelli-
gence (ECAI) 2023, 1819–1826. IOS Press.
Pantůčková, K.; Ondrčková, S.; and Barták, R. 2024. Using
Earley Parser for Verification of Totally Ordered Hierarchi-
cal Plans. The International FLAIRS Conference Proceed-
ings, 37(1).
Zaidins, P.; Roberts, M.; and Nau, D. 2023. Implicit De-
pendency Detection for HTN Plan Repair. Proceedings of
the 6th ICAPS Workshop on Hierarchical Planning (HPlan
2023), 10–18.

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

35

Redundant Decompositions in PO HTN Domains:
Goto Considered Harmful

Roland Godet1,2, Arthur Bit-Monnot1, Charles Lesire-Cabaniols2

1LAAS-CNRS, University of Toulouse, INSA, Toulouse, France
2ONERA/DTIS, University of Toulouse, France

roland.godet@laas.fr, arthur.bit-monnot@laas.fr, charles.lesire@onera.fr

Abstract

HTN planning is a widely used approach for solving
planning problems by breaking them down into smaller
sub-problems. This approach is often motivated by the
ability to add constraints between tasks, which can
guide the search towards a solution and improve per-
formance by reducing the search space. In this paper,
we identify a common pattern in PO HTN planning
that can lead to a pathological explosion of the search
space, resulting in a significant decrease in computa-
tional performance. However, this is not a fatal issue.
Alternative HTN models can be used to reduce the
search space. We propose two models that maintain
the expressiveness of the original problem while reduc-
ing the number of possible decompositions. Our results
demonstrate improved computational performance on
IPC benchmarks.

Introduction
Task planning is a fundamental problem in Artificial
Intelligence, with applications in robotics, logistics, and
many other domains. The problem consists of finding a
sequence of actions that completes a given goal, while
respecting a set of constraints.

One of the approaches to planning is Hierarchical
Task Network (HTN) planning (Erol, Hendler, and Nau
1994), where actions are hierarchically organized into
tasks, which can be refined into subtasks or actions, and
so on. This hierarchical structure allows the problem to
be described at various levels of abstraction, ranging
from highly abstract tasks to directly executable ac-
tions.

One common motivation for using HTN planning is
the promise of increased performance as the hierarchy
is expected to restrict the search space and guide the
planner towards a solution. In the case of Partial Order
(PO) HTN planning, where several tasks may interact
in the achievement of their respective goals, we show
that on the contrary, the hierarchy can be extremely
detrimental to the search.

After a brief introduction to the HTN formalism, this
paper identifies a pattern that is ubiquitous in PO HTN
planning benchmarks, and that leads an explosion of
the search space of PO HTN planners. While there is

no general approach to solve this issue, we propose new
models that reduce the number of possible decomposi-
tions, and show that they improve the computational
performances on the International Planning Competi-
tion (IPC) 2020 HTN tracks.

HTN Planning
This section provides a brief introduction to the HTN
planning problem as described by Höller et al. (2020).

An HTN planning problem can be notably described
using the HDDL language (Höller et al. 2020), an exten-
sion of PDDL (McDermott et al. 1998), or the ANML
language (Smith, Cushing, and Frank 2008).

Assume that L = (P, T, V, C) is a quantifier- and
function-free first order predicate logic. T is finite set
of type symbols. C is a finite set of typed constants.
V is a finite set of typed variables. P is a finite set of
predicate symbols, each associated to a list of parameter
variables from V .
Definition 1 (State). A state is the representation of
the world at a given time, defined by a ground (variable-
free) conjunction of literals over L. The set of all pos-
sible states is denoted by S.
Definition 2 (Primitive Task). A primitive task (or
action) is an operation that can be executed directly,
defined by the tuple a = (name, pre, eff) where:
• name is its unique task name, a first-order atom

such as move(s, d) consisting of the action name
followed by parameters.

• pre is its precondition, a conjunction of first-order
literals over L.

• eff is its effect, a conjunction of first-order literals
over L. We split it into positive (eff+) and negative
(eff−) effects.

Remark. We also refer to pre and eff as pre(a) and
eff(a) when referring to a specific action a. All vari-
ables used in pre(a) and eff(a) must be parameters of
the action. Finally, an action is said ground if all its
parameters are constants from C.
Definition 3 (Executable Action). Given a state s ∈
S, a ground primitive task a is executable in s if and
only if its precondition is satisfied by s:

ξ(s, a) = s |= pre(a) (1)

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

36

Definition 4 (State Transition). Given a state s and
an executable action a, the state transition function
γ(s, a) is the result of executing the action a in s. It
is defined by the following formula:

γ(s, a) =
(
s \ eff−(a)

)
∪ eff+(a) (2)

Remark. The extension of ξ and γ to a sequence of
actions are defined recursively by:

{
ξ(s, ⟨a1, . . . , an⟩) = ξ(γ(s, a1), ⟨a2, . . . , an⟩)
γ(s, ⟨a1, . . . , an⟩) = γ(γ(s, a1), ⟨a2, . . . , an⟩) (3)

Definition 5 (Compound Task). A compound task
(or abstract task) is simply a task name, i.e., a first-
order atom such as goto(p) consisting of the actual
task name followed by parameters.
Definition 6 (Task Network). A task network over a
set of task names X is a tuple tn = (I, ≺, α, C) where:
• I is a possibly empty set of task identifiers. They

are used to distinguishing between tasks that occur
multiple times in the task network.

• ≺ is a strict partial order over I.
• α : I → X maps each task identifier to a task name.
• C is a set of constraints over the task parameters.
Remark. For easier comprehension, we will refer to a
task network without constraints (i.e., C = ∅) and with
total ordered tasks as the set tn = {t1 ≺ . . . ≺ tn}.
Definition 7 (Method). A decomposition method rep-
resents a way to achieve a compound task. It is defined
by the tuple m = (c, tn) where c is the compound task
name and tn is a task network describing the subtasks
needed to achieve the compound task.
Definition 8 (Decomposition). Decomposition is the
process of replacing a compound task of a task net-
work by another task network. Given a decomposition
method m = (c, (Im, ≺m, αm)) and a task network
tn1 = (I1, ≺1, α1) such that Im ∩ I1 = ∅ (that can be
done by renaming), the task network tn2 = (I2, ≺2, α2)
is a decomposition of a task identifier i ∈ I1 by m if
and only if:

α1(i) = c
I2 = (I1 \ {i}) ∪ Im

≺2 = (≺1 ∪ ≺m

∪ {(i1, i2) ∈ I1 × Im | (i1, i) ∈≺1}
∪ {(i1, i2) ∈ Im × I1 | (i, i2) ∈≺1})
\ {(i′, i′′) ∈ I1 × I1 | i′ = i or i′′ = i}

α2 = (α1 ∪ αm) \ {(i, c)}
(4)

Definition 9 (Executable Task Network). Given a
state s and a ground task network tn, the task network
tn is executable in s if and only if:
• the constraints of C are respected.
• there exists a sequence ⟨i1, . . . , in⟩ of its task iden-

tifiers, with n = |I|, respecting ≺ such that
⟨α(i1), . . . , α(in)⟩ is executable in s.

Definition 10 (Planning Domain). A planning domain
is a tuple D = (L, TP , TC , M) where:
• L is a predicate logic.
• TP and TC are sets of primitive and compound tasks.
• M is a set of methods with compound tasks from TC

and task networks over the names TP ∪ TC .
Definition 11 (Planning Problem). A planning prob-
lem is a tuple P = (D, sI , tnI , g) where:
• D is a planning domain.
• sI ∈ S is the initial state, a ground conjunction of

positive literals over the predicates.
• tnI is the initial task network.
• g is the goal, a first-order formula over the predi-

cates.
Definition 12 (Solution). Given a planning problem
P = (D, sI , tnI , g), where D = (L, TP , TC , M), a task
network tnS = (IS , ≺S , αS) is a solution of P if and
only if:
• there is a sequence of decompositions from tnI to

tn = (I, ≺, α), such that I = IS , ≺⊆≺S , and α =
αS .

• tnS is executable in sI and its execution leads to a
state s such that s |= g.

Motivating Example
Let us consider a simple navigation problem consisting
of a truck that must go to a given position. The aim for
the truck is to go from the position p1 to the position
p5 using the roads defined in Figure 1.

Problem Formalization
Let us first correctly formalize this problem.

Predicate Logic The predicate logic is defined by
the tuple L = (P, T, V, C) where:
• T = {T, P}, T represents a truck and P a position.
• C is composed of one truck t1 and five positions

from p1 to p5.
• P = {at(t, p), road(s, d)}, with at representing

that the truck t is at the position p and road the
existence of a road between the positions s and d.

• V is the set of variables appearing in the next defined
actions, tasks, and methods.

Primitive Tasks There are two primitive tasks:
• move(t, s, d), that moves the truck t from the

position s to the position d if there is a road.
– pre(move) = at(t, s) ∧ road(s, d)
– eff(move) = at(t, d) ∧ ¬at(t, s)

• noop(t, d), that does nothing and is only applica-
ble if the truck t is at the position d.
– pre(noop) = at(t, p)
– eff(noop) = ∅.

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

37

1

2

3

4

5

Figure 1: Graph of the navigation problem. The truck
can move from one position to another using the roads.
It is initially at the position p1 and must go to the
position p5.

goto

m-noop

noop

m-rec

move goto

Figure 2: Hierarchical model of the goto task. There are
two methods to achieve it: (i) do nothing if the truck
is already at the given position, (ii) move to a nearby
position, and then goto the given position again.

Compound Tasks & Methods We define a sin-
gle compound task, goto(t, d), that recursively moves
the truck t to the position d. Two methods can achieve
this task as shown in Figure 2:
• do nothing if the truck is already at the given posi-

tion: m-noop = {noop(t, d)}.
• move to a nearby position, and then go to the given

position again:
m-rec = {move(t, s, n) ≺ goto(t, d)}.

Domain The domain is simply defined by:
D = (L, {move, noop} , {goto} , {m-rec, m-noop}).
Problem The initial state is defined such that the
truck is at the position p1 and the roads match the
graph in Figure 1:
sI = at(t1, p1) ∧ road(p1, p2) ∧ . . .
The initial task network is composed of n identical and
unordered goto(t1, p5) tasks, without constraints.
Finally, the problem is defined by P = (D, sI , tnI , ∅).

Pattern Identification
This recursive representation of the goto task is com-
mon in hierarchical planning community. It is found in
many domains, such as Factory, Transport, or Minecraft
Player of the HTN track of the IPC.

Consider the problem with three goto(t1, p5) in
the initial task network with the respective identifiers
g1, g2, and g3. In essence this means that three different
tasks request the objective of bringing the truck to p5.

The shortest solution is composed of two move actions
m1 and m2, for instance going through p3 with m1 :
move(t1, p1, p3) and m2 : move(t1, p3, p5). Note
that we do not explicitly consider noop actions in the

g1 g2

m2m1 m3

(a) g1 decomposes all ac-
tions.

g1 g2

m2m1 m3

(b) Decomposition is
shared.

Figure 3: Considering two identical goto tasks (g1, g2),
and an optimal solution with three move actions. Two
possible decompositions of the initial task network that
lead to the same solution plan. There are 8 possible
decompositions in total.

solution as they are artifact of the hierarchical encoding
to break the recursion and could be replaced by method
preconditions in the HDDL formalism.

In order for this ⟨m1, m2⟩ action sequence to be con-
sidered a solution, it must be decomposable from the
initial task network. Intuitively, each of the three (in-
distinguishable) top level tasks can be decomposed into
this sequence. Interestingly, in the absence of ordering
constraints, m1 and m2 may be decomposed from dif-
ferent top-level tasks. For instance, we may have for in-
stance g1 moving the truck from p1 to p3 and g3 from
p3 to p5.1 This situation is illustrated in Figure 3.

Let us now consider the number of decomposition
paths that lead to this particular optimal solution.
The planner will first decompose a goto task gi (i ∈
{1, 2, 3}) into the move action m1 and contribute a fresh
goto task g4 to the task network. Then, it will decom-
pose a goto task gj (j ∈ {1, 2, 3, 4} \ {i}) into the move
action m2 and another goto task g5. Finally, it will de-
compose all goto task gk (k ∈ {1, 2, 3, 4, 5}\{i, j}) into
the noop action.

Because at each step the planner can choose any task
to decompose, the number of possible decompositions
depends on the number of tasks in the task network.
In our example, each move action can be decomposed
from any of the three goto tasks, resulting in 32 = 9
possible decompositions.

This result is trivially generalizable to n goto tasks
and k move actions, resulting in nk possible decomposi-
tions. For instance, in the case of six goto tasks and ten
move actions, the planner must consider 610 = 60466176
possible decompositions.

HTN planners typically explore the set of possible
decompositions of the initial task network until one is
found that is both primitive and executable (i.e., a so-
lution). As a result this redundancy of decomposition
paths is likely to translate as a redundancy in the search
space of HTN planners.

Empirical Tests
To illustrate the impact of this pattern on the computa-
tional performance of a planner, we conducted a simple

1This only requires the noop actions to appear last in the
plan, which is not prevented by any ordering constraints.

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

38

experiment on the domain of the example.
We used the PandaPi planner (Holler 2023), a state-

of-the-art PO HTN planner, on the IPC 2023 HTN
track, without timeout on 10 instances. For the i-th
instance, we considered i identical goto(t1, p5) tasks
in the initial task network. For each instance, the short-
est plan contains exactly two move actions and i noop
actions.

The results are shown in Figure 4. The five first in-
stances are solved in less than 1 second, while the last
instance is solved in 15 minutes.

2 4 6 8 10

0

200

400

600

800

Number of identical Tasks

C
om

pu
ta

tio
n

T
im

e
(s

ec
on

ds
)

Figure 4: Planning time of PandaPi as a function of
the number of identical goto tasks in the initial task
network. In all cases, the shortest plan requires 2 move
actions.

Representativity of the Use Case
While this pattern may appear artificial, we argue that
is in fact pervasive in PO HTN planning benchmarks.
Consider the logistic problem of moving packages from
one location to another, as in the Transport domain of
the IPC 2020 HTN track.

This is generally represented with a deliver task
whose main method (i) move the truck to the package,
(ii) load the package onto the truck, (iii) move the truck
to the destination, and (iv) unloads the package at the
destination. The first and third steps are typically done
with a goto task similar to the one we showed.

If we consider the problem of moving three packages
initially at location X to a location Y and assume that
the truck has sufficient capacity to hold them all, the op-
timal plan would involve moving the truck to X, loading
all packages in X, moving the truck to Y and unloading
package at Y. Exactly as in our motivating example, the
actions necessary to move the truck from X to Y could
be decomposed from the three goto tasks introduced
by the step (iii).

This is representative of sharing common steps of
the plan among potentially concurrent top level tasks.

While the initial task network would likely never involve
the same task multiple times, the decomposition of the
common steps of the plan would lead to the same issue
as the one we identified in our use case.

New Models
As shown in the previous section, the hierarchical model
of the goto task shown in Figure 2 results in an expo-
nential number of possible decompositions. This neg-
atively impacts the computational performance of the
planner, making the problem intractable for large in-
stances.

This section describes two alternative models to the
one shown in Figure 2, but with a smaller number of
possible decompositions.

Mutex Decomposition
The explosion in the number of possible decompositions
is primarily due to potential interference between sev-
eral tasks for the purpose of producing a sequence of
actions, as illustrated in Figure 3b. The idea in this al-
ternative model is to forbid such interference by (i) forc-
ing each goto task to lock the truck before producing
any move, and (ii) only allowing it to release the lock
once it has reached its target.

To achieve that, the goto task of the previous
model is renamed to goto-exec and a new goto(t,
d) compound task is added. The aim of the renamed
goto-exec task is to force the planner to completely
decompose the goto-exec task into a sequence of move
actions that reaches its target d. The new goto task
is used to keep the expressiveness of the domain un-
changed.

