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Abstract

In hierarchical task network (HTN) planning, heuristic search
is highly effective, but currently, there are only a few avail-
able heuristics and they are pre-selected for use. However,
during progression-based search, many search nodes exhibit
specific properties, e.g., they may become totally ordered or
acyclic allowing for the application of specialized heuristics.
For these search nodes, we conducted an experimental evalu-
ation, employing reachability analysis, to examine the special
cases encountered during search. Measuring how often vari-
ous special cases (like acyclic problems) occur informs us of
which heuristics developed for special cases – selected on a
per-search node basis – are most promising.

Introduction
Hierarchical Task Network (HTN) planning (Erol, Hendler,
and Nau 1996; Geier and Bercher 2011; Bercher, Alford,
and Höller 2019) is a framework within AI planning where
tasks are organized into hierarchies, consisting of primitive
tasks that are directly executable and abstract tasks that re-
quire further decomposition. Solving HTN planning prob-
lems involves a range of different methods. Among the most
successful ones is progression-based search (Höller et al.
2020), which operates in a forward manner adhering to spe-
cific orderings from left to right. By integrating heuristics,
it refines the search trajectory, minimizing exhaustive explo-
ration and effectively guiding the path to the goal.

Heuristic search has consistently demonstrated its effec-
tiveness in HTN planning (Höller, Bercher, and Behnke
2020; Olz and Bercher 2023; Olz, Höller, and Bercher
2023). However, there are only a few heuristics available:
There’s the TDG Heuristic (Bercher et al. 2017), Relax Com-
position Heuristic (RC Model) (Höller et al. 2018, 2020),
ILP HTN Heuristic (Höller et al. 2020), and a Landmarks
Heuristic (Höller and Bercher 2021) – to the best of our
knowledge, these are the only available ones up to now.
All of them are designed for the general case without fur-
ther restriction on the partially ordered (PO) tasks or how
they interact via the task hierarchy. However, some search
nodes show specific properties during the search. For in-
stance, even if the initial problem is partially ordered, cer-
tain search nodes could become totally ordered (TO) dur-
ing search or recursive parts might become non-recursive.
Designing a heuristic for the general case is complex, so

it might be easier to design a heuristic for one of the var-
ious special cases. As evidence for this, a recent pruning
technique (discarding dead-ends and reducing the branch-
ing factor of search) (Olz and Bercher 2023) was developed
for TO HTN problems, and yet has to be transferred to par-
tial order HTN planning. We believe that developing pruning
techniques or heuristics for special cases like this one (total
order) or others, like acyclic problems / search nodes, thus
shows great potential. However, choosing such a heuristic
or technique would currently only be possible in advance,
i.e., before search starts. We however hypothesized that spe-
cial cases start arising during search, thus allowing to choose
specialized heuristics during search thereby increasing their
impact as they can be deployed even in problems that don’t
adhere to the respective special case in advance.

If more heuristics or techniques are tailored to specific
special cases, analyzing each search node would enable the
selection of a heuristic dedicated solely to that particular
case and search node – and thus all search nodes below that
one, since once a special case is established, it cannot be
violated anymore. This could provide benefits, allowing us
to solve planning problems previously impossible or, at the
very least, expedite the process compared to before. Special
case heuristics could also contribute to that: even if they are
not “more informed”, they might still be easier to compute.

To assess the potential of choosing specialized heuristics
and/or techniques during search, we conducted an experi-
mental evaluation checking how often the various known
special cases occur. In this paper we only check TO prob-
lems and can hence not report how often TO search nodes
occur while solving PO problems. We investigate a range of
special cases and document their occurrence in percentage to
all search nodes created under the respective search strategy
(which was chosen based on the results of the IPC 2024).
As a minor side contribution, we also propose how the set
of reachable methods – which impact the accuracy of the re-
spective current special case – can be computed in a tighter
way, based on a relaxed reachability analysis. We report the
number of special cases according to both investigations:
a naive but quick one, the number and a more informed,
but slower one. Finally, we draw a conclusion based on our
findings – i.e., whether we believe that specialized heuris-
tics might significantly impact search performance and if so,
which special cases are the most promising ones.
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HTN Planning Formalism
Our work builds upon the HTN planning formalization ini-
tially introduced by Geier and Bercher (2011) and further
developed by Bercher, Alford, and Höller (2019), maintain-
ing the core concepts established by Erol, Hendler, and Nau
(1996). We would like to note in advance that whereas the
formalization provided here is the general one (admitting
any special case, including “none” by allowing partial or-
der), the empirical study carried out will focus on totally
ordered problems only.

A task network tn, represented as a tuple (T, ≺, α), con-
sists of a finite set of task id symbols T , a strict partial order
on T denoted by ≺⊆ T ×T (which is irreflexive, asymmet-
ric, and transitive), and a mapping α that assigns each task
id in T to either a primitive task name in Np or abstract task
name in Na.

An HTN domain D is a tuple (F,Np, Na, δ,M), consist-
ing of a finite set of facts F , a finite set of primitive task
names Np, a finite set of abstract task names Na, a mapping
δ : Np → 2F × 2F × 2F that assigns each primitive task
(also called an action) to its preconditions, add effects, and
delete effects, and a finite set of decomposition methods M
where each method m ∈ M is a tuple (c, tn) pairing an ab-
stract task c with a task network tn. An HTN problem is a
tuple P = (D, sI , tnI, g), comprising an HTN domain D,
an initial state sI ⊆ 2F , an initial task network tnI, and a
goal description g ⊆ 2F .

