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Abstract

Unrestricted HTN planning is undecidable. However some
fragments of HTN planning – such as totally-ordered or tail-
recursive HTNs – are decidable. Studying these restricted
fragments has lead to valuable insights, which ultimately gave
rise to the development of new efficient HTN planning algo-
rithms.
We identify new decidable fragments of HTN planning. In
a one-hole-digging problem, every task network contains at
most a single compound task. In an initial problem, com-
pound tasks are order-minimal in all task networks, while
in a final problem, they are order-maximal. We precisely
determine the complexity of these fragments – they are
Ackermann-complete. This remains true even under the re-
striction that there is only one compound task and only two
methods for it.

Introduction
Hierarchical Task Network (HTN) planning (Sacerdoti
1975; Erol, Hendler, and Nau 1994) is an expressive for-
malism for planning. It allows for describing the physics
of the domain in terms of both the preconditions and ef-
fects of actions but also allows for specifying a grammar-
like refinement-structure that valid plans must follow. HTN
planning has over the past decades been studied both from
theoretical and practical views. In several cases, theoreti-
cal insights have informed practical planning methods and
have lead to new algorithms. This includes for example
Erol’s insight that totally-ordered HTN planning is decid-
able (Erol, Hendler, and Nau 1996), which has lead to ded-
icated total-order HTN planners (Nau et al. 1999; Mag-
naguagno, Meneguzzi, and de Silva 2021; Schreiber 2021;
Behnke, Höller, and Biundo 2018; Alford et al. 2016; Al-
ford, Kuter, and Nau 2009), but also the complexity analysis
of tail-recursive HTN problems (Alford, Bercher, and Aha
2015) and the idea of relating HTN planning to formal lan-
guages (Höller et al. 2014), which have lead to dedicated
planning algorithms (Alford et al. (2016) and Höller (2021)
respectively).

These innovations were, at least to some degree, driven
by researchers wanting to better understand the complexity-
landscape of HTN planning. As HTN planning in general
is undecidable (Erol, Hendler, and Nau 1996), this at least
includes identifying expressive but still decidable fragments

of HTN planning. This had lead to discovering, e.g., totally-
ordered and tail-recursive HTN problems.

We present a new class of decidable HTN planning prob-
lems: that of one-hole-digging problems. This class is or-
thogonal to the previously investigated classes and thus il-
luminates a new island of decidability. While being decid-
able, one-hole-digging problems are only barely decidable:
we show that they are complete for the class of Fω , i.e., for
all problems whose runtime is limited by an Ackermann-
function. Our completeness proof also goes through for
other fragments of HTN planning, most notably initial, fi-
nal, and clean problems. See Table 3 at the end of the paper.

Preliminaries
In order to present the new fragments and results, we first
formally define the notion of HTN planning. We then in-
troduce Petri nets, which we will use in our reduction, and
lastly introduce the required concepts of computational com-
plexity theory.

HTN Planning
In this section, we set up the HTN formalism following
Geier and Bercher (2011). This is a simple way of adding
hierarchy to the STRIPS formalism, and is hence comfort-
able for proving complexity results.

A task network over a set N of task names is a triple t =
(T,≺,α) where
• T is a finite set of tasks;
• ≺ is a strict partial order on T ;
• α : T → N assigns a task name to each task in the net-

work.
Let TN be the set of all task networks over N. If T ′ ⊆ T , we
define the task subnetwork

t|T ′ =
(
T ′,≺ ∩(T ′×T ′),α|T ′

)
∈ TN .

For t ∈ T we write T r t = T \{t}. We write tr t as a short-
hand for

t|(T r t).

An embedding φ : t ↪→ t′ of task networks t= (T,≺,α) and
t′ = (T ′,≺′,α ′) is an injection φ : T ↪→ T ′ that preserves
the partial order both ways and satisfies α ′ ◦φ = α . An iso-
morphism is a bijective embedding. Let 0 = ( /0, /0, /0) be the
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empty task network. The symbol t denotes the union of dis-
joint sets. A task network t= (T,≺,α) is a disjoint union of
a family {ti : i ∈ I} of task networks if there exist embed-
dings φi : ti ↪→ t such that

T =
⊔

i∈I

Imφi

and φi(ti) 6≺ φ j(t j) whenever i, j ∈ I are distinct.
An HTN problem is a tuple Π = (F,C,O,M,δ , t0,s0)

where
• F is a finite set of (propositional) variables;
• C is a finite set of compound task names;
• O is a finite set of primitive task names;
• M⊆C×TCtO is a finite set of (decomposition) methods;
• δ : O→P(F)4 is an action mapping;1

• t0 ∈ TCtO is an initial task network;
• s0 ⊆ F is an initial propositional state.