To ensure that only one goto-exec task is decom-
posed at a time, a mutex predicate mutex(t) is added
to P . This mutex predicate is manipulated by two new
actions, set-mutex and release:
• set-mutex(t) sets the mutex predicate.

– pre(set-mutex) = ¬mutex(t)
– eff(set-mutex) = mutex(t)

• release(t) releases the mutex predicate.
– pre(release) = mutex(t)
– eff(release) = ¬mutex(t)
Finally, the goto task can be decomposed by two

methods:
• do nothing if the truck is already at the given posi-

tion: m-noop = {noop(t, d)}.
• set the mutex predicate, effectively go to the given

position, and release the mutex predicate: m-goto =
{set-mutex ≺ goto-exec ≺ release}.

The final hierarchy of the domain is shown in Figure 5.
The two new actions are used to ensure that the truck

will not be moved by another goto-exec task while it
is already moving. Because a precondition of the noop
action is for the truck to be at the given position, the

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

39

goto

m-noop

noop

m-goto

set-mutex goto-exec

m-noop-exec

noop

m-rec

move goto-exec

release

Figure 5: Mutex model of the goto task.

g1 g2

gexec

m2m1 m3

(a) g1 makes the execution.

g1 g2

gexec

m2m1 m3

(b) g2 makes the execution.

Figure 6: Considering two identical goto tasks, and an
optimal solution with three move actions. There are only
2 possible decompositions in total.

mutex will be released only when the truck is effectively
at the given position. Therefore, the next goto tasks
will immediately be decomposed into the noop action if
it was identical to the previous one.

With this model, the expressiveness of the domain is
kept unchanged and, modulo the mutex actions, the set
of solutions is the same.

Consider our motivating example of n identical goto
tasks that should be used to produce a sequence of k
move actions. Here, the number of possible decompo-
sitions is in O(n): the planner may only choose which
of n goto tasks to use to produce the full sequence, as
illustrated in Figure 6.

(Partial) Task Insertion
As the root of the problem comes from the fact that the
move actions may be contributed by several concurrent
tasks in the initial task network, one solution may be
to decouple the introduction of the move actions from
the top-level objective tasks.

One way to do this would be by adopting the task-
insertion variant of HTN planning, where primitive
tasks may be introduced independently of any top-level
task at arbitrary points of the solution (Alford, Bercher,
and Aha 2015). If we were to discard the goto task
entirely, this would allow the move actions to be in-
troduced on-demand to establish the preconditions of
actions requiring the truck to be at a given location.
Task-insertion however is not without tradeoffs as the
freedom of inserting arbitrary tasks in the plan nullifies
the ability of HTN models to restrict the set of admis-

sible solutions.
Instead, we propose to mimic the notion of task-

dependency of FAPE (Bit-Monnot et al. 2020). FAPE
distinguishes task-dependent actions that may only
be introduced through a decomposition and task-
independent actions that may also be inserted indepen-
dently of the hierarchy. This enabled FAPE to consider
a continuum between generative and HTN planning,
where only a subset of the actions are allowed to be the
subject of task insertion.

In this model we want to reproduce a similar behav-
ior, where (i) the move actions can be inserted arbitrar-
ily, and (ii) a goto(t, p) task only imposes a condition
that at(t, p) holds.

To encode this in a conventional (i.e., without task-
insertion or task-dependency concepts) HTN model, we
introduce a new compound task free-move(t) that can
be decomposed with two methods:
• m-move = {move(t, s, d) ≺ free-move(t)}, that

moves the truck between two arbitrary positions s
and d and repeats. Here, s and d are unconstrained
parameters of the method.

• m-stop-free = {}, which ends the recursion.
To ensure that the freedom of movement is effective,

it is necessary to include the free-move task in the ini-
tial task network for each truck object. For our example,
free-move(t1) is added in the initial task network.

To avoid relaxing its post-conditions, the goto task is
kept in the domain but can only be decomposed by the
single method m-noop. Because this method contains
only the noop action, the goto task will be decom-
posed into the noop action, effectively doing nothing
but checking if the truck is at the required position.

The final hierarchy of the domain is shown in Fig-
ure 7.

free-move

m-stop-free m-move

move free-move

goto

m-noop

noop

Figure 7: Task insertion model of the goto task.

Because each goto task is decomposed into a sin-
gle action noop, the number of possible decompositions
of n tasks goto is constant. Moreover, the number of
possible decompositions of the free-move task is also
constant because it is the only one introducing the se-
quence of move actions needed to achieve the optimal
plan and verifying the preconditions of the goto tasks.
Therefore, the number of possible decompositions for
this optimal action sequence is constant and equal to 1.

With this model, the set of solutions differs as the
model is strictly more permissive. Any solution of the
original model is also a solution of this one, but, because
of the freedom of movement, it may be the case that
“useless” move actions are inserted in the plan. It should

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

40

nevertheless be noted that any optimal (i.e., shortest)
plan of the original model is also an optimal plan of this
model.

Experiments
To compare the computational performances of the
three models, we conducted experiments on our simple-
goto domain and some domains of the IPC’s HTN track.
Each domain is duplicated and modified to have four
different versions:
• original: the original domain.
• common: the domain with the common decomposi-

tion model, i.e., the one shown in the Motivating
Example section.

• mutex: the domain with the mutex model.
• insert: the domain with the task insertion model.

Domains
We conducted experiments on the following domains,
which are available in the IPC’s HTN track (except for
our example domain). They have been chosen to show
the impact of the models on different types of realistic
problems.
Goto Simple The goto simple domain is the one de-
scribed since the beginning of this paper. The original
and the common versions are the same as the one of
the motivating example, with an exponential number of
possible decompositions. For an instance i (1 ≤ i ≤ 30),
the initial task network is composed of 10 ∗ i tasks
goto(t1, p5) and the truck t1 is initially at p1.
Goto Complex The goto complex problem is a more
complex version of the goto simple problem. The do-
main is the same as the goto simple domain, but the
initial task network is composed of 10∗i tasks goto(t1,
p5), 10 ∗ i tasks goto(t1, p3), for an instance i. It is
used to show the impact of nested high-level tasks on
the computational performances of the planners.
Factories The original version of the factories-simple
domain (Sönnichsen and Schreiber 2021) is the one
from the IPC’s HTN track. It describes the problem
of constructing a factory from different resources, each
resource needing to be produced from another less-
advanced factory. To bring the resources from one fac-
tory to another, a truck is used, and its movement is
described by the same goto task as in the goto simple
domain. Therefore, the common version is the same as
the original one (only the common version will be dis-
played in the future results) and the mutex and insert
versions are easily built as described above.
Rovers The original version of the rovers domain
(Pellier and Fiorino 2021) is the one from the IPC’s
HTN track. It describes the problem for a set of rovers
to navigate and collect data on another planet, before
communicating the collected data to the scientists. In
this version, the navigation of the rovers is described

by a navigate-abs task that can be decomposed by
three methods: (i) do nothing, (ii) navigate to the
given position, (iii) navigate to an intermediate po-
sition, and then navigate to the destination. Interest-
ingly, the task is not recursive and the rover can only
navigate to a location separated by at most one interme-
diate position. This is however not an issue because the
instances are built such that if the rover needs to go to
a location separated by more than one intermediate po-
sition, it will need to do another task, e.g., collect data,
before going to the final destination. Thus, because the
navigate-abs is in the task network of several meth-
ods, the rovers can accomplish its mission. The common
version is built by replacing the methods of the original
navigate-abs task in order to make it recursive. The
mutex and insert versions are then built as described
above based on the common version.

Transport The original version of the transport do-
main (Behnke, Höller, and Biundo 2018) is the one
from the IPC’s HTN track. It describes the problem
of transporting packages from one location to another
using a truck. The truck is capable of carrying multiple
packages at once, under a certain limit, and the move-
ment of the truck is described by the get-to task that
can be decomposed by three methods: (i) do nothing,
(ii) drive to the given position, (iii) get-to an inter-
mediate position, and then drive to the destination.
In the common version, the second method is removed
because it is redundant with the third one, and the
subtasks order of the third method is changed to drive
then get-to (we use a right recursion instead of a left
one). The mutex version is build as described above.
The insert version is obtained by removing all methods
of the original get-to task except the one that does
nothing and adding a free-drive as described above.

Planners
We have selected three planners with different resolu-
tion strategies to compare the computational perfor-
mances of the different models. This way we can show
the impact of the models on different strategies.

Aries Aries (Bit-Monnot 2023) is a planner trans-
forming chronicles (Ghallab, Nau, and Traverso 2004;
Godet and Bit-Monnot 2022) into a Constraint Satis-
faction Problem (CSP) which is then solved by a specific
solver. Because of the recursive nature of the studied do-
mains, the planner needs to instantiate the initial task
network until a maximum depth before the generation
of the CSP. This depth is set to an initial value and
then increased by a fixed step until the planner finds a
solution. For the experiments, we are using the version
v0.3.3 of the planner2.

LinearComplex LinearComplex is the winner of
the IPC 2023 HTN Partial Order Satisficing track. The
main idea of this planner is to first consider the partially

2https://github.com/plaans/aries/tree/v0.3.3

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

41

ordered task network as a totally ordered one. For the
experiments, we are using the winning version of the
planner, named LinearComplex-config-sat-1.

PandaPi PandaPi (Holler 2023) is a well known
planner in the hierarchical planning community. It per-
forms a progression search on the task network, and
uses different heuristics to guide the search in the graph.
For the experiments, we are using the version for satis-
ficing partial ordered problems of the IPC 2023, which
is using the FF heuristic (Hoffmann and Nebel 2001).

Metrics
We are using the following metrics to compare the com-
putational performances of the different models and
planners.

Coverage The Coverage evaluates the capability of
the planner to solve different problem instances in a
given domain. It is defined by

Cov = Number of solved instances
Total number of instances ∗ 100 (5)

Time Score The Time Score evaluates the capabil-
ity of the planner to quickly find a first solution, and
matches the one of the IPC agile tracks. The score is
computed based on the time ti in seconds needed to re-
turn the first solution of the instance i and the timeout
T (120 seconds in our experiments).

TSi =
{

1 if ti < 1
1 − log(ti)

log(T) otherwise (6)

Finally, TS is the mean of all TSi on every instance,
multiplied by 100.

Results
The results of the experiments are shown in Table 1.

As expected, we can notice that the insert model al-
lows Aries and PandaPi to solve many more instances
than the common model.

Surprisingly, the mutex model is not performing well
for the Aries planner, as shown in the Figure 8 for the
Rovers domain. This is due to the fact that the planner
instantiate the initial task network until a maximum
depth before the resolution. In the common model, the
planner can take one move action in each goto task,
while in the mutex model, the planner must take all
move actions in a single goto task. Therefore, Aries
needs to go to a deeper depth to find a solution in the
mutex model than in the common one.

For PandaPi, the mutex and the insert models are
performing better than the common model. While the
improvement of the mutex over the insert is relatively
modest, when the insert model exhibits superior per-
formance, the difference is pronounced. This is clearly
visible in the Figure 10 for the Transport domain.

LinearComplex The LinearComplex planner be-
haves differently from the other planners because it first
interprets a PO HTN problem as a Total Order (TO)
one, therefore prohibiting any interference among goto
tasks in the common model. As a direct consequence,
it does not suffer from the redundancies in the search
space and the common and mutex models have simi-
lar performance. Moreover, the insert model does not
perform well for this planner because it may require in-
terleaving of tasks to produce a solution, which is not
permitted by TO HTN models.

While this choice of interpreting problems as TO
HTN ones appears beneficial for coverage, it should
be noted that potential high-quality solution are ex-
cluded from the resulting search space. For instance in
the Transport domain, a truck can carry multiple pack-
ages at once. However, the TO HTN projection initially
considered by LinearComplex would treat deliveries
one after the other, never transporting more than one
package at a time.
Left vs Right Recursion A realistic domain which
is representative of the pattern we identified is the
Transport domain. The results for this domain are
shown in the Figure 10 for PandaPi. We can see that
the left recursion of the original model has a big nega-
tive impact on the computational performances of the
planner since all instances timed out. Note that this
impact is also visible for LinearComplex as shown
in Figure 9. Interestingly, it is not the case for Aries
which prefers the left recursion of the original model.
This may be explained by the fact that Aries relies on a
plan-space encoding that is naturally backward chain-
ing from the goals towards the initial state. For such
planners, left recursion is better suited as it leaves the
end of the plan untouched. On the other hand, forward
chaining solvers such as PandaPi and LinearCom-
plex perform better with the right recursion of the
common model.

0 20 40 60 80 100

0

30

60

90

Instance Solved (%)

C
om

pu
ta

tio
n

T
im

e
(s

ec
on

ds
) Original

Common
Linear
Insert

Figure 8: Rovers domain with Aries.

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

42

Aries PandaPi LinearComplex

Cov TS Cov TS Cov TS

Goto Simple Common 40.00 26.13 0.00 0.00 100 100
Mutex 0.00 0.00 100 72.95 100 100
Insert 100 100 83.33 54.53 76.67 46.55

Goto Complex Common 26.67 14.07 0.00 0.00 100 98.84
Mutex 16.67 8.65 13.33 7.95 100 99.50
Insert 100 98.53 40.00 26.51 36.67 23.13

Factories Common 5.00 5.00 25.00 22.68 30.00 25.09
Mutex 5.00 4.22 25.00 22.66 30.00 24.46
Insert 5.00 5.00 25.00 18.98 25.00 19.11

Rovers Original 70.00 47.09 20.00 10.43 90.00 83.44
Common 70.00 47.13 20.00 12.65 80.00 67.52

Mutex 40.00 34.83 20.00 19.00 55.00 54.96
Insert 95.00 81.51 20.00 17.87 50.00 50.00

Transport Original 32.50 22.41 0.00 0.00 30.00 24.56
Common 20.00 14.39 10.00 8.36 62.50 60.25

Mutex 17.50 7.60 17.50 11.98 62.50 59.37
Insert 57.50 39.24 20.00 16.28 55.00 45.52

Table 1: Coverage (Cov) and Time Score (TS) metrics for different planners across different domains and model
versions.

0 10 20 30 40 50 60

0

30

60

90

Instance Solved (%)

C
om

pu
ta

tio
n

T
im

e
(s

ec
on

ds
) Original

Common
Linear
Insert

Figure 9: Transport domain with LinearComplex.

Discussion
The identified pattern is not limited to recursive decom-
position of actions as the move one, but can also arise
from the sharing of common steps of the plan among
potentially concurrent top level tasks. This is for in-
stance the case in the Satellite domain of the IPC 2020
HTN track, where the switch-on and calibrate ac-
tions are shared among different tasks. For such cases

5 10 15 20

0

30

60

Instance Solved (%)

C
om

pu
ta

tio
n

T
im

e
(s

ec
on

ds
) Common

Linear
Insert

Figure 10: Transport domain with PandaPi. No in-
stance has been solved for the Origin version.

where a single action may be shared, the impact can be
expected to be less dramatic as the number of redun-
dant decomposition would be equal to the number of
tasks requiring it.

Finally, let us brought the attention to a false-sharing
mechanism that may occur with this pattern. List-
ing 1 shows a plan with no shared step to sequentially

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

43

A

t1

B C D E

p1 p2

(a) Problem
deliver

m-deliver

goto load goto unload

goto

m-noop

noop

m-rec

move goto

(b) Domain Hierarchy

Figure 11: Transport problem with no shared step.

achieve two tasks deliver(p1, C) and deliver(p2,
E), where deliver(p, l) designates the task of de-
livering the package p to the location l, as shown in
the Figure 11. Even if the plan of the Listing 1 has no
shared step, the first and second move actions could be
attributed to a decomposition of the first goto of the
second deliver task.

Listing 1: Plan with no shared step
Steps 1 -4: deliver (p1 , C)
move(t1 , A, B)
load(p1)
move(t1 , B, C)
unload (p1)
Steps 5 -8: deliver (p2 , E)
move(t1 , C, D)
load(p2)
move(t1 , D, E)
unload (p2)

Conclusion
In this paper, we have identified a very common pattern
in HTN models that can lead to an exponential number
of possible decompositions and negatively impact the
computational performance of PO HTN planners.