A task network tna = (Ta, ≺a, αa) will be decomposed
by a decomposition method m = (c, tnm) into a new task
network tnb = (Tb, ≺b, αb) if and only if there exists a task
identifier t ∈ Ta such that αa(t) = c is replaced by subtasks
in tnm, and all ordering constraints from t will be inherited.
It is written as tna t,m−−→ tnb. There exists a task network
tn′ = (T ′,≺′, α′) equivalent to tnm such that T ′ ∩ Ta = ∅.
The only difference between tn′ and tnm are task identifiers
to avoid repeating task identifiers. The application of m to
tna results into the task network tnb given as follows.

Tb := (Ta \ {t}) ∪ T ′,

≺b :=≺a ∪ ≺′ ∪ ≺x,

αb := αa|Ta\{t} ∪ α′

≺x := {(ta, tb) ∈ Ta × T ′ | (ta, t) ∈ ≺a} ∪
{(ta, tb) ∈ T ′ × Ta | (t, tb) ∈ ≺a}

The notation tn ∗−→ tn′ indicates tn can be decomposed into
tn′ by using a sequence of methods.

A task network is executable if it has an executable lin-
earization of its tasks, where a primitive task p ∈ Np linked
to action a with δ(p) = (pre(a), add(a), del(a)) is exe-
cutable in the state s if and only if pre(a) ⊆ s, and its exe-
cution modifies s to the resulting state (s\del(a))∪add(a).
An executable linearization for task network tn = (T,≺,
α) is a sequence (t1, t2, ..., tn) where each ti ∈ T and
α(ti) ∈ Np can be executed sequentially. A task network
tns = (Ts,≺s, αs) is called a solution of an HTN prob-
lem P = (D, sI , tnI) if and only if tnI is decomposed into
tns through a series of decompositions, tns solely comprises

primitive tasks (∀t ∈ Ts : α(t) ∈ Np), and tns has an exe-
cutable linearization. Solution task networks can only be ob-
tained from the initial task network via decomposition with-
out inserting any other tasks.

Known Special Cases
In this section, we provide the definitions for known prob-
lem classes, which are primitive HTN problems, totally or-
dered problems, regular problems, acyclic problems (Erol,
Hendler, and Nau 1996) and tail-recursive problems (Al-
ford et al. 2012; Alford, Bercher, and Aha 2015). We refine
the stratification by Alford et al. (2012) and propose a more
tight HTN stratification to assist in defining acyclic and tail-
recursive problems. More specifically, our slightly changed
formalization of stratifications can be regarded as another
minor contribution of the paper, as it has some advantages
over the existing one. While the existing one was not wrong,
our “tighter version” allows us to differentiate more classes
based on the stratification alone, without having to consult
the underlying HTN problem.

HTN planning is undecidable (Erol, Hendler, and Nau
1996; Geier and Bercher 2011) but various special cases
can make the plan existence problem easier. Erol, Hendler,
and Nau (1996) provided tight complexity results (i.e.,
with matching upper and lower bounds) for primitive HTN
problems and for regular problems, and provided upper
bounds for totally ordered problems. Alford, Bercher, and
Aha (2015) provided matching lower bounds for total-order
problems, and tight bounds for tail-recursive problems.

Primitive HTN problems (when all tasks in the initial task
network are primitive) are the base case, appearing at the
end of the search if a solution exists. Deciding whether a
primitive task network has an executable linearization is NP-
complete (shown independently by Erol, Hendler, and Nau
(1996) and Nebel and Bäckström (1994), later refined by Tan
and Gruninger (2014)).
Definition 1 (Totally Ordered Problem). An HTN prob-
lem P is called totally ordered if the ordering of its initial
task network tnI is totally ordered and all decomposition
methods are totally ordered, i.e., for each m ∈ M with
m = (c, tnm), tnm is a totally ordered task network.

Totally ordered HTN planning is in EXPTIME (Erol,
Hendler, and Nau 1996) and EXPTIME-hard (Alford,
Bercher, and Aha 2015) and hence EXPTIME-complete.
Definition 2 (Regular Problem). An HTN problem P is reg-
ular if its initial task network tnI and tnm in all its methods
(c, tnm) ∈ M are regular. A task network tn = (T,≺, α) is
regular if

• there is at most one task in T that is abstract and
• if t ∈ T and α(t) ∈ Na, it is the last task in tn, i.e., for

all t′ ∈ T with t′ ̸= t, we have (t′, t) ∈≺.

In a regular problem P , given that the initial task network
tnI and task networks tnm with all methods (c, tnm) ∈ M
are regular, every primitive task in a task network needs to be
progressed first, then the abstract task will be decomposed.
The abstract task will be the last task in each search node
until the primitive task network is found. The largest size
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of the search node during the progression search will hence
be bounded by the method (c, tnm) with the largest task
network tnm. These problems were shown to be PSPACE-
complete (Erol, Hendler, and Nau 1996).

For the more complex problem restrictions like tail-
recursive ones, we provide stratifications, as introduced
by Alford et al. (2012) and also used for defining tail-
recursiveness (Alford, Bercher, and Aha 2015).