A propositional state of Π is a subset of F . For better read-
ability, we will adopt the following style guide: facts are
typewriter blue, compound task names in bold and brown,
primitive task names in sans serif pink and decomposition
methods in green. Let t = (T,≺,α) be a task network over
C tO. It is called a task network of Π if either t = t0 or
(c, t) ∈M for some c ∈C. We call a task t ∈ T compound if
α(t) ∈C and primitive if α(t) ∈ O. We call t primitive if all
tasks in T are primitive (i.e. t is a task network over O).

Applying a decomposition method changes a non-
primitive task network into another task network. Suppose
that t1 = (T1,≺1,α1), t2 = (T2,≺2,α2) and t = (T,≺,α)
are task networks, t ∈ T1 and µ =

(
α1(t), t

)
is a method.

We write t1 →t/µ t2 provided there exists an embedding
φ : t ↪→ t2 such that

T2 = (T1 r t)t Imφ

and for all t1 ∈ T1 r t and t ′ ∈ T and ∗ ∈ {≺,�} it holds

t1∗1t ⇔ t1∗2φ(t ′).

Intuitively this means that t got replaced by t. The task net-
work t2 exists and is unique up to isomorphism.

The search space of the problem Π is

ΩΠ = TCtO×P(F).

If pr ∈ O with δ (pr) = (π+,π−,e+,e−) and s ⊆ F satisfies
π+⊆ s and π−∩s= /0, we say pr is applicable in s and define
γ(s,pr) = s∪ e+ \ e−. Let (t,s) ∈ ΩΠ be an HTN state with
t = (T,≺,α) and let t ∈ T be a primitive ≺-minimal task
such that α(t) is applicable in s. Then write

(t,s) Π

(
tr t,γ

(
s,α(t)

))
∈ΩΠ.

If t1→t/µ t2 for some t and µ ∈M, also let

(t1,s) Π (t2,s).

1We include negative preconditions, but it is well-known that
these can be compiled away in linear time; cf. (Gazen and
Knoblock 1997, section 2.6).

The search graph of Π is ΦΠ =
(
ΩΠ, Π ,(t0,s0)

)
, where

(t0,s0) is the initial HTN state. For the relation with other
views on HTN search, we refer to (Alford et al. 2012). The
problem Π is solvable if for some propositional state sω , the
state (0,sω) is reachable in ΦΠ. If it is, it can be reached
by first applying only decomposition methods until the task
network is primitive, and then applying only actions.

If Q is a class of HTN problems, let PLANEX(Q) be the
problem of deciding whether or not a given member of Q
is solvable. This problem has been studied in the literature
for various classes Q. The complexities range from poly-
nomial time to undecidable ((Erol, Hendler, and Nau 1994),
(Geier and Bercher 2011), (Alford 2013), (Alford, Bercher,
and Aha 2015)).

Petri Nets
A Petri net is a pair N = (P,Θ) where P is a finite set of
places and Θ is a finite set of transitions, which are functions
P→ Z. The Petri net N is called ordinary if

∣∣θ(p)
∣∣ ≤ 1

for all θ ∈ Θ and p ∈ P. Ordinary Petri nets have the same
modelling power as arbitrary Petri nets (see (Murata 1989,
section IV.A)). The search space ΩN of N is the set of
all functions P→ N. We work with pointwise addition of
functions P→ Z. For σ ,σ ′ ∈ ΩN , we define σ  N σ ′ iff
there exists a transition θ ∈ Θ such that σ + θ = σ ′. This
is called a firing of θ . Let ΦN = (ΩN , N ) be the search
graph. A state σ ∈ΩN is called a unit state of N if σ(p)≤
1 for all p ∈ P.

Petri nets are often imagined to include an unlimited pool
of tokens. State σ encodes that there are σ(p) tokens at each
place p ∈ P.

PETRI is the problem of deciding given an ordinary Petri
net N and unit states τ0,τ1 of N whether or not τ1 can be
reached from τ0 in ΦN .

PETRIGEN is the same problem but without the “ordi-
nary” and “unit” assumptions. For more information on this
and similar problems we refer to (Esparza 1998). It is easy
to see that PETRIGEN reduces to PETRI in polynomial time.
Moreover, the following is standard:
Lemma 1. Given a finite set P of instances of PETRI we can
compute in polynomial time another instance of PETRI that
has answer “yes” iff some instance in P has answer “yes”.