We have proposed two alternative models to the one
that leads to this pattern. For native PO HTN plan-
ners such as Aries and PandaPi, the model allowing
partial task insertion clearly dominates the others and
vastly increase the performance on the impacted do-
mains. This suggests that a relaxed HTN models that
allow for partial task insertion may be fruitful area for
future work.

A notable result is also the drastic performance dif-
ference of state-of-the-art planners for different encod-
ing schemes. For instance, unlike PandaPi, Aries fa-
vors left-recursive decomposition methods and does not
scale up on the mutex model. The performance of Lin-
earComplex is highly dependent on the absence of re-
quired interleaving between the top-level tasks and thus
does not scale on insert model. Such issues highlight the
fact, at least in PO HTN planning, planner-independent
modeling remains a far-fetched goal.

References
Alford, R.; Bercher, P.; and Aha, D. W. 2015. Tight
Bounds for HTN Planning with Task Insertion. In In-
ternational Joint Conference on Artificial Intelligence.
Behnke, G.; Höller, D.; and Biundo, S. 2018. totSAT
- Totally-Ordered Hierarchical Planning Through SAT.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32. ISSN: 2374-3468, 2159-5399
Issue: 1 Journal Abbreviation: AAAI.
Bit-Monnot, A. 2023. Experimenting with Lifted Plan-
Space Planning as Scheduling: Aries in the 2023 IPC.
In 2023 International Planning Competition at the 33rd
International Conference on Automated Planning and
Scheduling. Prague, Czech Republic.
Bit-Monnot, A.; Ghallab, M.; Ingrand, F.; and Smith,
D. E. 2020. FAPE: a Constraint-based Planner for Gen-
erative and Hierarchical Temporal Planning. Technical
Report arXiv:2010.13121, arXiv. ArXiv:2010.13121 [cs]
type: article.
Erol, K.; Hendler, J.; and Nau, D. 1994. HTN Plan-
ning: Complexity and Expressivity. Proceedings of the
National Conference on Artificial Intelligence, 2: 7.
Ghallab, M.; Nau, D. S.; and Traverso, P. 2004. Auto-
mated Planning: Theroy and Practice. Morgan Kauf-
mann Publishers Inc. ISBN 978-1-55860-856-6.
Godet, R.; and Bit-Monnot, A. 2022. Chronicles
for Representing Hierarchical Planning Problems with
Time. In ICAPS Hierarchical Planning Workshop
(HPlan). Singapore, Singapore.
Hoffmann, J.; and Nebel, B. 2001. The FF Plan-
ning System: Fast Plan Generation Through Heuristic
Search. Journal of Artificial Intelligence Research, 14:
253–302.
Holler, D. 2023. The PANDA Progression System for
HTN Planning in the 2023 IPC. In 2023 International
Planning Competition at the 33rd International Confer-
ence on Automated Planning and Scheduling. Prague,
Czech Republic.
Höller, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fior-
ino, H.; Pellier, D.; and Alford, R. 2020. HDDL: An
Extension to PDDL for Expressing Hierarchical Plan-
ning Problems. Proceedings of the AAAI Conference on
Artificial Intelligence, 34(06): 9883–9891.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock,
C. A.; Ram, A.; Veloso, M.; Weld, D. S.; and Wilkins, D.
1998. PDDL-the planning domain definition language.
Pellier, D.; and Fiorino, H. 2021. From Classical to
Hierarchical: benchmarks for the HTN Track of the In-
ternational Planning Competition. ArXiv.
Smith, D. E.; Cushing, W.; and Frank, J. 2008. The
ANML Language. KEPS.
Sönnichsen, M.; and Schreiber, D. 2021. The HTN
domain “Factories”. In Proceedings of the 10th Inter-
national Planning Competition: Planner and domain
abstracts – hierarchical task network (HTN) planning
track (IPC 2020), 45–46.

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

44

Towards Search Node-Specific Special-Case Heuristics for HTN Planning
– An Empirical Analysis of Search Space Properties under Progression

Lijia Yuan, Pascal Bercher
School of Computing, The Australian National University, Canberra, Australia

{lijia.yuan, pascal.bercher}@anu.edu.au

Abstract

In hierarchical task network (HTN) planning, heuristic search
is highly effective, but currently, there are only a few avail-
able heuristics and they are pre-selected for use. However,
during progression-based search, many search nodes exhibit
specific properties, e.g., they may become totally ordered or
acyclic allowing for the application of specialized heuristics.
For these search nodes, we conducted an experimental evalu-
ation, employing reachability analysis, to examine the special
cases encountered during search. Measuring how often vari-
ous special cases (like acyclic problems) occur informs us of
which heuristics developed for special cases – selected on a
per-search node basis – are most promising.

Introduction
Hierarchical Task Network (HTN) planning (Erol, Hendler,
and Nau 1996; Geier and Bercher 2011; Bercher, Alford,
and Höller 2019) is a framework within AI planning where
tasks are organized into hierarchies, consisting of primitive
tasks that are directly executable and abstract tasks that re-
quire further decomposition. Solving HTN planning prob-
lems involves a range of different methods. Among the most
successful ones is progression-based search (Höller et al.
2020), which operates in a forward manner adhering to spe-
cific orderings from left to right. By integrating heuristics,
it refines the search trajectory, minimizing exhaustive explo-
ration and effectively guiding the path to the goal.

Heuristic search has consistently demonstrated its effec-
tiveness in HTN planning (Höller, Bercher, and Behnke
2020; Olz and Bercher 2023; Olz, Höller, and Bercher
2023). However, there are only a few heuristics available:
There’s the TDG Heuristic (Bercher et al. 2017), Relax Com-
position Heuristic (RC Model) (Höller et al. 2018, 2020),
ILP HTN Heuristic (Höller et al. 2020), and a Landmarks
Heuristic (Höller and Bercher 2021) – to the best of our
knowledge, these are the only available ones up to now.
All of them are designed for the general case without fur-
ther restriction on the partially ordered (PO) tasks or how
they interact via the task hierarchy. However, some search
nodes show specific properties during the search. For in-
stance, even if the initial problem is partially ordered, cer-
tain search nodes could become totally ordered (TO) dur-
ing search or recursive parts might become non-recursive.
Designing a heuristic for the general case is complex, so

it might be easier to design a heuristic for one of the var-
ious special cases. As evidence for this, a recent pruning
technique (discarding dead-ends and reducing the branch-
ing factor of search) (Olz and Bercher 2023) was developed
for TO HTN problems, and yet has to be transferred to par-
tial order HTN planning. We believe that developing pruning
techniques or heuristics for special cases like this one (total
order) or others, like acyclic problems / search nodes, thus
shows great potential. However, choosing such a heuristic
or technique would currently only be possible in advance,
i.e., before search starts. We however hypothesized that spe-
cial cases start arising during search, thus allowing to choose
specialized heuristics during search thereby increasing their
impact as they can be deployed even in problems that don’t
adhere to the respective special case in advance.

If more heuristics or techniques are tailored to specific
special cases, analyzing each search node would enable the
selection of a heuristic dedicated solely to that particular
case and search node – and thus all search nodes below that
one, since once a special case is established, it cannot be
violated anymore. This could provide benefits, allowing us
to solve planning problems previously impossible or, at the
very least, expedite the process compared to before. Special
case heuristics could also contribute to that: even if they are
not “more informed”, they might still be easier to compute.

To assess the potential of choosing specialized heuristics
and/or techniques during search, we conducted an experi-
mental evaluation checking how often the various known
special cases occur. In this paper we only check TO prob-
lems and can hence not report how often TO search nodes
occur while solving PO problems. We investigate a range of
special cases and document their occurrence in percentage to
all search nodes created under the respective search strategy
(which was chosen based on the results of the IPC 2024).
As a minor side contribution, we also propose how the set
of reachable methods – which impact the accuracy of the re-
spective current special case – can be computed in a tighter
way, based on a relaxed reachability analysis. We report the
number of special cases according to both investigations:
a naive but quick one, the number and a more informed,
but slower one. Finally, we draw a conclusion based on our
findings – i.e., whether we believe that specialized heuris-
tics might significantly impact search performance and if so,
which special cases are the most promising ones.

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

45

HTN Planning Formalism
Our work builds upon the HTN planning formalization ini-
tially introduced by Geier and Bercher (2011) and further
developed by Bercher, Alford, and Höller (2019), maintain-
ing the core concepts established by Erol, Hendler, and Nau
(1996). We would like to note in advance that whereas the
formalization provided here is the general one (admitting
any special case, including “none” by allowing partial or-
der), the empirical study carried out will focus on totally
ordered problems only.

A task network tn, represented as a tuple (T, ≺, α), con-
sists of a finite set of task id symbols T , a strict partial order
on T denoted by ≺⊆ T ×T (which is irreflexive, asymmet-
ric, and transitive), and a mapping α that assigns each task
id in T to either a primitive task name in Np or abstract task
name in Na.

An HTN domain D is a tuple (F,Np, Na, δ,M), consist-
ing of a finite set of facts F , a finite set of primitive task
names Np, a finite set of abstract task names Na, a mapping
δ : Np → 2F × 2F × 2F that assigns each primitive task
(also called an action) to its preconditions, add effects, and
delete effects, and a finite set of decomposition methods M
where each method m ∈ M is a tuple (c, tn) pairing an ab-
stract task c with a task network tn. An HTN problem is a
tuple P = (D, sI , tnI, g), comprising an HTN domain D,
an initial state sI ⊆ 2F , an initial task network tnI, and a
goal description g ⊆ 2F .

A task network tna = (Ta, ≺a, αa) will be decomposed
by a decomposition method m = (c, tnm) into a new task
network tnb = (Tb, ≺b, αb) if and only if there exists a task
identifier t ∈ Ta such that αa(t) = c is replaced by subtasks
in tnm, and all ordering constraints from t will be inherited.
It is written as tna t,m−−→ tnb. There exists a task network
tn′ = (T ′,≺′, α′) equivalent to tnm such that T ′ ∩ Ta = ∅.
The only difference between tn′ and tnm are task identifiers
to avoid repeating task identifiers. The application of m to
tna results into the task network tnb given as follows.

Tb := (Ta \ {t}) ∪ T ′,

≺b :=≺a ∪ ≺′ ∪ ≺x,

αb := αa|Ta\{t} ∪ α′

≺x := {(ta, tb) ∈ Ta × T ′ | (ta, t) ∈ ≺a} ∪
{(ta, tb) ∈ T ′ × Ta | (t, tb) ∈ ≺a}

The notation tn ∗−→ tn′ indicates tn can be decomposed into
tn′ by using a sequence of methods.

A task network is executable if it has an executable lin-
earization of its tasks, where a primitive task p ∈ Np linked
to action a with δ(p) = (pre(a), add(a), del(a)) is exe-
cutable in the state s if and only if pre(a) ⊆ s, and its exe-
cution modifies s to the resulting state (s\del(a))∪add(a).
An executable linearization for task network tn = (T,≺,
α) is a sequence (t1, t2, ..., tn) where each ti ∈ T and
α(ti) ∈ Np can be executed sequentially. A task network
tns = (Ts,≺s, αs) is called a solution of an HTN prob-
lem P = (D, sI , tnI) if and only if tnI is decomposed into
tns through a series of decompositions, tns solely comprises

primitive tasks (∀t ∈ Ts : α(t) ∈ Np), and tns has an exe-
cutable linearization. Solution task networks can only be ob-
tained from the initial task network via decomposition with-
out inserting any other tasks.

Known Special Cases
In this section, we provide the definitions for known prob-
lem classes, which are primitive HTN problems, totally or-
dered problems, regular problems, acyclic problems (Erol,
Hendler, and Nau 1996) and tail-recursive problems (Al-
ford et al. 2012; Alford, Bercher, and Aha 2015). We refine
the stratification by Alford et al. (2012) and propose a more
tight HTN stratification to assist in defining acyclic and tail-
recursive problems. More specifically, our slightly changed
formalization of stratifications can be regarded as another
minor contribution of the paper, as it has some advantages
over the existing one. While the existing one was not wrong,
our “tighter version” allows us to differentiate more classes
based on the stratification alone, without having to consult
the underlying HTN problem.

HTN planning is undecidable (Erol, Hendler, and Nau
1996; Geier and Bercher 2011) but various special cases
can make the plan existence problem easier. Erol, Hendler,
and Nau (1996) provided tight complexity results (i.e.,
with matching upper and lower bounds) for primitive HTN
problems and for regular problems, and provided upper
bounds for totally ordered problems. Alford, Bercher, and
Aha (2015) provided matching lower bounds for total-order
problems, and tight bounds for tail-recursive problems.

Primitive HTN problems (when all tasks in the initial task
network are primitive) are the base case, appearing at the
end of the search if a solution exists. Deciding whether a
primitive task network has an executable linearization is NP-
complete (shown independently by Erol, Hendler, and Nau
(1996) and Nebel and Bäckström (1994), later refined by Tan
and Gruninger (2014)).
Definition 1 (Totally Ordered Problem). An HTN prob-
lem P is called totally ordered if the ordering of its initial
task network tnI is totally ordered and all decomposition
methods are totally ordered, i.e., for each m ∈ M with
m = (c, tnm), tnm is a totally ordered task network.

Totally ordered HTN planning is in EXPTIME (Erol,
Hendler, and Nau 1996) and EXPTIME-hard (Alford,
Bercher, and Aha 2015) and hence EXPTIME-complete.
Definition 2 (Regular Problem). An HTN problem P is reg-
ular if its initial task network tnI and tnm in all its methods
(c, tnm) ∈ M are regular. A task network tn = (T,≺, α) is
regular if

• there is at most one task in T that is abstract and
• if t ∈ T and α(t) ∈ Na, it is the last task in tn, i.e., for

all t′ ∈ T with t′ ̸= t, we have (t′, t) ∈≺.

In a regular problem P , given that the initial task network
tnI and task networks tnm with all methods (c, tnm) ∈ M
are regular, every primitive task in a task network needs to be
progressed first, then the abstract task will be decomposed.
The abstract task will be the last task in each search node
until the primitive task network is found. The largest size

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

46

of the search node during the progression search will hence
be bounded by the method (c, tnm) with the largest task
network tnm. These problems were shown to be PSPACE-
complete (Erol, Hendler, and Nau 1996).

For the more complex problem restrictions like tail-
recursive ones, we provide stratifications, as introduced
by Alford et al. (2012) and also used for defining tail-
recursiveness (Alford, Bercher, and Aha 2015).

Definition 3 (Stratification). A set R ⊆ Na × Na is called
a stratification if it is a total preorder (i.e., reflexive, tran-
sitive, and total). A stratum is an inclusion-maximal subset
S ⊆ Na such that for all x, y ∈ S both (x, y) ∈ R and
(y, x) ∈ R hold.

According to this definition, stratifications are a concept
independent of the underlying HTN problem. In the original
definition of tail-recursive problems (Alford, Bercher, and
Aha 2015), a specific stratification has to exist for the respec-
tive problem to be called tail-recursive. However, although
those definitions were sufficient to define tail-recursiveness
adequately, there could still be several stratifications adher-
ing to the required restrictions. Thus, even for tail-recursive
problems, the set of possible stratifications defined over
the respective compound tasks wasn’t unique. For example,
consider a problem an initial abstract task cI decomposes
into the total-order task network c1 → c2 with compound
tasks c1 and c2. As we will see later, tail-recursiveness will
require that (cI , c2) ∈ R and (c2, cI) /∈ R, i.e., it requires
c2 to be on a strictly lower stratum than cI , but it will not
impose a restriction on where exactly c1 sits with regard to
cI . That is, whereas at least (c1, cI) ∈ R is demanded, the
original definition of the interplay of stratification and tail-
recursiveness would also allow (c1, cI) ∈ R to hold, thus
making stratifications not unique. In fact, totality requires
that any two compound tasks are “artificially” put into some
kind of relationship, even if none of the tasks can be de-
composed into another. We propose a stricter definition that
removes the requirement of totality and imposes an exact re-
lationship between the decomposition hierarchy and the un-
derlying stratification – thus making the stratification a for-
mal one-to-one mapping of the underlying task hierarchy.