Definition 3 (Stratification). A set R ⊆ Na × Na is called
a stratification if it is a total preorder (i.e., reflexive, tran-
sitive, and total). A stratum is an inclusion-maximal subset
S ⊆ Na such that for all x, y ∈ S both (x, y) ∈ R and
(y, x) ∈ R hold.

According to this definition, stratifications are a concept
independent of the underlying HTN problem. In the original
definition of tail-recursive problems (Alford, Bercher, and
Aha 2015), a specific stratification has to exist for the respec-
tive problem to be called tail-recursive. However, although
those definitions were sufficient to define tail-recursiveness
adequately, there could still be several stratifications adher-
ing to the required restrictions. Thus, even for tail-recursive
problems, the set of possible stratifications defined over
the respective compound tasks wasn’t unique. For example,
consider a problem an initial abstract task cI decomposes
into the total-order task network c1 → c2 with compound
tasks c1 and c2. As we will see later, tail-recursiveness will
require that (cI , c2) ∈ R and (c2, cI) /∈ R, i.e., it requires
c2 to be on a strictly lower stratum than cI , but it will not
impose a restriction on where exactly c1 sits with regard to
cI . That is, whereas at least (c1, cI) ∈ R is demanded, the
original definition of the interplay of stratification and tail-
recursiveness would also allow (c1, cI) ∈ R to hold, thus
making stratifications not unique. In fact, totality requires
that any two compound tasks are “artificially” put into some
kind of relationship, even if none of the tasks can be de-
composed into another. We propose a stricter definition that
removes the requirement of totality and imposes an exact re-
lationship between the decomposition hierarchy and the un-
derlying stratification – thus making the stratification a for-
mal one-to-one mapping of the underlying task hierarchy.

Another advantage (on top of having a unique stratifi-
cation per problem, having a clear, intuitive semantics for
stratifications, and simplified problem definitions for tail-
recursive problems) is that in our proposed definition we
can differentiate whether singleton stratums represent recur-
sive tasks or not. The original definition required reflexiv-
ity, meaning that we have (c, c) ∈ R for every compound
task. This however means that it is impossible to identify,
based on the stratification alone, whether the abstract task c
can actually reach itself (and hence is recursive) or not, be-
cause reflexivity is demanded by definition rather than being
a consequence of reachability. In our definition, reflexivity
follows only if a task can reach itself.

Definition 4 (HTN Stratification). Given an HTN domain
D = (F,Np, Na, δ,M), a set RHTN ⊆ Na × Na is called
an HTN stratification of D if and only if it is transitive and
it holds (c′, c) ∈ RHTN if and only if c′ is reachable from c
via decomposition.

For simplicity, we will use the terms “stratification” and
“stratum” and hence skip the “HTN”.

Figure 1: An example of stratification RHTN that has a
height of 3, featuring abstract tasks A,B,C,D,E, and F .
Circles denote strata, S1 = {A}, S2 = {B,C} and S3 =
{D,E, F}. Directed arrows between circles show the de-
composition hierarchy, with arrows pointing from higher to
lower levels (e.g., (A,B) ∈ RHTN ). Example taken from an
ICAPS tutorial on HTN planning (Bercher and Höller 2018).

A directed graph can represent stratification diagrammat-
ically (Figure 1). Task A cannot be decomposed into any
other abstract task, and tasks B,C and tasks D,E, F can
be decomposed into each other. Due to the requirement of
strata being inclusion-maximal subsets of Na, there are no
other strata. As the number of strata in the stratification is 3,
the height of the stratification is 3. We also can say that S2 is
a stratum lower than S3 and S1 is lower than both S2 and S3.
Tasks are in different strata if they are in different decompo-
sition hierarchy levels. For instance, task D has a stratum
height of 3 since it is at the highest hierarchy level. Primi-
tive tasks, unrelated to the hierarchy, are assigned a stratum
height of 0.

Figure 2: An example of a partially ordered stratifica-
tion RHTN with a height of 3, featuring abstract tasks
A,B,C,D,E, and F . Directed arrows between tasks in-
dicate decomposition methods. Circles denote strata: S1 =
{A}, S2 = {B,C}, S3 = {F}, and S4 = {D,E}.

Tasks B,C in Figure 2 have stratum height 2 as they are
on a strictly higher stratum as A, which is on the lowest
level. B and C share a stratum since they can be turned
into each other, but they don’t share a stratum with A since
they can’t be turned into each other. Since tasks D,E can
be turned into B,C but not vice versa, they are on a stratum
with height 3. Now, F is on a higher stratum than A and thus
has height 2 or 3. They are not in the same stratum as any of
the other tasks, because they cant be turned into each other.

A stratum with a single abstract task c implies that no
other task c′ exists for which c can reach c′ while c′ can
also reach c via decomposition. However, c may be decom-
posed into itself, indicating a self-loop if (c, c) ∈ RHTN .
Therefore, RHTN effectively differentiates whether c is in a
self-loop.
Definition 5 (Acyclic Problem). An HTN problem P is
acyclic if for its HTN stratification RHTN ∈ Na×Na holds:
if (c′, c) ∈ RHTN , then (c, c′) /∈ RHTN .
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The stratification RHTN for the acyclic problem is ir-
reflexive – so demanding that RHTN is irreflexive is an al-
ternative definition. As the stratification is transitive, it be-
comes asymmetric when it is irreflexive. The search space
will be finite during the progression search because the al-
gorithm does not need to deal with recursion. The acyclicity
will bring the computational complexity of an HTN problem
down to NEXPTIME-complete (Alford, Bercher, and Aha
2015). If an HTN problem is acyclic and totally ordered, it
will be PSPACE-complete (Alford, Bercher, and Aha 2015).