Complexity Theory
In this paper, we will consider complexity classes that lie
beyond the typically considered hierarchy of complexity
classes starting with L,NL,P,NP,PSPACE,EXP, . . . . We
introduce the notion of Ackermann-completeness follow-
ing (Schmitz 2016).

We define F0(n) = n+2 and

Fk(n) = Fn
k−1(k) = Fk−1(. . .(Fk−1(︸ ︷︷ ︸

n time

k)) . . .).

(We pass k as an argument here to ensure that
limk→∞ Fk(0) = ∞.) As a result, we get that F1(n) ≥ 2n,
F2(n)≥ 2n and

F3(n)≥ 22...
2

︸︷︷︸
n high

.
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Lastly we define Fω(n) = Fn(n), which is the Ackermann
function. Let ACKERMANN be the class of all decision
problems that can be solved by a deterministic Turing ma-
chine with a time bound of Fω

(
Fk(n)

)
for an input length

n for some k ≥ 1. A problem solvable by a program with
runtime F3(n) for an input length n, already need not be in
the class ELEMENTARY which contains all problems solv-
able with run-time limited to some fixed height exponenti-
ation tower. Problems in ACKERMANN can be still much
harder.

A problem Π is ACKERMANN-hard if for every prob-
lem Π′ ∈ ACKERMANN there exists k ∈ N such that there
exists a program that reduces any instance of Π′ of some size
n to an instance of Π in time at most Fk(n). The intuition be-
hind this definition is that any function Fk is negligibly small
in comparison to the Ackermann function Fω in the limit. As
we can choose k = 2, it follows that exponential time reduc-
tions are valid for proving ACKERMANN-hardness.

Leroux and Schmitz (2019) proved that PETRI ∈
ACKERMANN. Recently, Czerwiński and Orlikowski
complemented this result with hardness:
Theorem 2. (Czerwiński and Orlikowski 2022) PETRI is
ACKERMANN-complete.

New Fragments
Let Π = (F,C,O,M,δ , t0,s0) be an HTN problem and t0 =
(T0,≺0,α0).
• Π is initial if any compound task in any task network of

Π is minimal w.r.t. the task network’s order:

∀t= (T,≺,α) :
(
∃c : (c, t) ∈M

)
or t0 = t

=⇒ ∀t ≺ t ′ : α(t) ∈ O.

• Π is final if any compound task in any task network of Π
is order-maximal.

• Π is clean if it is initial and final.
• Π is one-hole-digging if every (initial or method) task

network contains at most one compound task:
∣∣α−1

0 [C]
∣∣≤ 1 & ∀

(
c,(T,≺,α)

)
∈M :

∣∣α−1[C]
∣∣≤ 1.

• Π is bottomless if every primitive method task network
is empty:

∀(c, t) ∈M : t ∈ TO =⇒ t= 0.

• Π is loop-unrolling, if it only contains one compound
task name and two methods:

|C| ≤ 1 & |M| ≤ 2.

Note that a problem is clean iff compound tasks are isolated.
For a one-hole-digging problem, decomposition is a sin-

gle sequence of methods that are successively applied to the
only present compound task, and the number of compound
tasks never exceeds 1 while moving through ΦΠ.

If some loop-unrolling Π with at least one compound task
in the initial task network t0 is solvable, there can only be
one method – call it cont – with a non-primitive task net-
work. The other method – call it stop – serves to end recur-
sion. Consider some subcases:

• If Π is additionally one-hole-digging, the only choice to
make for the decomposition of Π is how often to apply
cont before applying stop.

• If Π is additionally bottomless, then

M =
{

cont = (comp, t),stop = (comp,0)
}

(1)

for some comp and t. If Π is additionally clean, let tpr
(0)

be the largest primitive task subnetwork of t(0); then
the primitive task networks obtainable from t0 with the
decomposition methods in M are precisely the disjoint
unions of tpr

0 with any number of copies of tpr.

Example 3. Imagine we want to bury an object. The pro-
cedure is to dig a hole in the ground, put the object in it,
and then cover it with the dirt that was dug up. The hole can
be of any depth. Let F = {hole,buried}, C = {bury},
O = {dig,put,cover},

M =
{

deeper = (bury, tdeeper),bottom = (bury, tbottom)
}

where tdeeper is the task network consisting of three tasks
tdig
deeper ≺ tbury

deeper ≺ tcover
deeper with names αdeeper(t

dig
deeper) = dig,

αdeeper(t
bury
deeper) = bury and αdeeper(tcover

deeper) = cover, tbottom
is the task network consisting of one task tbottom with name
αbottom(tbottom) = put, δ (dig) =

〈
/0, /0,{hole}, /0

〉
, δ (put) =〈

{hole}, /0,{buried}, /0
〉
, δ (cover) = 〈 /0, /0, /0, /0〉, t0 is the

task network consisting of one task t0 with name α0(t0) =
bury and s0 = /0. Then Π = (F,C,O,M,δ , t0,s0) is a one-
hole-digging loop-unrolling problem. Every path of ΦΠ
leads to the goal, except when one immediately applies the
bottom method or when one applies the deeper method for-
ever.