Another advantage (on top of having a unique stratifi-
cation per problem, having a clear, intuitive semantics for
stratifications, and simplified problem definitions for tail-
recursive problems) is that in our proposed definition we
can differentiate whether singleton stratums represent recur-
sive tasks or not. The original definition required reflexiv-
ity, meaning that we have (c, c) ∈ R for every compound
task. This however means that it is impossible to identify,
based on the stratification alone, whether the abstract task c
can actually reach itself (and hence is recursive) or not, be-
cause reflexivity is demanded by definition rather than being
a consequence of reachability. In our definition, reflexivity
follows only if a task can reach itself.

Definition 4 (HTN Stratification). Given an HTN domain
D = (F,Np, Na, δ,M), a set RHTN ⊆ Na × Na is called
an HTN stratification of D if and only if it is transitive and
it holds (c′, c) ∈ RHTN if and only if c′ is reachable from c
via decomposition.

For simplicity, we will use the terms “stratification” and
“stratum” and hence skip the “HTN”.

Figure 1: An example of stratification RHTN that has a
height of 3, featuring abstract tasks A,B,C,D,E, and F .
Circles denote strata, S1 = {A}, S2 = {B,C} and S3 =
{D,E, F}. Directed arrows between circles show the de-
composition hierarchy, with arrows pointing from higher to
lower levels (e.g., (A,B) ∈ RHTN). Example taken from an
ICAPS tutorial on HTN planning (Bercher and Höller 2018).

A directed graph can represent stratification diagrammat-
ically (Figure 1). Task A cannot be decomposed into any
other abstract task, and tasks B,C and tasks D,E, F can
be decomposed into each other. Due to the requirement of
strata being inclusion-maximal subsets of Na, there are no
other strata. As the number of strata in the stratification is 3,
the height of the stratification is 3. We also can say that S2 is
a stratum lower than S3 and S1 is lower than both S2 and S3.
Tasks are in different strata if they are in different decompo-
sition hierarchy levels. For instance, task D has a stratum
height of 3 since it is at the highest hierarchy level. Primi-
tive tasks, unrelated to the hierarchy, are assigned a stratum
height of 0.

Figure 2: An example of a partially ordered stratifica-
tion RHTN with a height of 3, featuring abstract tasks
A,B,C,D,E, and F . Directed arrows between tasks in-
dicate decomposition methods. Circles denote strata: S1 =
{A}, S2 = {B,C}, S3 = {F}, and S4 = {D,E}.

Tasks B,C in Figure 2 have stratum height 2 as they are
on a strictly higher stratum as A, which is on the lowest
level. B and C share a stratum since they can be turned
into each other, but they don’t share a stratum with A since
they can’t be turned into each other. Since tasks D,E can
be turned into B,C but not vice versa, they are on a stratum
with height 3. Now, F is on a higher stratum than A and thus
has height 2 or 3. They are not in the same stratum as any of
the other tasks, because they cant be turned into each other.

A stratum with a single abstract task c implies that no
other task c′ exists for which c can reach c′ while c′ can
also reach c via decomposition. However, c may be decom-
posed into itself, indicating a self-loop if (c, c) ∈ RHTN .
Therefore, RHTN effectively differentiates whether c is in a
self-loop.
Definition 5 (Acyclic Problem). An HTN problem P is
acyclic if for its HTN stratification RHTN ∈ Na×Na holds:
if (c′, c) ∈ RHTN , then (c, c′) /∈ RHTN .

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

47

The stratification RHTN for the acyclic problem is ir-
reflexive – so demanding that RHTN is irreflexive is an al-
ternative definition. As the stratification is transitive, it be-
comes asymmetric when it is irreflexive. The search space
will be finite during the progression search because the al-
gorithm does not need to deal with recursion. The acyclicity
will bring the computational complexity of an HTN problem
down to NEXPTIME-complete (Alford, Bercher, and Aha
2015). If an HTN problem is acyclic and totally ordered, it
will be PSPACE-complete (Alford, Bercher, and Aha 2015).

Figure 3: An example of stratification RHTN of the acyclic
HTN problem P .

For example, there is an acyclic HTN problem P where
all tasks in Na are A,B and C, as shown in Figure 3. The
stratification of P is RHTN = {(A,B), (B,C), (A,C)} and
the strata are {A}, {B} and {C} as per Definition 4. All
strata for the acyclic problem contain exactly one abstract
task since all abstract tasks are in the different decomposi-
tion hierarchy levels.

For the definition of tail-recursiveness, we require the
concept of last tasks or non-last tasks, respectively. A task
is called last task in a task network if and only if all other
tasks in that task network are ordered to occur before it. A
task is called non-last task if and only if it is not a last task.
Note that, with the exception of task networks of size 0 or
1, all task networks have non-last tasks (potentially all of
them), but not every task network has a last task.

Definition 6 (Tail-Recursive Problem). An HTN problem P
is tail-recursive if for its HTN stratification RHTN and for all
methods (c, tnm) ∈ M it holds that for any non-last abstract
task cn in tnm with cn ∈ Na, (c, cn) /∈ RHTN .

(a) tn1 with m1 and m2 (b) tn2 with m3 and m2

Figure 4: Comparison of tail-recursiveness (left) and non-
tail-recursiveness (right). Filled squares denote primitive
tasks; circles represent abstract tasks; numbers beside indi-
cate the height of the stratum. Example borrowed from an
ICAPS tutorial on HTN planning (Bercher and Höller 2018).

In Figure 4a, the abstract task c in tn1, which is the one
with stratum height 4, can be decomposed into a task net-
work tna, which contains tasks that are on a (strictly) lower
stratum than c. Therefore, task network tna cannot possibly
contradict tail-recursiveness. Also note that the position of c

in tn1 does not play any role, only the position of the tasks
within tna are relevant.

The last task cl in tn1 can be decomposed into a task net-
work that contains a task that has the same stratum height
as cl. However, that task in tnb happens to be the last task,
hence this is not a problem. All non-last tasks in tnb are
indeed on a (strictly) lower stratum than cl, so this task net-
work also does not contradict tail-recursiveness. Again, the
position of cl within tn1 was irrelevant, only the position of
tasks within tnb matters.

In Figure 4b we see an example of a problem that is not
tail-recursive. Whereas method m2 is as before and hence
doesn’t cause problems, method m3 = (c, tnc) does. Here,
we can see that tnc contains a task with stratification height
4, which is the same as the task c from which it got de-
composed. Hence that task (in tnc) would be required to be
its last task – but it is not. Again, the position of c within
tn2 was not relevant (it never is); only the positions of tasks
within the decomposition method count – interestingly this
implies that the form and structure of the initial task net-
work are completely irrelevant. This is interesting because
the proof by Erol, Hendler, and Nau (1996) for the unde-
cidability of HTN planning required only two partially or-
dered compound tasks in the initial task network, whereas all
methods were totally ordered. However, tail-recursive meth-
ods are enough to achieve decidability, whereas totally or-
dered methods are not. (This is not a contribution of this
paper, but we find this an interesting observation to point
out.)

The computational complexity of (ground) tail-recursive
problems is EXPSPACE-complete (Alford, Bercher, and
Aha 2015), and of tail-recursive and totally ordered prob-
lems is PSPACE-complete (Alford, Bercher, and Aha 2015).

Testing for these special cases can clearly be done in poly-
nomial time (with respect to the size of a ground model)
since stratifications are essentially the very same as Task De-
composition Graphs (see next section), and checking for the
respective properties equals checking simple graph proper-
ties. Hence, we will not provide details on how these checks
can be done.

Figure 5: Control flow graph of tests ordering to minimize
computational costs and addresses property dependencies
efficiently. Arrows with labels to show the path based on
test outcomes.

We do, however, mention that the order in which these
tests are done can have a large impact on efficiency. Some
problem class tests depend on others and are more expen-
sive or time-consuming than others. Therefore, optimizing
the sequence of these property tests can lead to greater effi-

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

48

ciency (or the other way around: some test orders might be
redundant). As shown in Figure 5, if a task network is found
to be primitive, it bypasses the need for regular, acyclic, and
tail-recursive tests (as they all will be positive), proceeding
directly to the totally ordered test. Otherwise, it conducts
regular and acyclic tests. Skipping the tail-recursive test is
feasible if either the acyclic or regular test is positive, as
either acyclicity or regularization is a special case of tail-
recursiveness. After these, the task network’s total order is
assessed, which is independently unaffected by the results
of other tests.

Figure 6: An example of special cases during the search:
Filled squares represent primitive tasks, and unfilled circles
represent compound tasks. π is the prefix of the generated
plan. Vertical lines in search nodes from n1 to n9 illustrate
the states during the search. We assume no primitive task
has preconditions or effects, so the state remains unchanged.
The properties of each task network are shown next to each
node, with existing methods for tasks B,C,E,D. It has the
same stratification as Figure 1.

In progression search, if a task network within a search
node possesses a particular property, all task networks
within its child nodes will inherit this property. As illus-
trated in Figure 6, once a property is present in a search
node, it propagates to all its descendant nodes. To enhance
efficiency, we check the parent node’s property before con-

ducting property tests in a search node, potentially reducing
overall complexity by avoiding redundant checks.

Reachability Information from Task
Decomposition Graphs

In a task network, its properties like total ordering, regular-
ity, acyclicity, or tail-recursiveness depend on both the initial
task network and all its reachable methods. The task decom-
position graph (TDG) is the foundational data structure for
hierarchical reachability analysis. It was first introduced by
Elkawkagy et al. (2012) and refined by Bercher et al. (2017).

For simplicity, for an HTN problem, we introduce an
artificial abstract task cI that is not originally in the do-
main. cI can be decomposed into the initial task tnI. Sub-
sequently, we incorporate cI into the domain, establishing
(cI , tnI) ∈ M .

Definition 7 (Task Decomposition Graph (TDG)). For
a given HTN problem P , the task decomposition graph
(TDG) is defined as a directed bipartite graph G =
⟨VT , VM ,ET→M ,EM→T ⟩. This graph comprises a set of
task vertices VT , a set of method vertices VM , edges from
tasks to methods ET→M , and from methods to tasks EM→T ,
such that the following conditions are satisfied:

1. Base Case (task vertex for the given task)
cI ∈ VT is the TDG’s root.

2. Method Vertices (derived from task vertices)
Let vt ∈ VT and there is a method (c, tn) ∈ M . Then,
for every vm ∈ VM , it holds that (vt, vm) ∈ ET→M .

3. Task Vertices (derived from method vertices)
Let vm ∈ VM with vm = (c, (T,≺, α)). For each task
t ∈ T where α(t) = vt , it is the case that vt ∈ VT and
(vm, vt) ∈ EM→T .

4. Tightness
G is minimal, such that 1. to 3. hold.

The TDG can represent the hierarchical reachability of an
HTN planning problem, i.e. tasks and methods that can be
reached via decomposition. According to the simplistic defi-
nition provided, it is only based on the reachability from de-
composition without considering the states. However, Elka-
wkagy, Schattenberg, and Biundo (2010) and Bercher et al.
(2017) suggested that method nodes containing unreachable
primitive tasks based on the state reachability analysis can
be removed. (For a more formal definition, consult Def. 4
by Behnke et al. (2020), where this idea is incorporated for
grounding lifted HTN planning problems.)

Figure 7: A fragment of a TDG (Bercher et al. 2017): task
networks are denoted by surrounding boxes, abstract tasks
by circles, and primitive tasks by square boxes.

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

49

Bercher et al. (2017) observed that the reachable methods
per search node change, as illustrated in Fig. 7. Here, the
reachable method set from the initial task network is still m1

to m4. However, after m2 was applied, the reachable meth-
ods even became empty, since the new current task network
is primitive. If alternatively m1 would have been chosen,
at least m2 will not be reachable anymore, but potentially
even one of m3 and m4 as it might be that those actions
from m2’s task network were used to (inaccurately) deter-
mine the reachability of m3 or m4. Hence, recomputing the
TDG after some decisions were made can lead to a reduced
reachable method set (Bercher et al. 2017).

This is highly relevant for our endeavor of determining
search space properties since these properties directly de-
pend on the reachable methods. Going back to our example
(Figure 7), if task K cannot be executed, method m1, and
consequently m3 and m4 become unreachable. This leaves
only m2 as reachable and thus the sub-TDG makes tn0 prim-
itive, acyclic, and totally ordered – properties that the initial
TDG did not show.

Thus, when computing the properties of a search node –
which naturally are based on the set of methods reachable
from it – one has two possibilities for what to do:

• We use the initial TDG but restrict it to the methods
reachable from the current search node. This process is
relatively quick since it does not require TDG recompu-
tation.

• We recompute the TDG from the current search node.
This is more expensive but leads to potentially fewer
reachable methods (since the initial TDG was computed
based on all primitive tasks reachable in it, whereas the
made decisions reduced this set and might hence further
reduce the size of the new TDG (Bercher et al. 2017)).

In our empirical evaluation we do both. For the recompu-
tation of the TDG, we use the Relaxed Composition Heuris-
tic (Höller et al. 2018, 2020) as a basis. It transforms an HTN
search node into a classical problem, which can represent a
superset of all reachable decomposition methods (expressed
as classical actions). We used this transformation as a ba-
sis, estimating all reachable methods by computing a fixed
point in a relaxed planning graph (RPG) computed from the
classical problem.

Evaluation
We now report on our findings.

Benchmarks.

We analyzed the entire total-order (TO) benchmark set from
the IPC 20231. We restrict to TO domains both due to space
restrictions and also since the IPC showed that in most in-
stances, the partial order can be compiled away in advance
without making the respective problem unsolvable (Wu et al.
2022, 2023).

1https://ipc2023-htn.github.io/

Configuration.
Experiments were conducted in a virtualized environment.
The underlying hardware was powered by an Intel(R)
Core(TM) i9-8950HK CPU, clocking at 2.90GHz, which
was allocated a single CPU core and provisioned with 8GB
of RAM for the experiments, and 30 minutes limited for
each instance (memory and time limit of IPC 2023).

We run the latest progression-based version of the
PANDAπ system (Höller et al. 2018, 2020; Höller and
Behnke 2021). We opted for the currently best-performing
configurations, i.e., Greedy Best First Search (GBFS) com-
bined with the Relax Composition (RC) heuristic (Höller
et al. 2018), which utilizes the classical Add heuristic (Bonet
and Geffner 2001) that measures the distance to the solution
by accounting for both action applications and method de-
compositions.

Reported Problem Classes.
We analyze the search nodes in terms of the problem classes
outlined in Section Known Special Cases. However, since
several classes overlap (e.g., any regular problem and any
acyclic problem are also tail-recursive), we account for those
overlappings. We define the following classes:

• Primitive: If all tasks in the current task network are
primitive. (I.e., defined as usual.)

• Regular & Acyclic: If a problem is regular and acyclic,
but not primitive.

• Regular & Cyclic: If a problem is regular and cyclic.
• Acyclic: If a problem is acyclic but not regular.
• Tail-recursive: If a problem is tail-recursive but not

acyclic.
• Undecidable: If a problem is not tail-recursive.

By adhering to these definitions, all classes are exclusive
(and so values should add up to 100% per line for the same
test in Table 1).

Results.
A summary of our results (per domain) is provided in Ta-
ble 1. Note that we only include instances that were solved
by both runs: those that don’t recompute the TDG (referred
to as “Simple” in the table) and those that do (referred to
as “Reachable”). This is to make the results comparable be-
cause only then the explored search spaces are the same.

This is also why we only report on 22 domains although
the IPC TO benchmark set encompasses 23. This discrep-
ancy arises because the “Freecell” domain was excluded due
to the absence of problem instances that were solved in both
runs.