Figure 3: An example of stratification RHTN of the acyclic
HTN problem P .

For example, there is an acyclic HTN problem P where
all tasks in Na are A,B and C, as shown in Figure 3. The
stratification of P is RHTN = {(A,B), (B,C), (A,C)} and
the strata are {A}, {B} and {C} as per Definition 4. All
strata for the acyclic problem contain exactly one abstract
task since all abstract tasks are in the different decomposi-
tion hierarchy levels.

For the definition of tail-recursiveness, we require the
concept of last tasks or non-last tasks, respectively. A task
is called last task in a task network if and only if all other
tasks in that task network are ordered to occur before it. A
task is called non-last task if and only if it is not a last task.
Note that, with the exception of task networks of size 0 or
1, all task networks have non-last tasks (potentially all of
them), but not every task network has a last task.

Definition 6 (Tail-Recursive Problem). An HTN problem P
is tail-recursive if for its HTN stratification RHTN and for all
methods (c, tnm) ∈ M it holds that for any non-last abstract
task cn in tnm with cn ∈ Na, (c, cn) /∈ RHTN .

(a) tn1 with m1 and m2 (b) tn2 with m3 and m2

Figure 4: Comparison of tail-recursiveness (left) and non-
tail-recursiveness (right). Filled squares denote primitive
tasks; circles represent abstract tasks; numbers beside indi-
cate the height of the stratum. Example borrowed from an
ICAPS tutorial on HTN planning (Bercher and Höller 2018).

In Figure 4a, the abstract task c in tn1, which is the one
with stratum height 4, can be decomposed into a task net-
work tna, which contains tasks that are on a (strictly) lower
stratum than c. Therefore, task network tna cannot possibly
contradict tail-recursiveness. Also note that the position of c

in tn1 does not play any role, only the position of the tasks
within tna are relevant.

The last task cl in tn1 can be decomposed into a task net-
work that contains a task that has the same stratum height
as cl. However, that task in tnb happens to be the last task,
hence this is not a problem. All non-last tasks in tnb are
indeed on a (strictly) lower stratum than cl, so this task net-
work also does not contradict tail-recursiveness. Again, the
position of cl within tn1 was irrelevant, only the position of
tasks within tnb matters.

In Figure 4b we see an example of a problem that is not
tail-recursive. Whereas method m2 is as before and hence
doesn’t cause problems, method m3 = (c, tnc) does. Here,
we can see that tnc contains a task with stratification height
4, which is the same as the task c from which it got de-
composed. Hence that task (in tnc) would be required to be
its last task – but it is not. Again, the position of c within
tn2 was not relevant (it never is); only the positions of tasks
within the decomposition method count – interestingly this
implies that the form and structure of the initial task net-
work are completely irrelevant. This is interesting because
the proof by Erol, Hendler, and Nau (1996) for the unde-
cidability of HTN planning required only two partially or-
dered compound tasks in the initial task network, whereas all
methods were totally ordered. However, tail-recursive meth-
ods are enough to achieve decidability, whereas totally or-
dered methods are not. (This is not a contribution of this
paper, but we find this an interesting observation to point
out.)

The computational complexity of (ground) tail-recursive
problems is EXPSPACE-complete (Alford, Bercher, and
Aha 2015), and of tail-recursive and totally ordered prob-
lems is PSPACE-complete (Alford, Bercher, and Aha 2015).

Testing for these special cases can clearly be done in poly-
nomial time (with respect to the size of a ground model)
since stratifications are essentially the very same as Task De-
composition Graphs (see next section), and checking for the
respective properties equals checking simple graph proper-
ties. Hence, we will not provide details on how these checks
can be done.

Figure 5: Control flow graph of tests ordering to minimize
computational costs and addresses property dependencies
efficiently. Arrows with labels to show the path based on
test outcomes.

We do, however, mention that the order in which these
tests are done can have a large impact on efficiency. Some
problem class tests depend on others and are more expen-
sive or time-consuming than others. Therefore, optimizing
the sequence of these property tests can lead to greater effi-
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ciency (or the other way around: some test orders might be
redundant). As shown in Figure 5, if a task network is found
to be primitive, it bypasses the need for regular, acyclic, and
tail-recursive tests (as they all will be positive), proceeding
directly to the totally ordered test. Otherwise, it conducts
regular and acyclic tests. Skipping the tail-recursive test is
feasible if either the acyclic or regular test is positive, as
either acyclicity or regularization is a special case of tail-
recursiveness. After these, the task network’s total order is
assessed, which is independently unaffected by the results
of other tests.

Figure 6: An example of special cases during the search:
Filled squares represent primitive tasks, and unfilled circles
represent compound tasks. π is the prefix of the generated
plan. Vertical lines in search nodes from n1 to n9 illustrate
the states during the search. We assume no primitive task
has preconditions or effects, so the state remains unchanged.
The properties of each task network are shown next to each
node, with existing methods for tasks B,C,E,D. It has the
same stratification as Figure 1.