Let I be the class of initial problems. Let F be the class
of final problems. Let C be the class of clean problems. Let
H1 be the class of one-hole-digging problems. Let B be the
class of bottomless problems. Let L be the class of loop-
unrolling problems.

All regular problems, introduced by (Erol, Hendler, and
Nau 1994), are final and one-hole-digging. However, not all
final one-hole-digging problems are regular (there can be
multiple maximal tasks). Still, if all task networks of some
final problem are totally ordered, it is regular.

We call an HTN problem Π quasi-final if removing all
maximal tasks from all task networks of Π results in an
acyclic problem (see again (Erol, Hendler, and Nau 1994)).
Then the remaining compound tasks can be compiled away
in exponential time; thus we can compute a final prob-
lem that is solvable iff Π is solvable. Let F ′ be the class
of quasi-final problems. Then it follows from the results
below that PLANEX(F ′) ∈ ACKERMANN. Similar re-
marks hold for initial problems. Out of the IPC 2023,
the domains AssemblyHierarchical, Blocksworld-HPDDL,
Multiarm-Blocksworld, Robot, and Tower were quasi-final.
However, as the task networks of these examples are totally
ordered, they are actually in EXP (Erol, Hendler, and Nau
1996), so much easier than Ackermann.
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Results
Intuitively, the class H1 might be complexity-wise close to
other HTN classes or even classical planning as the restric-
tions to the allowed decompositions are severe. A method
application either seems to “move the problem” by replac-
ing the compound task with a new compound task and some
primitive tasks, or readily creates a primitive task network.
Example 3 is trivial, but this is largely caused by the to-
tal order in the method task network tdeeper. We will prove
that the complexity with partial order is high: the problem
PLANEX(H1) is ACKERMANN-complete. It is thus sig-
nificantly more complex than any other known decidable
HTN class and only barely easier than undecidable prob-
lems. The proof heavily relies on Theorem 2, by showing
equivalence of PLANEX(H1) to PETRI. As a bonus, our re-
ductions work for I and F as well.

Membership
The idea of the membership proof is to use bi-directional
search, a common technique in planning that already exists
since (Pohl 1969). If Π = (F,C,O,M,δ , t0,s0) is an HTN
problem, its bi-directional search space is

Ωbi
Π = TCtO×P(F)2.

The first propositional state in a triple in Ωbi
Π is understood

as the propositional state in forward search and the sec-
ond in backward search. The search graph Φbi

Π = (Ωbi
Π, bi

Π )
over the bi-directional search space inherits the arrows Π
(where the propositional state in backward search does not
change) with the addition of regression:

(
t,s,γ(s1,α(t)

))
 bi

Π (tr t,s,s1)

whenever t = (T,≺,α) and t ∈ T is ≺-maximal. It is easy
to see that Π is solvable iff (0,s,s) can be reached from
(t0,s0,sω) in Φbi

Π for some propositional states s,sω .
If Π ∈H1, we also inherit the property that the number

of compound tasks remains at most 1 while moving through
Φbi

Π.
Proposition 4. PLANEX(H1∪I ∪F ) reduces to PETRI in
exponential time.

Proof. For each Q ∈ {H1,I ,F} it is polynomial to decide
whether a given HTN problem is in Q. Hence it suffices to
show for each such Q that PLANEX(Q) reduces to PETRI in
at most exponential time.

In view of Lemma 1, it suffices to reduce the problem
of determining whether (0,sω) can be reached in ΦΠ given
Π ∈ Q and a propositional state sω . This is equivalent to
asking whether there exists a propositional state s1 such that
(0,s1,s1) can be reached from (t0,s0,sω) in Φbi

Π. Again by
Lemma 1 we can assume s1 is given and reduce the problem
of determining whether

(0,s1,s1) can be reached from (t0,s0,sω) in Φbi
Π. (2)

Let Π = (F,C,O,M,δ , t0,s0) be an HTN problem. Let X
be the set of all nonempty task subnetworks of (initial or
method) task networks of Π. For each x ∈ X, introduce a