In the table, we report per domain over all solved in-
stances the minimum percentage of the respective problem
class (↓), the maximum (↑), and the average (µ).

Computation Time. Ideally, class identification of prob-
lem classes should exert negligible influence on the com-
putational time. In particular, when our ultimate goal is to
choose the most informed heuristic based on the respective

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

50

Domain

Undecidable Tail-recursive Acyclic Regular & Cyclic Regular & Acyclic Primitive

Simple Reachable Simple Reachable Simple Reachable Simple Reachable Simple Reachable Simple Reachable

↓ ↑ µ ↓ ↑ µ ↓ ↑ µ ↓ ↑ µ ↓ ↑ µ ↓ ↑ µ ↓ ↑ µ ↓ ↑ µ ↓ ↑ µ ↓ ↑ µ ↓ ↑ µ ↓ ↑ µ

Assembly (30) 0 0 0 0 0 0 82 ∼A 97 82 ∼A 97 0 0 0 0 ∼0 ∼0 0 7 2 0 2 ∼0 0 9 ∼0 ∼0 9 2 ∼0 9 1 ∼0 9 1
Barman-BDI (15) 0 0 0 0 0 0 0 0 0 0 0 0 96 ∼A ∼A 96 ∼A ∼A 0 0 0 0 0 0 ∼0 2 ∼0 ∼0 2 ∼0 ∼0 2 ∼0 ∼0 2 ∼0
Blocksw.-GTOHP (29) 0 ∼A 94 0 ∼A 93 0 0 0 0 0 0 0 99 5 0 99 6 0 0 0 0 0 0 0 3 ∼0 0 3 ∼0 ∼0 5 1 ∼0 5 1
Blocksw.-HPDDL (28) 0 0 0 0 0 0 98 ∼A ∼A 96 ∼A ∼A 0 0 0 0 ∼0 ∼0 0 0 0 0 0 0 0 0 0 ∼0 2 ∼0 ∼0 2 ∼0 ∼0 2 ∼0
Depots (22) 0 ∼A 35 0 ∼A 32 0 0 0 0 24 1 0 ∼A 63 ∼0 ∼A 65 0 0 0 0 0 0 0 0 0 0 0 0 ∼0 8 2 ∼0 8 2
Factories (8) 0 0 0 0 0 0 96 ∼A 99 96 ∼A 99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∼0 4 1 ∼0 4 1
Hiking (24) 87 97 92 87 97 92 3 12 7 3 10 7 0 0 0 ∼0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 ∼0 1 1 ∼0 1 1
Lamps (16) 0 0 0 0 0 0 80 ∼A 95 80 ∼A 95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∼0 20 5 ∼0 20 5
Logistics-Learned (44) 0 0 0 0 0 0 98 ∼A ∼A 98 ∼A ∼A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∼0 2 ∼0 ∼0 2 ∼0
Minecraft Pl. (1) 0 0 0 0 0 0 84 84 84 84 84 84 15 15 15 15 15 15 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
Minecraft Reg. (42) 0 0 0 0 0 0 0 0 0 0 0 0 97 ∼A 99 97 ∼A 99 0 0 0 0 0 0 ∼0 1 ∼0 ∼0 1 ∼0 ∼0 1 ∼0 ∼0 1 ∼0
Monroe FO (17) 74 ∼A 95 74 ∼A 95 0 0 0 0 0 0 0 17 2 0 17 2 0 0 0 0 0 0 0 4 ∼0 0 4 ∼0 ∼0 14 3 ∼0 14 3
Monroe PO (8) 25 ∼A 80 25 ∼A 80 0 0 0 0 0 0 0 58 14 0 58 14 0 0 0 0 0 0 0 8 2 0 8 2 ∼0 11 5 ∼0 11 5
Multiarm-Blocksw.(74) 0 0 0 0 0 0 98 ∼A ∼A 6 96 50 0 0 0 0 94 48 0 0 0 0 0 0 0 0 0 ∼0 60 2 ∼0 2 ∼0 ∼0 2 ∼0
Robot (20) 0 0 0 0 0 0 67 ∼A 97 4 83 31 0 0 0 0 ∼0 ∼0 0 0 0 0 0 0 0 0 0 0 96 67 ∼0 33 3 ∼0 33 3
Rover (21) 0 ∼A 89 0 ∼A 88 0 0 0 0 0 0 0 97 10 ∼0 97 10 0 0 0 0 0 0 0 0 0 0 0 0 ∼0 7 2 ∼0 7 2
Satellite (19) 83 99 95 83 99 95 0 0 0 0 0 0 ∼0 8 2 ∼0 8 2 0 0 0 0 0 0 0 5 1 0 5 1 ∼0 8 2 ∼0 8 2
SharpSAT (10) 0 0 0 0 0 0 0 0 0 0 0 0 98 ∼A 99 98 ∼A 99 0 0 0 0 0 0 0 0 0 0 0 0 ∼0 2 1 ∼0 2 1
Snake (2) 0 0 0 0 0 0 ∼A ∼A ∼A 99 ∼A ∼A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∼0 ∼0 ∼0 ∼0 ∼0 ∼0 ∼0 ∼0 ∼0
Towers (13) 0 0 0 0 0 0 75 ∼A 97 75 ∼A 97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∼0 25 3 ∼0 25 3
Transport (25) 88 ∼A 97 88 ∼A 97 0 0 0 0 0 0 0 2 ∼0 0 2 ∼0 0 0 0 0 0 0 0 5 1 0 5 1 ∼0 12 2 ∼0 12 2
Woodworking (19) 0 0 0 0 0 0 0 0 0 0 0 0 0 ∼A 85 0 ∼A 85 0 0 0 0 0 0 0 75 8 0 75 8 ∼0 25 6 ∼0 25 6

Table 1: The minimum (↓), maximum (↑), and average (µ) percentages (%) of undecidability, tail-recursion, acyclicity, regular-
ity, and primitiveness in the search space without and with TDG-recomputation (“Simple” vs. “Reachable”). The computational
complexity of properties decreases progressively from left to right. Next to the name of each domain is the number of (solved)
problem instances that were used as a basis. “A” (short for “all”) represents 100%. Values highlighted in bold show where
improvements were achieved due to TDG-recomputation.

search node property, it is essential that the overhead in-
curred from identifying this special case pays off.

In the “simple” experiment, the total computational time
for problem class identification varied across domains, rang-
ing from 0.64% to 42% of total computation time (with an
average of 11%), compared to the heuristic’s average com-
putation time of 34%. This aligns with expectations, sug-
gesting that class identification times are within acceptable
bounds. However, runtimes can still be reduced by optimiz-
ing the way classes are identified based on reachable meth-
ods (see below).

Conversely, in the “reachable” experiment, the average to-
tal computation time for class identification surged to 64%,
much overshadowing the heuristic computation time, which
averaged 14%. This indicates that class identification sig-
nificantly impacts the overall computation time in this con-
text, underlining a need for optimization in re-computing the
TDG. That said, we did not put any effort into recomputing
the TDG effectively, so there is still lots of possible opti-
mizations that could be done. For example, since we use the
RC heuristic anyway, we could have used the RPG com-
puted by it when extracting the reachable methods. How-
ever, for the sake of simplicity, we re-computed this anyway.
Also, we hypothesize that our TDG construction (based on
these reachable methods) and the way we identify special
cases based on the reachable methods could still be opti-
mized (which is the reason why we don’t report individual
runtimes).

Thus, our reported results can only be used to show which
special cases occur and how frequently, but not to draw con-

clusions about the feasibility of their computation. They do
show however that it will be beneficial to optimize TDG re-
computation and the identification of special cases.

Difference between Experiments. Before we report on
the main findings of our experiments, namely the frequency
of certain problem classes, we report on the impact of TDG
recomputation. Overall, Table 1 reveals that only a select
few domains exhibit notable differences between the “sim-
ple” and “reachable” experiments.

The domain exhibiting the most substantial disparity is
“Multiarm-Blocksworld” where the average percentage of
tail-recursion in the “simple” experiment approaches 100%.
However, in the reachable experiment, this average drops to
just half. In the remaining 50%, 48% become acyclic (and
non-regular), and 2% become regular & acyclic.

“Robot” is another domain showing significant differ-
ences. In the “simple” experiment, it only has tail-recursive
and primitive search spaces. However, in the “reachable” ex-
periment the average percentage for tail-recursion decreased
dramatically from 97 to 31 in favor of 67% regular and
acyclic search nodes.

All in all, it seems that TDG recomputation only pays off
in a very few domains, so unless recomputation cost can
be reduced significantly, our results suggest that on average
this might not pay off for the sake of deploying specialized
heuristics.

Frequency of Special Cases. We can see that only 5 out
of the 22 domains have 90% or more of undecidable search
nodes, with 2 further domains having 80% and 89%. Those
are the domains where heuristics dealing with the general

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

51

case (in TO HTN planning) would be required. So in the
huge majority of domains, at least tail-recursiveness could
be exploited.

Domains such as “Blocksworld-GTOHP” and “Hiking”
exhibit very high ratios of “undecidability”, which are over
90%. The number of solved instances of these domains is
large, indicating that the existing general heuristic is effi-
cient.

Three domains show nearly 100% or exactly 100%
acyclicity: “Barman-BDI”, “Minecraft Regular” and
“SharpSAT’ in Table 1. As the statistics of acyclic search
nodes exclude those that are regular (and cyclic) and
primitive, these three domains are actually fully acyclic
when looking at the data more closely.

In examining the data on acyclicity, it is evident that
not all domains exhibit a uniform pattern. For instance,
“Blocksworld-GTOHP” ranges wildly in acyclicity, from
being virtually cyclic to fully acyclic, as evidenced by its
minimum of approximately 0% and a maximum of 99%.
Conversely, “Monroe-FO” and “Satellite-GTOHP” show
more restrained ranges, peaking at 17% and 8% respectively.
It indicates that there are only relatively few nodes in the
domain that are acyclic. While the distribution of acyclicity
across domains is varied, certain domains inherently exhibit
acyclicity, whereas others only manifest it as the problem
simplifies during the search. Nonetheless, acyclicity seems
to occur often enough within the search space that it seems
beneficial to develop specialized heuristics. It is particularly
noteworthy that only one single domain seems to be acyclic.
For all others, acyclicity only occurs within the search space,
but not already for the initial search node.

Another clear observation is that regularity seems to only
occur extremely rarely. In only one domain the ratio of
search nodes is about 67%, in one it is 8%, in most others,
however, it is 0%, and in just a few 1% or 2%. This how-
ever shows a possible optimization as it means that we can
stop the TDG recomputation and special case identification
once acyclic search nodes are discovered, thus speeding up
computation time.

Related Work
There are two lines of related work: one involves choosing
a heuristic based on the current search node, which we have
not yet explored but forms the motivation for our study; the
other is the identification of special cases per search node.

Regarding the first, we are not aware of any such work
in HTN planning (which also would not make much sense
at the very moment, since no special case heuristics exist as
of now). In classical planning, however, Speck et al. (2021)
followed a similar idea: selecting the most promising heuris-
tic per search node. Their work does however not do so
based on explicit search node properties, but makes dynamic
heuristic selection based on Reinforcement Learning. We,
however, propose to make this selection dependent based on
the specific search node properties and select heuristics that
are designed specifically for the respective case.

The other line of related work is investigating search
node-specific properties. We are not aware of work along

those lines, other than those that investigate properties of
entire problem classes. Such a result would be a special
case for us. I.e., if exactly 100% of all search nodes show
a property P (like being tail-recursive or stronger), then the
problem instance has that respective property. Höller (2021)
does report on problem class properties (for total-order HTN
problems) per problem instance (cf. his Table 1). He reports
on a slightly distinct, albeit stronger, criterion concerning
tail-recursiveness called non-selfembedding. Any instance
that is non-selfembedding, right-recursive (r-rec), and not
left-recursive (l-rec) is also tail-recursive. He also reports on
acyclic domains (¬rec), but again only per instance.

Höller (2021) does report on problem class properties (for
total-order HTN problems) per problem instance (cf. his Ta-
ble 1). He reports on a slightly distinct, albeit stronger, crite-
rion to decide tail-recursiveness called non-selfembedding.
From the instances that are non-self-embedding, those that
are only right-recursive (i.e., neither left-recursive nor left-
and right-recursive), are tail-recursive. He also reports on
acyclic domains (¬rec), but again only per instance. A more
detailed discussion can be found in Sec. 5 of his most recent
work (Höller 2024).

We would also like to note that the PANDAπ planner
prints out whether a problem is totally ordered and acyclic
when it starts to solve a problem, though it doesn’t show the
properties of any of the other classes.

Conclusion
Based on the total-order IPC 2023 benchmark set, we ana-
lyzed the explored search space of a progression-based plan
for the frequency of special cases within the problem classes,
such as tail-recursive, acyclic, and regular search nodes. Our
motivation for this investigation is the search node-specific
deployment of specialized heuristics, tailored towards the
respective special case. Our empirical findings indicate a
high potential for such heuristics aimed at tail-recursiveness
and acyclicity due to the high number of such search nodes.
However, computation time for the identification of these
classes is still relatively high and thus requires consideration
as well.

Acknowledgements
Pascal Bercher is the recipient of an Australian Research
Council (ARC) Discovery Early Career Researcher Award
(DECRA), project number DE240101245, funded by the
Australian Government.

References
Alford, R.; Bercher, P.; and Aha, D. W. 2015. Tight Bounds
for HTN Planning. In ICAPS 2015, 7–15. AAAI Press.
Alford, R.; Shivashankar, V.; Kuter, U.; and Nau, D. S. 2012.
HTN Problem Spaces: Structure, Algorithms, Termination.
In SOCS 2012, 2–9. AAAI Press.
Behnke, G.; Höller, D.; Schmid, A.; Bercher, P.; and Biundo,
S. 2020. On Succinct Groundings of HTN Planning Prob-
lems. In AAAI 2020, 9775–9784. AAAI Press.

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

52

Bercher, P.; Alford, R.; and Höller, D. 2019. A Survey on
Hierarchical Planning - One Abstract Idea, Many Concrete
Realizations. In IJCAI 2019, 6267–6275. IJCAI.
Bercher, P.; Behnke, G.; Höller, D.; and Biundo, S. 2017. An
Admissible HTN Planning Heuristic. In IJCAI 2017, 480–
488. IJCAI.
Bercher, P.; and Höller, D. 2018. Tutorial: Introduction to
Hierarchical Task Network (HTN) Planning. ICAPS. Avail-
able online. Accessed: 25 March 2024.
Bonet, B.; and Geffner, H. 2001. Planning as heuristic
search. AIJ 2001, 129(1-2): 5–33.
Elkawkagy, M.; Bercher, P.; Schattenberg, B.; and Biundo,
S. 2012. Improving Hierarchical Planning Performance by
the Use of Landmarks. In AAAI 2012, 1763–1769. AAAI
Press.
Elkawkagy, M.; Schattenberg, B.; and Biundo, S. 2010.
Landmarks in Hierarchical Planning. In ECAI 2010, 229–
234. IOS Press.
Erol, K.; Hendler, J. A.; and Nau, D. S. 1996. Complexity
Results for HTN Planning. Annals of Mathematics and AI
(AMAI) 1996, 18(1): 69–93.
Geier, T.; and Bercher, P. 2011. On the Decidability of HTN
Planning with Task Insertion. In IJCAI 2011, 1955–1961.
AAAI Press.
Höller, D. 2021. Translating Totally Ordered HTN Plan-
ning Problems to Classical Planning Problems Using Reg-
ular Approximation of Context-Free Languages. In ICAPS
2021, 159–167. AAAI Press.
Höller, D. 2024. The Toad System for Totally Ordered HTN
Planning. JAIR 2024, (80): 613–663.
Höller, D.; and Behnke, G. 2021. Loop Detection in the
PANDA Planning System. In ICAPS 2021, 168–173. AAAI
Press.
Höller, D.; and Bercher, P. 2021. Landmark Generation in
HTN Planning. In AAAI 2021, 11826–11834. AAAI Press.
Höller, D.; Bercher, P.; and Behnke, G. 2020. Delete- and
Ordering-Relaxation Heuristics for HTN Planning. In IJCAI
2020, 4076–4083. IJCAI.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2018.
A Generic Method to Guide HTN Progression Search with
Classical Heuristics. In ICAPS 2018, 114–122. AAAI Press.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2020.
HTN Planning as Heuristic Progression Search. JAIR 2020,
67: 835–880.
Nebel, B.; and Bäckström, C. 1994. On the Computational
Complexity of Temporal Projection, Planning, and Plan Val-
idation. AIJ 1994, 66(1): 125–160.
Olz, C.; and Bercher, P. 2023. A Look-Ahead Technique
for Search-Based HTN Planning: Reducing the Branching
Factor by Identifying Inevitable Task Refinements. In SoCS
2023, 65–73. AAAI Press.
Olz, C.; Höller, D.; and Bercher, P. 2023. The PAN-
DADealer System for Totally Ordered HTN Planning in the
2023 IPC. In IPC: Planner Abstracts – Hierarchical Task
Network (HTN) Planning Track (IPC).