In progression search, if a task network within a search
node possesses a particular property, all task networks
within its child nodes will inherit this property. As illus-
trated in Figure 6, once a property is present in a search
node, it propagates to all its descendant nodes. To enhance
efficiency, we check the parent node’s property before con-

ducting property tests in a search node, potentially reducing
overall complexity by avoiding redundant checks.

Reachability Information from Task
Decomposition Graphs

In a task network, its properties like total ordering, regular-
ity, acyclicity, or tail-recursiveness depend on both the initial
task network and all its reachable methods. The task decom-
position graph (TDG) is the foundational data structure for
hierarchical reachability analysis. It was first introduced by
Elkawkagy et al. (2012) and refined by Bercher et al. (2017).

For simplicity, for an HTN problem, we introduce an
artificial abstract task cI that is not originally in the do-
main. cI can be decomposed into the initial task tnI. Sub-
sequently, we incorporate cI into the domain, establishing
(cI , tnI) ∈ M .

Definition 7 (Task Decomposition Graph (TDG)). For
a given HTN problem P , the task decomposition graph
(TDG) is defined as a directed bipartite graph G =
⟨VT , VM ,ET→M ,EM→T ⟩. This graph comprises a set of
task vertices VT , a set of method vertices VM , edges from
tasks to methods ET→M , and from methods to tasks EM→T ,
such that the following conditions are satisfied:

1. Base Case (task vertex for the given task)
cI ∈ VT is the TDG’s root.

2. Method Vertices (derived from task vertices)
Let vt ∈ VT and there is a method (c, tn) ∈ M . Then,
for every vm ∈ VM , it holds that (vt, vm) ∈ ET→M .

3. Task Vertices (derived from method vertices)
Let vm ∈ VM with vm = (c, (T,≺, α)). For each task
t ∈ T where α(t) = vt , it is the case that vt ∈ VT and
(vm, vt) ∈ EM→T .

4. Tightness
G is minimal, such that 1. to 3. hold.

The TDG can represent the hierarchical reachability of an
HTN planning problem, i.e. tasks and methods that can be
reached via decomposition. According to the simplistic defi-
nition provided, it is only based on the reachability from de-
composition without considering the states. However, Elka-
wkagy, Schattenberg, and Biundo (2010) and Bercher et al.
(2017) suggested that method nodes containing unreachable
primitive tasks based on the state reachability analysis can
be removed. (For a more formal definition, consult Def. 4
by Behnke et al. (2020), where this idea is incorporated for
grounding lifted HTN planning problems.)

Figure 7: A fragment of a TDG (Bercher et al. 2017): task
networks are denoted by surrounding boxes, abstract tasks
by circles, and primitive tasks by square boxes.
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Bercher et al. (2017) observed that the reachable methods
per search node change, as illustrated in Fig. 7. Here, the
reachable method set from the initial task network is still m1

to m4. However, after m2 was applied, the reachable meth-
ods even became empty, since the new current task network
is primitive. If alternatively m1 would have been chosen,
at least m2 will not be reachable anymore, but potentially
even one of m3 and m4 as it might be that those actions
from m2’s task network were used to (inaccurately) deter-
mine the reachability of m3 or m4. Hence, recomputing the
TDG after some decisions were made can lead to a reduced
reachable method set (Bercher et al. 2017).

This is highly relevant for our endeavor of determining
search space properties since these properties directly de-
pend on the reachable methods. Going back to our example
(Figure 7), if task K cannot be executed, method m1, and
consequently m3 and m4 become unreachable. This leaves
only m2 as reachable and thus the sub-TDG makes tn0 prim-
itive, acyclic, and totally ordered – properties that the initial
TDG did not show.

Thus, when computing the properties of a search node –
which naturally are based on the set of methods reachable
from it – one has two possibilities for what to do:

• We use the initial TDG but restrict it to the methods
reachable from the current search node. This process is
relatively quick since it does not require TDG recompu-
tation.

• We recompute the TDG from the current search node.
This is more expensive but leads to potentially fewer
reachable methods (since the initial TDG was computed
based on all primitive tasks reachable in it, whereas the
made decisions reduced this set and might hence further
reduce the size of the new TDG (Bercher et al. 2017)).

In our empirical evaluation we do both. For the recompu-
tation of the TDG, we use the Relaxed Composition Heuris-
tic (Höller et al. 2018, 2020) as a basis. It transforms an HTN
search node into a classical problem, which can represent a
superset of all reachable decomposition methods (expressed
as classical actions). We used this transformation as a ba-
sis, estimating all reachable methods by computing a fixed
point in a relaxed planning graph (RPG) computed from the
classical problem.

Evaluation
We now report on our findings.

Benchmarks.

We analyzed the entire total-order (TO) benchmark set from
the IPC 20231. We restrict to TO domains both due to space
restrictions and also since the IPC showed that in most in-
stances, the partial order can be compiled away in advance
without making the respective problem unsolvable (Wu et al.
2022, 2023).

1https://ipc2023-htn.github.io/

Configuration.
Experiments were conducted in a virtualized environment.
The underlying hardware was powered by an Intel(R)
Core(TM) i9-8950HK CPU, clocking at 2.90GHz, which
was allocated a single CPU core and provisioned with 8GB
of RAM for the experiments, and 30 minutes limited for
each instance (memory and time limit of IPC 2023).