Speck, D.; Biedenkapp, A.; Hutter, F.; Mattmüller, R.; and
Lindauer, M. 2021. Learning Heuristic Selection with Dy-
namic Algorithm Configuration. In ICAPS 2021, 597–605.
AAAI Press.
Tan, X.; and Gruninger, M. 2014. The Complexity of Partial-
Order Plan Viability Problems. In ICAPS 2014, 307–313.
AAAI Press.
Wu, Y. X.; Lin, S.; Behnke, G.; and Bercher, P. 2022. Find-
ing Solution Preserving Linearizations For Partially Ordered
Hierarchical Planning Problems. In 33rd PuK Workshop
“Planen, Scheduling und Konfigurieren, Entwerfen”.
Wu, Y. X.; Olz, C.; Lin, S.; and Bercher, P. 2023. Grounded
(Lifted) Linearizer at the IPC 2023: Solving Partial Order
HTN Problems by Linearizing Them. In IPC 2023.

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

53

Weighted Randomized Anytime Planning in Pyhop

Gabriel J. Ferrer
Hendrix College

1600 Washington Ave.
Conway, Arkansas 72034 USA

ferrer@hendrix.edu

Abstract

Since they produce plans whose quality increases with time,
anytime planners are very useful for domains such as robotics
and video games. Planners using the SHOP algorithm can op-
erate as anytime planners by retaining the result of the first
depth-first search path that reaches the goal, then returning
the results of subsequent searches if they improve upon it.
However, backtracking to the most recent alternative may not
be the best approach for quickly finding a low-cost plan.
In this paper, we replace backtracking depth-first search with
a randomized algorithm in the Pyhop implementation of
SHOP. Whenever there are multiple options, the planner se-
lects a random operator or method. For every selected option,
it records the cost of every plan that includes that option. It
uses these cost statistics to make the selection of options that
lead to lower-cost plans more probable.
We evaluated the resulting HTN planner on three domains -
the Traveling Salesperson Problem, the Pickup and Delivery
Problem, and the Satellite Problem. Our experiments show
that the weighted-selection approach outperforms both depth-
first search and unweighted randomized selection.

Introduction
Anytime planners (Dean and Boddy 1988) produce plans
with quality proportionate to available planning time. They
are very useful for domains with real-time constraints such
as robotics and video games. The Simple Hierarchical Or-
dered Planner (SHOP) (Nau et al. 1999) was introduced
to enable implementing Hierarchical Task Network (HTN)
planners for many different domains. The Pyhop implemen-
tation of SHOP (Nau 2013) enables an HTN planner to work
with arbitrary data structures in the Python language.

We have built an anytime planner atop Pyhop called
pyhop-anytime (Ferrer 2024d). Within pyhop-anytime we
have implemented three anytime planners in the Planner
class in the file pyhop.py:
• The time-limit feature described in Section 3.2.4 of the

SHOP3 manual (Goldman and Nau 2019), implemented
in the anyhop() method of the Planner class.

• A variant of SHOP in which operators and methods are
chosen randomly whenever there is more than one op-
tion. There is no backtracking; instead, a new random-
ized depth-first search is launched whenever the previ-
ous search finds a plan or fails. Each plan is generated

by the randhop() method, called repeatedly by the
anyhop random() method until time runs out.

• Another randomized planner, the action tracker,
in which operators and methods that lead to
higher-quality plans have a higher probability
of being selected. Each plan is generated by the
make action tracked plan() method, called
repeatedly by the anyhop random tracked()
method until time runs out.

Our anytime planners are designed for domains in which
finding an optimal-cost plan is NP-Complete but finding
non-optimal valid plans is feasible in polynomial time.
The planners employ whichever cost function is supplied for
a given domain. We experimentally evaluated these planners
in the following domains:
• The Traveling Salesperson Problem (TSP).
• The Pickup and Delivery Problem (PDP) is built atop

the same graph structure as the TSP, but augmented with
packages that must be transported between nodes.

• The STRIPS Satellite domain (sat 2002) from the 2002
International Planning Competition (ipc 2002) provides
a number of standardized problems for a traditional
STRIPS planning domain.

In nearly all experiments, the purely random planner out-
performed the backtracking planner. The action tracking
planner sometimes was tied with the backtracking planner
but almost always significantly outperformed both of them.

After an overview of the SHOP planning algorithm, we
describe our randomized variants, our experiments, and our
results, followed by conclusions and future work.

The SHOP Algorithm
In the SHOP planning algorithm (Algorithm 1)1, operators
specify state transformations and methods decompose tasks
into lists of subtasks, in some cases with multiple alterna-
tives (Nau et al. 1999). The subtasks themselves consist of
methods or operators. A plan is a sequence of operators that
completes the given tasks from the given starting state.

Many planning domains are notorious for their intractable
computational complexity (Bylander 1994) (Gupta and Nau

1Methods anyhop() and pyhop generator() of our
Planner class and successors() of our PlanStep class.

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

54

Algorithm 1: The SHOP algorithm
Input: state, tasks, plan, operators, methods
Output: plan

1: if No tasks remaining then
2: return plan
3: else if First task in operators then
4: Create newstate by applying operator to state
5: return shop(newstate, remaining tasks, plan with op-

erator, operators, methods)
6: else if First task in methods then
7: for Every method relevant to the first task do
8: if The method has relevant subtasks then
9: return shop(state, subtasks + remaining tasks,

plan, operators, methods)
10: end if
11: end for
12: else
13: return failure
14: end if

1992). The SHOP algorithm is well-suited for domains in
which finding an optimal-cost plan is NP-Complete but find-
ing non-optimal valid plans is feasible in polynomial time. In
these domains, we find a valid plan in polynomial time with-
out backtracking by making arbitrary decisions when non-
deterministic choices are encountered2. Each backtrack to
a nondeterministic choice might produce an improved plan.
When a time limit is reached, the best plan found is returned.
Increased time limits create more opportunities to find plans
that are closer to the optimal cost.

One such domain is the Pickup and Delivery Problem
(PDP), which has been heavily studied in the planning liter-
ature (Coltin 2014). Each PDP instance consists of an undi-
rected weighted graph, a list of packages to deliver (includ-
ing origins and destinations), and a robot with a specified
carrying capacity. The SHOP methods below3 find a cor-
rect plan in polynomial time without any backtracking. As a
preprocessing step, we run the Floyd-Warshall algorithm for
finding the shortest paths between all pairs of nodes.

• deliver-all-packages-from:

– If all packages are at their destinations, return success.
– Otherwise, create a list of pairs of packages and des-

tinations that includes every package aboard the robot
along with its destination. If the robot has spare capac-
ity, include every undelivered package with its starting
location. Post possible-destinations with this list.

• possible-destinations: Examine each destination given
by the provided destination list.

– If any destination matches its current location, post
pick-up or put-down depending on the destination’s
purpose. Then post deliver-all-packages-from.

2Domains for which the SHOP algorithm might fail to find a
plan without backtracking are outside the scope of this paper.

3Implemented in graph package world.py in the
pyhop anytime examples directory

– If not, nondeterministically choose one neighbor
which is part of a shortest path from the current loca-
tion to a destination in the list. Post progress-task-list
with that neighbor and a list of only those destinations
whose shortest paths include the chosen neighbor.

• progress-task-list: Add a move-one-step operator to the
chosen neighbor. Invoke possible-destinations with all
of the destinations remaining in its list.

There are three operators in this domain:

• pick-up: Pick up an object at the current node.
• put-down: Put down an object at the current node.
• move-one-step: Move to a neighboring node.

When combined with the SHOP algorithm, the above
methods produce a planner that guarantees the delivery of
every package. The combination of possible-destinations
and progress-task-list on each invocation will move a pack-
age closer to its destination in one of four ways:

1. It picks up a package from its starting location.
2. It puts down a package at its destination.
3. It moves one step closer along the shortest possible path

to the destination of a package it has already picked up.
4. It moves one step closer along the shortest possible path

to the origin of a package it needs to pick up.

Once a delivery takes place, deliver-all-packages-from
generates a list of possible pickups and deliveries that in-
cludes a strictly smaller number of packages than its previ-
ous invocation. Thus, the combination of these three meth-
ods is guaranteed to eventually deliver all of the packages,
and as every move-one-step operator always moves along a
shortest path, the overall length of the plan is bounded above
by the longest shortest path plus two, multiplied by the num-
ber of items to deliver. This is therefore an example of pro-
ducing a polynomial-time algorithm for finding valid (but
not necessarily optimal-cost) plans by combining the SHOP
algorithm with suitable domain-specific methods.

Randomizing the SHOP Algorithm
Simple Randomized SHOP
We define an option as one possible operator or method that
the planner can select. Simple Randomized SHOP4 is iden-
tical to Algorithm 1, except that whenever a method chooses
an option nondeterministically (e.g., possible-destinations)
or multiple methods are options (line 7 of Algorithm 1), it
selects one option at random and continues planning without
backtracking. After it completes a plan, it keeps generating
plans until it reaches its time limit5.

Weighted Randomized SHOP
Weighted Randomized SHOP6 is similar to Simple Random-
ized SHOP, except that instead of selecting options with uni-
form probability we instead select them according to a dis-

4Method randhop() of our Planner class
5Method anyhop random() of our Planner class
6Method make action tracked plan() of Planner.

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

55

tribution informed by their utility. As with Simple Random-
ized SHOP, we invoke Weighted Randomized SHOP to re-
peatedly generate plans until it reaches its time limit7.

We construct this distribution as follows. For every option
we record the following information8 for every randomly
generated plan that employed that option at some point:

• Total cost and number of all successful plans
• Maximum cost of any successful plan
• Number of failed planning attempts

Using the above information, we define a total ordering
on options9 by assigning higher priority to whichever option
has lower mean cost10.

Whenever multiple options have cost information avail-
able, each option has a probability assigned as follows11:

• The overall set of options is divided into two groups:
those that have been selected for a plan and those that
have not. Each group is given a probability budget based
on the proportion of options in that category.

• Each unselected option has the same probability of selec-
tion, receiving an equal share of the unselected budget.

• Those that have been selected are sorted according to the
priority scheme outlined above. Each option is assigned a
probability double that of the option of next lowest prior-
ity, yielding exponentially decreasing probabilities. The
sum of these probabilities is the selected-option budget.

• By using a ranking system, we determine selection prob-
abilities independently of the domain’s cost function.

We expect that options initially included in plans of low
average cost will be included in additional low-cost plans. If
this proves to be the case, these options will continue to be
selected frequently. If not, these options will diminish in the
ranking and be selected less often. Options that initially led
to higher cost plans are then more likely to be selected, and
if further exploration demonstrates their utility they will be
selected more frequently later on.

By default, the tracker does not record outcomes if a given
option is the only option. We created a variant12 in which we
record outcomes for every option, even if a given method or
operator is the only choice at that point.

Related Work
Another randomized version of pyhop is pyhop-m (Shao
et al. 2021). It expands upon pyhop-h (Cheng et al. 2018),
an implementation of Pyhop incorporating heuristic search
in place of depth-first search. pyhop-m replaces pyhop-h’s
heuristic using the costs of a number of random plans to
estimate the quality of each alternative.

7Method anyhop random tracked() of Planner.
8Recorded in an object of ActionTracker.
9See our OutcomeCounter class.

10Although it is beyond the scope of this paper, our implementa-
tion also takes plan failures into account by incorporating the num-
ber of plan failures into the total ordering.

11Method distribution for() of ActionTracker.
12Set ignore single to False.

Our work differs from pyhop-m in two critical ways.
First, our formulation of anytime planning relies upon a
depth-first search implementation of SHOP. As pyhop-m
employs randomization to serve as an estimator for a heuris-
tic search implementation of SHOP, it is not at all clear to us
how it could be converted into an anytime algorithm.

Second, since pyhop-m uses random plans to construct
a heuristic estimate of distance to a goal, it discards those
plans once that estimate has been calculated. In contrast, we
employ random plans to both update the probability distribu-
tion for operator and method selection that guides our search
algorithm as well as to serve as candidate solution plans.

Experimental Analysis
Setup
We evaluated four pyhop-anytime variations:
1. DFS: Depth-first pyhop with a time limit.
2. Random: Simple randomized pyhop.
3. Tracker1: Weighted randomized pyhop, tracking all ex-

cept single-alternative options.
4. Tracker2: Tracker1 modified to track all options.

We tested these four variations in these domains:
1. Traveling Salesperson Problem (TSP)
2. Pickup and Delivery Problem (PDP) with a single robot
3. Satellite coordination problem

TSP shows the performance of our approach in a domain
in which every operator selection requires a nondetermin-
istic choice. PDP shows performance in a domain akin to
TSP but more similar to a typical HTN planning problem.
Satellite shows performance on a well-known benchmark
STRIPS planning domain.

Our TSP implementation has one operator (move - moves
from one city to another) and one method (complete-tour-
from). The method arbitrarily selects a previously unvis-
ited node to be the next node visited, and then invokes it-
self recursively. Our PDP implementation is described in the
SHOP Algorithm section.

To generate TSP instances, we randomly generate (x, y)
coordinates for each city on a 100x100 grid. We then as-
sign edge weights between every pair of cities using the Eu-
clidean distance.

To generate PDP instances, we randomly generate (x, y)
coordinates for 36 nodes on a 100x100 grid. For each pair
of nodes, there is a 25% chance that we insert an edge. As
with TSP, the edge weight is determined by the Euclidean
distance. Each of 12 packages are assigned to a distinct ran-
dom starting node and are assigned a distinct random goal
node. The robot can carry up to three packages.

Results and Analysis
We ran four initial experiments (Ferrer 2024b). TSP results
are in Figures 1, 2, and 3 and PDP results are in Figure 4.
TSP experiments used 15, 30, and 50 cities, with 5, 10, and
30 second limits respectively. PDP used a 30 second limit.

The cost of a TSP plan is the sum of the weights of each
edge traversed by the move operator. The cost of a PDP

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

56

Figure 1: TSP: 15 Cities, 5 seconds

Figure 2: TSP: 25 Cities, 10 seconds

plan is the sum of the weights of each edge traversed by the
move-one-step operator, with each pick-up and put-down
operator having a cost of 1.

We randomly generated three problem instances for each
experiment. For each problem instance, we ran the determin-
istic DFS planner once and each randomized planner nine
times. For the randomized planners, we report the mean plan
cost across the nine runs for each problem instance, with er-
ror bars indicating a 95% confidence interval.

In the smallest TSP problems (see Figure 1), Random
typically outperformed DFS, but for one problem DFS was
superior. In all cases, Tracker1 and Tracker2 outperformed
both DFS and Random to a degree that their 95% confi-
dence intervals never overlapped. The difference between
DFS, Random, and the Tracker implementations dimin-
ished on the largest (50 cities) TSP problems as well as the
PDP problems but remained statistically significant.