We run the latest progression-based version of the
PANDAπ system (Höller et al. 2018, 2020; Höller and
Behnke 2021). We opted for the currently best-performing
configurations, i.e., Greedy Best First Search (GBFS) com-
bined with the Relax Composition (RC) heuristic (Höller
et al. 2018), which utilizes the classical Add heuristic (Bonet
and Geffner 2001) that measures the distance to the solution
by accounting for both action applications and method de-
compositions.

Reported Problem Classes.
We analyze the search nodes in terms of the problem classes
outlined in Section Known Special Cases. However, since
several classes overlap (e.g., any regular problem and any
acyclic problem are also tail-recursive), we account for those
overlappings. We define the following classes:

• Primitive: If all tasks in the current task network are
primitive. (I.e., defined as usual.)

• Regular & Acyclic: If a problem is regular and acyclic,
but not primitive.

• Regular & Cyclic: If a problem is regular and cyclic.
• Acyclic: If a problem is acyclic but not regular.
• Tail-recursive: If a problem is tail-recursive but not

acyclic.
• Undecidable: If a problem is not tail-recursive.

By adhering to these definitions, all classes are exclusive
(and so values should add up to 100% per line for the same
test in Table 1).

Results.
A summary of our results (per domain) is provided in Ta-
ble 1. Note that we only include instances that were solved
by both runs: those that don’t recompute the TDG (referred
to as “Simple” in the table) and those that do (referred to
as “Reachable”). This is to make the results comparable be-
cause only then the explored search spaces are the same.

This is also why we only report on 22 domains although
the IPC TO benchmark set encompasses 23. This discrep-
ancy arises because the “Freecell” domain was excluded due
to the absence of problem instances that were solved in both
runs.

In the table, we report per domain over all solved in-
stances the minimum percentage of the respective problem
class (↓), the maximum (↑), and the average (µ).

Computation Time. Ideally, class identification of prob-
lem classes should exert negligible influence on the com-
putational time. In particular, when our ultimate goal is to
choose the most informed heuristic based on the respective
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Domain

Undecidable Tail-recursive Acyclic Regular & Cyclic Regular & Acyclic Primitive

Simple Reachable Simple Reachable Simple Reachable Simple Reachable Simple Reachable Simple Reachable

↓ ↑ µ ↓ ↑ µ ↓ ↑ µ ↓ ↑ µ ↓ ↑ µ ↓ ↑ µ ↓ ↑ µ ↓ ↑ µ ↓ ↑ µ ↓ ↑ µ ↓ ↑ µ ↓ ↑ µ

Assembly (30) 0 0 0 0 0 0 82 ∼A 97 82 ∼A 97 0 0 0 0 ∼0 ∼0 0 7 2 0 2 ∼0 0 9 ∼0 ∼0 9 2 ∼0 9 1 ∼0 9 1
Barman-BDI (15) 0 0 0 0 0 0 0 0 0 0 0 0 96 ∼A ∼A 96 ∼A ∼A 0 0 0 0 0 0 ∼0 2 ∼0 ∼0 2 ∼0 ∼0 2 ∼0 ∼0 2 ∼0
Blocksw.-GTOHP (29) 0 ∼A 94 0 ∼A 93 0 0 0 0 0 0 0 99 5 0 99 6 0 0 0 0 0 0 0 3 ∼0 0 3 ∼0 ∼0 5 1 ∼0 5 1
Blocksw.-HPDDL (28) 0 0 0 0 0 0 98 ∼A ∼A 96 ∼A ∼A 0 0 0 0 ∼0 ∼0 0 0 0 0 0 0 0 0 0 ∼0 2 ∼0 ∼0 2 ∼0 ∼0 2 ∼0
Depots (22) 0 ∼A 35 0 ∼A 32 0 0 0 0 24 1 0 ∼A 63 ∼0 ∼A 65 0 0 0 0 0 0 0 0 0 0 0 0 ∼0 8 2 ∼0 8 2
Factories (8) 0 0 0 0 0 0 96 ∼A 99 96 ∼A 99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∼0 4 1 ∼0 4 1
Hiking (24) 87 97 92 87 97 92 3 12 7 3 10 7 0 0 0 ∼0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 ∼0 1 1 ∼0 1 1
Lamps (16) 0 0 0 0 0 0 80 ∼A 95 80 ∼A 95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∼0 20 5 ∼0 20 5
Logistics-Learned (44) 0 0 0 0 0 0 98 ∼A ∼A 98 ∼A ∼A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∼0 2 ∼0 ∼0 2 ∼0
Minecraft Pl. (1) 0 0 0 0 0 0 84 84 84 84 84 84 15 15 15 15 15 15 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
Minecraft Reg. (42) 0 0 0 0 0 0 0 0 0 0 0 0 97 ∼A 99 97 ∼A 99 0 0 0 0 0 0 ∼0 1 ∼0 ∼0 1 ∼0 ∼0 1 ∼0 ∼0 1 ∼0
Monroe FO (17) 74 ∼A 95 74 ∼A 95 0 0 0 0 0 0 0 17 2 0 17 2 0 0 0 0 0 0 0 4 ∼0 0 4 ∼0 ∼0 14 3 ∼0 14 3
Monroe PO (8) 25 ∼A 80 25 ∼A 80 0 0 0 0 0 0 0 58 14 0 58 14 0 0 0 0 0 0 0 8 2 0 8 2 ∼0 11 5 ∼0 11 5
Multiarm-Blocksw.(74) 0 0 0 0 0 0 98 ∼A ∼A 6 96 50 0 0 0 0 94 48 0 0 0 0 0 0 0 0 0 ∼0 60 2 ∼0 2 ∼0 ∼0 2 ∼0
Robot (20) 0 0 0 0 0 0 67 ∼A 97 4 83 31 0 0 0 0 ∼0 ∼0 0 0 0 0 0 0 0 0 0 0 96 67 ∼0 33 3 ∼0 33 3
Rover (21) 0 ∼A 89 0 ∼A 88 0 0 0 0 0 0 0 97 10 ∼0 97 10 0 0 0 0 0 0 0 0 0 0 0 0 ∼0 7 2 ∼0 7 2
Satellite (19) 83 99 95 83 99 95 0 0 0 0 0 0 ∼0 8 2 ∼0 8 2 0 0 0 0 0 0 0 5 1 0 5 1 ∼0 8 2 ∼0 8 2
SharpSAT (10) 0 0 0 0 0 0 0 0 0 0 0 0 98 ∼A 99 98 ∼A 99 0 0 0 0 0 0 0 0 0 0 0 0 ∼0 2 1 ∼0 2 1
Snake (2) 0 0 0 0 0 0 ∼A ∼A ∼A 99 ∼A ∼A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∼0 ∼0 ∼0 ∼0 ∼0 ∼0 ∼0 ∼0 ∼0
Towers (13) 0 0 0 0 0 0 75 ∼A 97 75 ∼A 97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ∼0 25 3 ∼0 25 3
Transport (25) 88 ∼A 97 88 ∼A 97 0 0 0 0 0 0 0 2 ∼0 0 2 ∼0 0 0 0 0 0 0 0 5 1 0 5 1 ∼0 12 2 ∼0 12 2
Woodworking (19) 0 0 0 0 0 0 0 0 0 0 0 0 0 ∼A 85 0 ∼A 85 0 0 0 0 0 0 0 75 8 0 75 8 ∼0 25 6 ∼0 25 6

Table 1: The minimum (↓), maximum (↑), and average (µ) percentages (%) of undecidability, tail-recursion, acyclicity, regular-
ity, and primitiveness in the search space without and with TDG-recomputation (“Simple” vs. “Reachable”). The computational
complexity of properties decreases progressively from left to right. Next to the name of each domain is the number of (solved)
problem instances that were used as a basis. “A” (short for “all”) represents 100%. Values highlighted in bold show where
improvements were achieved due to TDG-recomputation.

search node property, it is essential that the overhead in-
curred from identifying this special case pays off.

In the “simple” experiment, the total computational time
for problem class identification varied across domains, rang-
ing from 0.64% to 42% of total computation time (with an
average of 11%), compared to the heuristic’s average com-
putation time of 34%. This aligns with expectations, sug-
gesting that class identification times are within acceptable
bounds. However, runtimes can still be reduced by optimiz-
ing the way classes are identified based on reachable meth-
ods (see below).

Conversely, in the “reachable” experiment, the average to-
tal computation time for class identification surged to 64%,
much overshadowing the heuristic computation time, which
averaged 14%. This indicates that class identification sig-
nificantly impacts the overall computation time in this con-
text, underlining a need for optimization in re-computing the
TDG. That said, we did not put any effort into recomputing
the TDG effectively, so there is still lots of possible opti-
mizations that could be done. For example, since we use the
RC heuristic anyway, we could have used the RPG com-
puted by it when extracting the reachable methods. How-
ever, for the sake of simplicity, we re-computed this anyway.
Also, we hypothesize that our TDG construction (based on
these reachable methods) and the way we identify special
cases based on the reachable methods could still be opti-
mized (which is the reason why we don’t report individual
runtimes).

Thus, our reported results can only be used to show which
special cases occur and how frequently, but not to draw con-

clusions about the feasibility of their computation. They do
show however that it will be beneficial to optimize TDG re-
computation and the identification of special cases.

Difference between Experiments. Before we report on
the main findings of our experiments, namely the frequency
of certain problem classes, we report on the impact of TDG
recomputation. Overall, Table 1 reveals that only a select
few domains exhibit notable differences between the “sim-
ple” and “reachable” experiments.

The domain exhibiting the most substantial disparity is
“Multiarm-Blocksworld” where the average percentage of
tail-recursion in the “simple” experiment approaches 100%.
However, in the reachable experiment, this average drops to
just half. In the remaining 50%, 48% become acyclic (and
non-regular), and 2% become regular & acyclic.

“Robot” is another domain showing significant differ-
ences. In the “simple” experiment, it only has tail-recursive
and primitive search spaces. However, in the “reachable” ex-
periment the average percentage for tail-recursion decreased
dramatically from 97 to 31 in favor of 67% regular and
acyclic search nodes.

All in all, it seems that TDG recomputation only pays off
in a very few domains, so unless recomputation cost can
be reduced significantly, our results suggest that on average
this might not pay off for the sake of deploying specialized
heuristics.

Frequency of Special Cases. We can see that only 5 out
of the 22 domains have 90% or more of undecidable search
nodes, with 2 further domains having 80% and 89%. Those
are the domains where heuristics dealing with the general
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case (in TO HTN planning) would be required. So in the
huge majority of domains, at least tail-recursiveness could
be exploited.