This result seems intuitive. As problem size increases,
plan cost as well as the number of distinct operator and
method options also increases beyond the degree to which
we increased the time budget. Consequently, less informa-
tion is available for each option, and our probability distri-
bution is less informed. The information is still valuable, but

Figure 3: TSP: 50 Cities, 30 seconds

Figure 4: Pickup/Delivery Problem, 36 nodes, 30 seconds

the impact is not as drastic as with smaller problem sizes.

To investigate the impact of increasing the time budget,
we ran two additional experiments (Ferrer 2024c) of 200
second duration on the 50 city TSP problem (Figure 5) as
well as the PDP problem (Figure 6). On the TSP problem,
this replicated the ratio between the costs of the action-
tracked plans and the fully randomized plans on the 25 city
problem. On the PDP problem, the additional time improved
the ratio only slightly. The relative simplicity of the TSP do-
main seems to make it more amenable to performance im-
provements from increasing the time budget.

For the Satellite domain, we used the five largest problems
in the repository (Ferrer 2024a). In Figure 7, we see that DFS
often performed well - in those situations, action tracking
matched its performance. In other situations, action tracking
greatly outperformed DFS.

Tracker1 was our initial implementation, as we did not
find it intuitive to track options that the planner was required
to include. Tracker2 tested that intuition. As they show sta-
tistically indistinguishable performance in all experiments,
this design decision seems to have no impact at all.

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

57

Figure 5: TSP: 50 Cities, 200 seconds

Figure 6: Pickup/Delivery Problem, 36 nodes, 200 seconds

Conclusion
Performance of anytime planning with the SHOP algorithm
usually improves by replacing backtracking with random-
ization. Randomization with operator and method tracking
produces significantly larger and more consistent improve-
ments. Future work includes investigating changes to the
tracking scheme to enable further improvements with lim-
ited time budgets, assessing performance in a wider va-
riety of planning domains, incorporating pyhop-anytime
into a planning and execution system for the robots in our
lab, and potentially incorporating pyhop-anytime (Ferrer
2024d) into the GTPyhop planner (Nau 2021).

References
2002. International Planning Competition. https://ipc02.
icaps-conference.org/.
2002. Satellite STRIPS Domain. https://ipc02.icaps-
conference.org/CompoDomains/SatelliteStrips.pddl. Ac-
cessed: 2024-05-20.
Bylander, T. 1994. The computational complexity of propo-
sitional STRIPS planning. Artificial Intelligence, 69(1-2):
165–204.

Figure 7: Satellite Domain, 10 seconds

Cheng, K.; Wu, L.; Yi, X. H.; Yin, C. X.; and Kang,
R. Z. 2018. Improving Hierarchical Task Network Planning
Performance by the Use of Domain-Independent Heuristic
Search. Knowledge-Based Systems, 142: 117–126.
Coltin, B. 2014. Multi-Agent Pickup and Delivery Planning
with Transfers. Ph.D. thesis.
Dean, T.; and Boddy, M. 1988. An Analysis of Time-
Dependent Planning. In Proceedings of the 7th National
Conference on Artificial Intelligence.
Ferrer, G. 2024a. Anyhop Satellite Experiments.
https://www.kaggle.com/code/gabrielferrer/anyhop-
satellite-experiments. Accessed: 2024-05-20.
Ferrer, G. 2024b. Bar Plots for ICAPS-HPlan 2024 pa-
per. https://www.kaggle.com/code/gabrielferrer/bar-plots-
for-icaps-hplan-2024-paper. Acccessed: 2024-04-24.
Ferrer, G. 2024c. Extended Experiments for ICAPS-HPlan
2024 paper. https://www.kaggle.com/code/gabrielferrer/
extended-experiments-for-icaps-hplan-2024-paper. Acc-
cessed: 2024-04-24.
Ferrer, G. 2024d. pyhop anytime. https://github.com/gjf2a/
pyhop anytime. Accessed: 2024-04-24.
Goldman, R. P.; and Nau, D. 2019. SHOP3 Manual. https:
//shop-planner.github.io. Accessed: 2024-03-19.
Gupta, N.; and Nau, D. 1992. On the Complexity of Blocks-
World Planning. Artificial Intelligence, 56(2-3): 223–254.
Nau, D. 2013. Pyhop. https://bitbucket.org/dananau/pyhop/
src/master/. Accessed: 2024-03-19.
Nau, D. 2021. GTPyhop. https://github.com/dananau/
GTPyhop. Accessed: 2024-03-19.
Nau, D. S.; Cao, Y.; Lotem, A.; and Muñoz-Avila, H. 1999.
SHOP: Simple hierarchical ordered planner. In Proceedings
of the 1999 International Joint Conference on Artificial In-
telligence (IJCAI), 968–973.
Shao, T.; Zhang, H.; Cheng, K.; Zhang, K.; and Bie, L. 2021.
The Hierarchical Task Planning Method Based on Monte
Carlo Tree Search. Knowledge-Based Systems, 225.

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

58

Toward Planning with Hierarchical Decompositions and Time-frames

Mica Gardone1, Rogelio E. Cardona-Rivera12

Laboratory for Quantitative Experience Design
1Kahlert School of Computing, 2Division of Games

University of Utah, Salt Lake City, UT, USA
{m.gardone | r.cardona.rivera}@utah.edu

Abstract

The semantics of temporal hierarchical planners are limited.
In hierarchical paradigms, temporal reasoning has largely fo-
cused on durative constraints of primitive actions, which may
be added directly or appear post-expansion. We propose ex-
tending temporal reasoning to composite actions, specifically
within decompositional partial order causal linked planning.
We outline how a general-purpose hierarchical planner can
approach temporal reasoning outlined in a STRIPS-like for-
malism. We build upon existing temporal and hierarchical se-
mantics, and sketch two novel approaches: time-frame plan-
ning and decompositional time-frame planning.

1 Introduction
Hierarchical planning has enjoyed uses in robotics, space,
and business applications. However, space agencies (Euro-
pean Space Agency 2019; United States National Aeronau-
tic Space Administration 2023) have posted open questions
and concerns with time for a variety of reasons. One such
open question is dealing with time as both a window and
an end time. Temporal hierarchical planning has received
comparatively less time in research than its non-temporal
cousins, and as such there are still many elements under-
and undefined.

Temporal planning has focused a variety of topics like
planner-schedulers (Parimi, Rubinstein, and Smith 2022),
portfolio planning (Furelos-Blanco and Jonsson 2018), and
many other forms of planning (Younes and Simmons 2003;
Turi and Bit-Monnot 2022; Do and Kambhampati 2014).
There still is not an agreed-upon, general purpose formal-
ism, however, there are common attributes among all sys-
tems. There has been work to discover better heuristics
through non-temporal means (Cavrel, Pellier, and Fiorino
2023). Representing time in planners – e.g., timelines (Frank
2013), temporal constraint networks (Dechter, Meiri, and
Pearl 1991), and chronicles (Rahmani, Shell, and O’Kane
2021) – has been a major research area, for the sake of im-
proving both knowledge representation and search. Some
planners (Dvorak et al. 2014; Bit-Monnot et al. 2020) ap-
proach temporal hierarchical reasoning, yet continue to as-
sume that composite actions are non-temporal.

Within the hierarchical community, there have been open
challenges (Kiam, Bercher, and Schulte 2021) and propos-
ing semantics (Smith and Cushing 2008; Pellier et al. 2022).

The challenges produce domain-specific solutions that we
could draw upon. Temporally-aware hierarchical reasoning
proposals state only primitive actions are capable of having
duration semantics for simplicity. However, this cannot be
the case as an “instantaneous” composite action composed
of durative primitive actions is logically inconsistent. In do-
mains or specifications where expansion is particularly ex-
pensive, delayed, or non-desirable (Gréa, Matignon, and Ak-
nine 2018), instantaneous composite actions are not repre-
sentative enough and can lead to undesirable outcomes.

In this paper, we approach a potential solution to allowing
composite actions to have temporal information by:

1. Proposing a novel time-frame based paradigm: time-
frame planning, and

2. Propose how to combine time-frame planning and de-
compositional planning.

We believe the extensions provided here will help foster fur-
ther discussion around a general purpose, temporal hierar-
chical planning formalism.

2 Related Work
There is an on-going discussion of the semantics of tempo-
ral hierarchical planning. We initially draw upon work done
recently by (Pellier et al. 2022). We relax the need of dura-
tion being only on primitive actions/tasks. As well, we in-
troduce potential search space constraints that can impact
what expansions are selected. Action Notation Modeling
Language (Smith and Cushing 2008) (ANML) and PDDL
2.1/2.2 (Fox and Long 2003; Edelkamp and Hoffman 2004)
also discuss some basic forms of hierarchy, yet leave tempo-
ral hierarchical semantics undefined.

There have been many domain-specific planners that have
built their own solution. While each solution is unique and
ground breaking for its area, none build are a formal, uni-
versal framework. Some early temporally-aware software
systems utilize a strongly built library of actions based on
empirical data, one being the Heuristic Scheduling Testbed
System (HSTS) (Muscettola et al. 1992). These actions, and
environments, are believed to be common occurrences in
the domain they are applied; making them tightly coupled
to their originating domain area. Other planners that uti-
lize a planner-scheduler hybrid planner (Cesta et al. 2007)

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

59

are also difficult to generalize due to a specialized lan-
guage and/or formalism specific to the problem. FAPE is
one influential planning system that defines its own hierar-
chical and temporal planning for acting through a combined
planner-executor (Bit-Monnot et al. 2020). One key differ-
ence between what we propose and what FAPE implements
is that the latter is specific to ANML and chronicle planning.
FAPE’s temporal extents are only known on fully expanded
hierarchical tasks. In this paper, we propose planners have
the ability to reason over temporal extents on un-expanded
hierarchical actions.

3 Background
In this section, we describe the elements necessary from
simple temporal planning to understand time-frame plan-
ning. We will also establish a baseline for hierarchical plan-
ning to discuss how to combine the two paradigms.

3.1 Simple Temporal Domains & Problems
To begin our discussion of time-frame planning, we refer to
the simple temporal problem. The notation we use is both
STRIPs-like and derived from COLIN (Coles et al. 2012). A
simple temporal problem with discrete effects from PDDL
2.1 can be represented as ⟨I,A,G⟩ where:
1. I is the initial state which contains a set of propositions

and an assignment of values to a set of numeric variables.
2. A is the set of actions, where each action (a) is defined

as ⟨pre⊢, pre↔, eff⊢, pre⊣, eff⊣, dur⟩, such that:
(a) prex denotes the conditions that must be maintained

both at start (pre⊢) and at end (pre⊣) of a.
(b) effx denotes the effects that are applied after the con-

ditions of a are met in the start (eff⊢) and end (eff⊣).
Both effect collections are further defined as:

i. eff−x , propositions to be removed from the world,
ii. eff+x , propositions to be added to the world,

iii. effnx , modifications on numeric variables.
(c) pre↔ denotes the invariants (over all); these are con-

ditions that must be maintained between the start and
end of a.

(d) dur denotes the duration constraints which defines the
duration between a’s start and end. These constraints
are further refined with respect to ordering constraints.
This allows for a special parameter, ?duration.

3. G is the goal of the problem: a set of propositions and
values that must be achieved.

Further, the definition of a duration in an action can take
either one or two constraints. A constraint takes the form:
⟨?duration, op, c⟩ where ?duration is the special pur-
pose parameter, op ∈ {>,>=, <,<=,=}, and c ∈ R.

Two constraints define two unique bounds on the opera-
tor’s minimum and maximum. The equality operator can-
not be used in the definition of two constraints. The two
constraint tuple takes the form: ⟨⟨?duration, op1, c1⟩,
⟨?duration, op2, c2⟩⟩ where op1 ∈ {>,>=}, op2 ∈ {<
,<=}, c1, c2 ∈ R and c1 does not have to equal c2. The two
constraints can approximate the behavior of the equality op-
erator.

Flaws & Refinements. Simple temporal planning in
partial-order causally linked (POCL) planning entails two
basic types of flaws: open conditions and causal threats.
Open conditions are unsatisfied preconditions. In tempo-
ral planning, open conditions can be in either the at start
condition block, at end condition block, or invariant block.
An open condition is resolved one at a time, en-queuing
all potential fixes either from instantiating new actions or
reusing steps in the plan. Causal threats arise when a causal
link would be undone by an inverse effect (e.g., p and ¬p).
Causal threats are solved be one of three methods: promo-
tion (ordering the threatening step after the causal link’s con-
sumer), demotion (ordering the threatening step before the
causal link’s producer), or non-codesignation (in the event
of lifted actions).

Refinements to the plan are made per refinement strate-
gies, which are processes of which flaws are selected in
some order. All solutions generated by the flaw are then
queued back onto the search fringe. Refinement strategies
can come in different forms and deal with a variety of
flaws (Pollack, Joslin, and Paolucci 1997). Planners can also
change strategies at run-time (Younes and Simmons 2003).

Solutions. A solution to the given problem is a sequence
of actions from A that establishes all goal conditions in the
problem. A solution must respect the duration constraints of
every action in the solution; that is, no action should last
longer than its maximum defined duration or be scheduled
such that it takes less time than minimally allowed. The so-
lution is the tuple ⟨S,O,L⟩ where:
1. S is the set of actions instantiated into the plan, referred

to as steps. All s ∈ S correspond to an a ∈ A from the
problem definition.

2. O is the orderings over the steps in the solution. The or-
dering system is temporally-aware. Every o ∈ O takes
the form ps/e ≺ cs/i/e, where p, c ∈ S. s, i, e corre-
spond to start, invariant, and end blocks.

3. L are links between an effect and a precondition. A
causal link l ∈ L is the tuple ⟨ps/e ≺ cs/i/e, q⟩ where
p, c ∈ S and q is a predicate effect in the producer (p).

3.2 Hierarchical Reasoning
There are several different variations of hierarchical plan-
ning (Bercher, Alford, and Höller 2019). We specifically
utilize the decompositional POCL (DPOCL) (Young and
Moore 1994; Winer and Cardona-Rivera 2018) formalism
as our approach to hierarchical reasoning.

A standard decompositional problem takes the same form
as in Section 3.1. The key difference lies in the set of actions,
A, where each a is defined as ⟨pre, eff, composite,Λ⟩. Each
element is defined as:
1. pre is the action’s preconditions, which must be main-

tained at the start.
2. eff is the action’s effects, which affect the world. Effects

take the same form as in Section 3.1.
3. composite is a true/false flag to indicate it is a composite

header step that needs to be decomposed or expanded. If
the flag is true, then the step is a composite step.

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

60

4. Λ is the set of schemas that can be used to expand
the composite action. A schema λ ∈ Λ takes the form
⟨S,O,L⟩ where:

(a) S is the set of pseudo-actions in the decomposition that
must be added to the plan. All s ∈ S can either be a
composite or a primitive, allowing for the nesting of
composite pseudo-actions.

(b) O is the set of orderings over the steps in S.
(c) L is the set of causal links in the decomposition that

links effects to preconditions.

Flaws & Refinements. On top of the open condition and
causal threat flaws in POCL, a decomposition flaw is intro-
duced. This flaw signals to the planner that the given step is
composite and thus must be expanded. All causal links that
link to and from the composite step must be updated to the
newly created dummy start and end.

DPOCL, as it was introduced, requires decomposition
flaws to be resolved first before any other flaw. We do not
make that strong of commitment to decomposition first,
as there are situations in planning where this is not de-
sired (Gréa, Matignon, and Aknine 2018).

Expanding Schemas. When expanding schemas, it is im-
portant to modify all existing orderings such that everything
that comes after, before, and during the composite step is
maintained. For DPOCL, a decompositional link is gener-
ated on expansion to keep associated actions together.

Solutions. A solution in a standard hierarchical problem
is: ⟨S,O,L,D⟩. S,O, and L are similar to the simple tem-
poral solution without time. D is the set of decomposition
links.