Domains such as “Blocksworld-GTOHP” and “Hiking”
exhibit very high ratios of “undecidability”, which are over
90%. The number of solved instances of these domains is
large, indicating that the existing general heuristic is effi-
cient.

Three domains show nearly 100% or exactly 100%
acyclicity: “Barman-BDI”, “Minecraft Regular” and
“SharpSAT’ in Table 1. As the statistics of acyclic search
nodes exclude those that are regular (and cyclic) and
primitive, these three domains are actually fully acyclic
when looking at the data more closely.

In examining the data on acyclicity, it is evident that
not all domains exhibit a uniform pattern. For instance,
“Blocksworld-GTOHP” ranges wildly in acyclicity, from
being virtually cyclic to fully acyclic, as evidenced by its
minimum of approximately 0% and a maximum of 99%.
Conversely, “Monroe-FO” and “Satellite-GTOHP” show
more restrained ranges, peaking at 17% and 8% respectively.
It indicates that there are only relatively few nodes in the
domain that are acyclic. While the distribution of acyclicity
across domains is varied, certain domains inherently exhibit
acyclicity, whereas others only manifest it as the problem
simplifies during the search. Nonetheless, acyclicity seems
to occur often enough within the search space that it seems
beneficial to develop specialized heuristics. It is particularly
noteworthy that only one single domain seems to be acyclic.
For all others, acyclicity only occurs within the search space,
but not already for the initial search node.

Another clear observation is that regularity seems to only
occur extremely rarely. In only one domain the ratio of
search nodes is about 67%, in one it is 8%, in most others,
however, it is 0%, and in just a few 1% or 2%. This how-
ever shows a possible optimization as it means that we can
stop the TDG recomputation and special case identification
once acyclic search nodes are discovered, thus speeding up
computation time.

Related Work
There are two lines of related work: one involves choosing
a heuristic based on the current search node, which we have
not yet explored but forms the motivation for our study; the
other is the identification of special cases per search node.

Regarding the first, we are not aware of any such work
in HTN planning (which also would not make much sense
at the very moment, since no special case heuristics exist as
of now). In classical planning, however, Speck et al. (2021)
followed a similar idea: selecting the most promising heuris-
tic per search node. Their work does however not do so
based on explicit search node properties, but makes dynamic
heuristic selection based on Reinforcement Learning. We,
however, propose to make this selection dependent based on
the specific search node properties and select heuristics that
are designed specifically for the respective case.

The other line of related work is investigating search
node-specific properties. We are not aware of work along

those lines, other than those that investigate properties of
entire problem classes. Such a result would be a special
case for us. I.e., if exactly 100% of all search nodes show
a property P (like being tail-recursive or stronger), then the
problem instance has that respective property. Höller (2021)
does report on problem class properties (for total-order HTN
problems) per problem instance (cf. his Table 1). He reports
on a slightly distinct, albeit stronger, criterion concerning
tail-recursiveness called non-selfembedding. Any instance
that is non-selfembedding, right-recursive (r-rec), and not
left-recursive (l-rec) is also tail-recursive. He also reports on
acyclic domains (¬rec), but again only per instance.

Höller (2021) does report on problem class properties (for
total-order HTN problems) per problem instance (cf. his Ta-
ble 1). He reports on a slightly distinct, albeit stronger, crite-
rion to decide tail-recursiveness called non-selfembedding.
From the instances that are non-self-embedding, those that
are only right-recursive (i.e., neither left-recursive nor left-
and right-recursive), are tail-recursive. He also reports on
acyclic domains (¬rec), but again only per instance. A more
detailed discussion can be found in Sec. 5 of his most recent
work (Höller 2024).

We would also like to note that the PANDAπ planner
prints out whether a problem is totally ordered and acyclic
when it starts to solve a problem, though it doesn’t show the
properties of any of the other classes.

Conclusion
Based on the total-order IPC 2023 benchmark set, we ana-
lyzed the explored search space of a progression-based plan
for the frequency of special cases within the problem classes,
such as tail-recursive, acyclic, and regular search nodes. Our
motivation for this investigation is the search node-specific
deployment of specialized heuristics, tailored towards the
respective special case. Our empirical findings indicate a
high potential for such heuristics aimed at tail-recursiveness
and acyclicity due to the high number of such search nodes.
However, computation time for the identification of these
classes is still relatively high and thus requires consideration
as well.

Acknowledgements
Pascal Bercher is the recipient of an Australian Research
Council (ARC) Discovery Early Career Researcher Award
(DECRA), project number DE240101245, funded by the
Australian Government.

References
Alford, R.; Bercher, P.; and Aha, D. W. 2015. Tight Bounds
for HTN Planning. In ICAPS 2015, 7–15. AAAI Press.
Alford, R.; Shivashankar, V.; Kuter, U.; and Nau, D. S. 2012.
HTN Problem Spaces: Structure, Algorithms, Termination.
In SOCS 2012, 2–9. AAAI Press.
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Höller, D.; and Behnke, G. 2021. Loop Detection in the
PANDA Planning System. In ICAPS 2021, 168–173. AAAI
Press.
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Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2018.
A Generic Method to Guide HTN Progression Search with
Classical Heuristics. In ICAPS 2018, 114–122. AAAI Press.
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