4 Towards Temporal Decomposition
We extend on the prior notation of a simple temporal so-
lution to a novel planning paradigm: time-frame planning.
While we outline a sketch here, space precludes us from div-
ing in to the deeper technical representations. A parameter
is added to the problem representation to support new rea-
soning, creating the tuple of ⟨I,A,G, T ⟩ where:

1. I,A, and G are the same as before.
2. T is a constraint on the duration of the solution much

in the same way as dur is for actions. That is, T de-
fines a minimum and/or maximum duration that bounds
the solution. T utilizes the special parameter provided
in temporal-metric planning, total-time, to define
its own constraints. However, this duration constraint is
not modified based on what is in the plan: it defines
what a solution to the problem must satisfy. The pa-
rameter total-time also takes the form of a tuple,
⟨min,max⟩, which indicates the absolute minimum and
maximum time.

A time-frame is composed in the same way the duration
of an action is: there exists either a single constraint, or
two constraints. The single constraint can define either one
bound with the set {>,<,>=, <=}. The two constraint tu-
ple can only use {>,>=}, which defines a minimum, and

{<,<=}, which defines a maximum. The prior definitions
of duration constraint tuples for both single- and two con-
straints applies to a time-frame as well.

New Flaws. As we have defined a new constraint to sat-
isfy, there must also be some way for a planner to know
when these issues arise. Overtime flaws are generated when
at least one chain of actions in the plan could run longer than
the maximum duration the problem defines. An overtime
flaw can be defined as the tuple: ⟨total-timemax, >, c⟩
where total-timemax is the max duration of the plan
and c ∈ R is a constant defined as the solution’s maximum.
In this case total-time exceeds c, indicating we could
potentially go over time. This type of failure can be found
in space: attempting to facilitate a spacewalk longer than the
available oxygen in the astronaut’s system.

Conversely, undertime flaws are generated when no
chain of actions reach the minimum threshold defined by
the problem. This flaw can be expressed in the tuple:
⟨total-timemin, <, c⟩ where total-time is the spe-
cial parameter and c ∈ R is a constant defined as the so-
lution’s minimum. This indicates that our longest minimum
time is still below our threshold, and must be increased. This
flaw type can be observed when attempting a slingshot ma-
neuver: burn your engines for too little time, the rocket might
end up being pulled in closer to the planet which results in
negative consequences.

Solutions. A solution in time-frame planning adheres to
the same principles as a solution in simple temporal prob-
lems: a series of actions that respect each other’s duration
constraints. A time-frame solution differs, however, as the
duration constraint T must also be respected. Moreover, the
solution has the potential to offer a family of solutions much
in the same way a solution that is not total-ordered offers
multiple solutions, conditioned on not using the equality
(‘=’) operator in actions. The optimal solution returned from
a simple temporal planner might not be complete in a time-
frame setting.

4.1 Decompositional Time-frame Planning
Combining time-frame and hierarchical reasoning has a
fair number of questions and concerns such as: 1. how
should duration constraints be treated, 2. should decom-
positional actions always be bound, 3. should schemas be
able to affect the top-level bounds, and many other con-
siderations, not including to specific planning styles (e.g.,
HTNs vs DPOCL). Actions are expanded to be the tuple
⟨pre⊢, pre↔, eff⊢, pre⊣, eff⊣, dur, composite, bound, rel,Λ⟩
where:

1. The following remain the same as in Section 3.1 and Sec-
tion 3.2: prex, effx, dur, composite, and Λ.

2. bound states how to treat the action’s temporal duration
during parsing. There are two types of bounds: strict and
flexible. strict-bounds are top-to-bottom: all schemas as-
sociated with the action must adhere to the constraints.
flexible-bounds are a bottom-up approach to temporal
bounds: the top-level action’s duration is defined by the
schemas. flexible-bounded actions may find that they are

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

61

infinite in maximum duration due to not all open con-
ditions and causal threats being resolved in at least one
schema. When planning, all bounds are treated as strict
by the planner.

3. rel is how long schemas can take relative to their starting
time: given the current minimum duration of the schema,
how far is the maximum. If a schema has no open con-
ditions or causal threats, rel is ignored. Otherwise, the
minimum time is determined from orderings.

With the expansion of a composite action, we must
also discuss changes to schemas. As expanding a compos-
ite action leads to the inheritance of all flaws that come
with the given schema, we must contend with inherited
temporal flaws. A schema’s tuple is thus expanded as:
⟨S,O,L, pre↔, dur, rel⟩. S,O, and L are the representation
of sets as in Section 3.2. However, the other components are
defined as:
1. pre↔ are schema-level invariants. These are added to the

plan as open conditions to the dummy start, as schemas
might have contradicting invariants.

2. rel is the same as in the composite operator definition.
This rel overrides the composite operator’s rel, if defined.

3. dur, unlike in the action scheme, cannot be directly de-
fined by the domain engineer. The maximal and mini-
mal extents, the components of dur, are defined by the
schema’s steps and orderings. Should there exist an open
condition or causal threat, then the maximum duration of
the schema is defaulted to infinite unless rel is defined
either in the schema itself, or the top-level action.

Expanding Temporal Schemas. When expanding a tem-
poral schema, the at start, at end, and over all blocks of the
top-level action must be maintained. at start and at end can
be decomposed into two pairs of actions with a duration of
0 with their respective blocks. For example, say a composite
step has an at start condition a and at start effect b. The new
stand-in for the composite start has a condition of a, and its
at end effect has an effect of a and b. at end is decomposed
in the same way, just using its condition and effect blocks.

over all, when expanded, asks: what does it mean to have
an invariant over multiple actions? We represent such cases
as causal links between the at start-at end effect and at end-
at start condition. Schema-level invariants are appended to
the end of at end effects. Of course, invariants also need to be
satisfied as open conditions which we can solve by placing
them as at start at end conditions.

Decomposition links should be generated the same; how-
ever, with the added notation of time-frames we must also
record how long this decomposition can be. Modifying the
duration of a top-level composite action before expansion
should affect the search space. By further constraining the
action, schemas are culled from potential expansions. De-
composition links should reflect these constrained bounds.

Bound Interactions. Another question we must consider
is, what happens if a composite step is strict-bounded and a
schema runs over or under time?

For example, a top level action that in some domain has a
defined constraint of ⟨5, 10⟩ with a strict-bound. If there is

a schema that has a calculated duration constraint of ⟨6, 8⟩,
there are no issues. If a schema has a duration constraint of
⟨6, 12⟩ or ⟨2, 8⟩, the parser should not error out as there is
a potential solution (reducing or increasing the actions). If
there is a schema that is ⟨2, 5⟩ or ⟨11, 17⟩, then the parser
should produce an error and prevent the planner from run-
ning as there are no actual solutions. If a schema has no
maximum due to there being a flaw in it, then the maximum
is either schemamin + rel, if rel is defined, or the maximum
allowed by the action. Given the same duration constraints,
if the action was flexible-bound then no error would be pro-
duced in any of the cases. The action’s duration would not
be ⟨5, 10⟩ but ⟨2, 17⟩.

Modified Flaws. How does temporal hierarchical plan-
ning interact with time-frame planning? The overtime and
undertime flaws need to be modified slightly as both flaws
exist as plan-wide issues. We fix this by adding a reference to
a decomposition link (d) to the definitions. Thus, dur can be
either the total-time or the duration of a specific decom-
position, depending on if d = ∅ or d ∈ D, respectively. The
latter statement can be derived by examining the distance be-
tween the schema’s start’s end and the schema’s end’s start.
A planner should resolve these flaws much in the same way
as a plan-wide overtime/undertime flaw with the key differ-
ence being to begin at the expanded schema’s end. Actions
that are linked only to the schema’s start are not considered
for the solution, as they only shift the sub-plan and don’t
contribute to going over the duration.

Fundamentally, the decomposition flaw remains the same
as described in Section 3.2.

Solutions. A given solution to a temporally-aware, hier-
archical reasoning planner is: ⟨S,O,L,D⟩. S,O, and L are
the same as in simple temporal and time-frame planning. D
is the set of temporally-aware decomposition links. All so-
lution requirements are the same as in time-frame planning
and classical hierarchical planning.

5 Review & Future Work
In this paper, we defined two novel paradigms: time-frame
planning and decompositional time-frame planning. The for-
mer operates over primitive operators and allows problems
to specify further solution constraints in both time windows
and time periods. We described two new flaws, overtime
and undertime, how they’re identified, and how a planner
could resolve them. We extended these notions to decom-
positional planning, giving composite actions duration con-
straints. We defined new and necessary elements for decom-
positional time-frame planning at both the action level, and
its schemas. We also added more information to the time-
frame flaws to constrain decomposed actions’ sub-plans to
a specified, desired time. By doing so, we stated expan-
sion itself can be impacted by the composite action’s du-
ration changing and that some schemas may not be added
as potential solutions. Future implementations can utilize
the same domains and problems seen in prior work (Yorke-
Smith 2005) for testing.

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

62

Acknowledgements
This material is based upon work supported by the U.S. Na-
tional Science Foundation (Grant #2046294). We also thank
our anonymous reviewers for their feedback during peer re-
view.

References
Bercher, P.; Alford, R.; and Höller, D. 2019. A Survey on
Hierarchical Planning – One Abstract Idea, Many Concrete
Realizations. In Proceedings of the 28th International Joint
Conference on Artificial Intelligence, 6267–6275.
Bit-Monnot, A.; Ghallab, M.; Ingrand, F.; and Smith, D. E.
2020. FAPE: a Constraint-based Planner for Generative and
Hierarchical Temporal Planning. ArXiv:2010.13121 [cs].
Cavrel, N.; Pellier, D.; and Fiorino, H. 2023. On Guid-
ing Search in HTN Temporal Planning with non Temporal
Heuristics. ArXiv, abs/2306.07638.
Cesta, A.; Cortellessa, G.; Fratini, S.; Oddi, A.; and Poli-
cella, N. 2007. The MEXAR2 Support to Space Mission
Planners. In Proceedings of the 17th European Conference
on Artificial Intelligence.
Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2012.
COLIN: Planning with Continuous Linear Numeric Change.
Journal of Artificial Intelligence Research, 44: 1–96.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence, 49(1-3): 61–95.
Do, M.; and Kambhampati, S. 2014. Sapa: A domain-
independent heuristic metric temporal planner. In Proceed-
ings of the 6th European Conference on Planning, 57–68.
Dvorak, F.; Bartak, R.; Bit-Monnot, A.; Ingrand, F.; and
Ghallab, M. 2014. Planning and Acting with Temporal and
Hierarchical Decomposition Models. In Proceedings of the
2014 IEEE 26th International Conference on Tools with Ar-
tificial Intelligence, 115–121.
Edelkamp, S.; and Hoffman, J. 2004. PDDL2.2: The Lan-
guage for the Classical Part of the 4th International Plan-
ning Competition. Technical Report 195, Albert-Ludwigs-
Universität Freiburg, Institut für Informatik.
European Space Agency. 2019. APSI - Advanced Plan-
ning and Scheduling Initiative. https://essr.esa.int/project/
apsi-advanced-planning-and-scheduling-initiative (Last ac-
cessed: May 24, 2024).
Fox, M.; and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. Journal
of Artificial Intelligence Research, 20: 61–124.
Frank, J. 2013. What is a Timeline? In Proceedings of the
4th Workshop on Knowledge Engineering for Planning and
Scheduling at the 23rd International Conference on Auto-
mated Planning and Scheduling, 31–38.
Furelos-Blanco, D.; and Jonsson, A. 2018. CP4TP: A Clas-
sical Planning for Temporal Planning Portfolio. In Tempo-
ral Track of the International Planning Competition (IPC)
2018.
Gréa, A.; Matignon, L.; and Aknine, S. 2018. HEART: Hi-
Erarchical Abstraction for Real-Time Partial Order Causal

Link Planning. In Proceedings of the 1st ICAPS Workshop
on Hierarchical Planning at the 28th International Confer-
ence on Automated Planning and Scheduling, 17–25.
Kiam, J. J.; Bercher, P.; and Schulte, A. 2021. Tempo-
ral Hierarchical Task Network Planning with Nested Multi-
Vehicle Routing Problems – A Challenge to be Resolved.
In Proceedings of the 4th ICAPS Workshop on Hierarchical
Planning at the 31st International Conference on Automated
Planning and Scheduling, 71–75.
Muscettola, N.; Smith, S.; Cesta, A.; and D’Aloisi, D. 1992.
Coordinating space telescope operations in an integrated
planning and scheduling architecture. IEEE Control Sys-
tems, 12(1): 28–37.
Parimi, V.; Rubinstein, Z. B.; and Smith, S. F. 2022. T-HTN:
Timeline Based HTN Planning for Multiple Robots. In Pro-
ceedings of the 5th ICAPS Workshop on Hierarchical Plan-
ning 32nd International Conference on Automated Planning
and Scheduling, 59–67.
Pellier, D.; Fiorino, H.; Grand, M.; Albore, A.; and Bailon-
Ruiz, R. 2022. HDDL 2.1: Towards Defining an HTN For-
malism with Time. ArXiv:2206.01822 [cs].
Pollack, M. E.; Joslin, D.; and Paolucci, M. 1997. Flaw Se-
lection Strategies for Partial-Order Planning. Journal of Ar-
tificial Intelligence Research, 6: 223–262.
Rahmani, H.; Shell, D. A.; and O’Kane, J. M. 2021. Plan-
ning to Chronicle. In Proceedings of the Algorithmic Foun-
dations of Robotics XIV Conference, 277–293.
Smith, D. E.; and Cushing, W. 2008. The ANML Language.
In Proceedings of the Workshop on Knowledge Engineering
for Planning and Scheduling at the 18th International Con-
ference on Automated Planning and Scheduling.
Turi, J.; and Bit-Monnot, A. 2022. Guidance of a
Refinement-based Acting Engine with a Hierarchical Tem-
poral Planner. In Proceedings of the Workshop on Integrated
Action and Execution at the 32nd International Conference
on Automated Planning and Scheduling.
United States National Aeronautic Space Administra-
tion. 2023. Planning & Scheduling Group. https:
//www.nasa.gov/intelligent-systems-division/autonomous-
systems-and-robotics/planning-and-scheduling-group/
(Last accessed: May 24, 2024).
Winer, D. R.; and Cardona-Rivera, R. E. 2018. A Depth-
Balanced Approach to Decompositional Planning for Prob-
lems where Hierarchical Depth is Requested. In Proceed-
ings of the 1st Hierarchical Planning Workshop at the 28th
Conference on Automated Planning and Scheduling, 1–8.
Yorke-Smith, N. 2005. Exploiting the Structure of Hierar-
chical Plans in Temporal Constraint Propagation. In 20th
AAAI National Conference on Artificial Intelligence.
Younes, H. L.; and Simmons, R. G. 2003. VHPOP: Ver-
satile Heuristic Partial Order Planner. Journal of Artificial
Intelligence Research, 20: 405–430.
Young, R. M.; and Moore, J. D. 1994. DPOCL: A Prin-
cipled Approach to Discourse Planning. In Proceedings of
the 7th International Workshop on Natual Language Gener-
ation, 13–20.

Proceedings of the 7th ICAPS Workshop on Hierarchical Planning

63

	Title Page
	Committees
	Preface
	Invited Talk
	Table of Contents
	A Comparative Analysis of Plan Repair in HTN Planning
	An ILP Heuristic for Total-Order HTN Planning
	Barely Decidable Fragments of HTN Planning
	Correcting Totally-Ordered Hierarchical Plans by Action Deletion and Action Insertion
	Redundant Decompositions in PO HTN Domains: Goto Considered Harmful
	Towards Search Node-Specific Special-Case Heuristics for HTN Planning – An Empirical Analysis of Search Space Properties under Progression
	Weighted Randomized Anytime Planning in Pyhop
	Toward Planning with Hierarchical Decompositions and Time-frames