Petri place p(x). For each s ⊆ F and υ ∈ {0,1}, introduce
a Petri place p(s,υ). Let P be the set of all places. A state
σ : P→ N satisfying

∑
s∈P(F)

σ
(

p(s,υ)
)
= 1

for each υ < 2, will encode an element of the bi-directional
search space of Π. Namely, the task network is a disjoint
union of σ

(
p(x)

)
copies of x for each x ∈ X; the propo-

sitional state in forward search is the unique s such that
σ
(

p(s,0)
)
= 1 and the propositional state in backward

search is the unique s′ such that σ
(

p(s′,1)
)
= 1. Accord-

ingly, let τ0 be the unit state that encodes (t0,s0,sω) (natu-
rally with τ0

(
p(t0)

)
= 1), and τ1 the unit state that encodes

(0,s1,s1).
Suppose that s⊆ F and pr ∈ O is applicable in s. Also let

x= (X ,≺,α) ∈ X and x ∈ X with name α(x) = pr. If x ∈ X
is ≺-minimal, we define the transition θ s,x,x

0 by

θ s,x,x
0

(
p(y)

)
=





1 (y= xr x)
−1 (y= x)

0 (otherwise),

θ s,x,x
0

(
p(s′,0)

)
=





1
(
s′ = γ(s,pr)

)

−1
(
s′ = s)

0 (otherwise),

θ s,x,x
0

(
p(s′,1)

)
= 0,

This transition corresponds to executing task x in forward
search. If x ∈ X is ≺-maximal, define the transition θ s,x,x

1 by

θ s,x,x
1

(
p(y)

)
=





1 (y= xr x)
−1 (y= x)

0 (otherwise),

θ s,x,x
1

(
p(s′,0)

)
= 0,

θ s,x,x
1

(
p(s′,1)

)
=





1
(
s′ = s)

−1
(
s′ = γ(s,pr)

)

0 (otherwise).

This transition corresponds to executing task x in backward
search.

We shall see that firing transitions θ s,x,x
υ gets rid of primi-

tive tasks until a compound task is isolated. For each method
µ = (c, t) ∈M and x = (X ,≺,α) ∈ X such that there exists
an ≺-isolated x ∈ X with name α(x) = c, introduce a transi-
tion θx,x,µ with

θx,x,µ
(

p(y)
)
=





1 (y= t)

1 (y= xr x)
−1 (y= x)

0 (otherwise),

θx,x,µ
(

p(s,υ)
)
= 0.

(We have to include the subscript x because if Q 6= H1 the
initial task network t0 ∈ X may contain multiple tasks with
name c.) Note that x is isolated in the encoded task network
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because x is assumed to be isolated in x and there is no order
between the various x. Hence it should be clear that firing
θx,x,µ corresponds to an application of the method µ to x in
one of the copies of x in the encoded task network.

Let Θ be the set of all transitions introduced above and
N = (P,Θ).

We claim that (2) holds iff τ1 can be reached from τ0 in
the search space ΦN .

Since the firings of N translate into movements of Φbi
Π,

the direction “⇐” is clear. This direction of the proof actu-
ally works for any HTN problem Π.

Conversely, assume (2). First consider the case Π ∈H1.
Then any task network reachable from (t0,s0,sω) in Φbi

Π has
at most one compound task. Decomposing a compound task
x with a method can always be deferred until x is isolated:
if there is a (primitive) predecessor task t ≺ x, then t can be
executed in forward search before decomposing x, since all
primitive tasks executed before t have to be already present
in the task network because there is no compound task be-
sides x in the task network; similarly, if there is a (primitive)
successor task, it can be executed in backward search before
decomposing x. Such a solution is exactly what N captures.

Next suppose that Π∈I . Then solving Π with backward
search and deferring decompositions for as long as possible
implies that again only isolated compound tasks will be de-
composed. Thus N encodes the solution. The argument for
F is analogous using forward search.

Hardness
Next, we turn from showing membership (and thus decid-
ability) of I ,H1, and F to showing hardness. While from
Example 3, one might suspect that these problems could
be computationally easy, we show that even clean, bottom-
less, one-hole-digging, loop-unrolling problems are in gen-
eral much more complex. To be precise, we show that even
this highly restricted class of problems is also hard for the
class ACKERMANN.

To establish this result, we show that the reachability
problem for Petri nets can be encoded in such an HTN plan-
ning problem. For transparency, we don’t reduce from the
general PETRIGEN, but restrict ourselves to ordinary Petri
nets with unit states, i.e. PETRI.

Note that parts of the construction – notably the concept
of trashing – are only necessary as we want to establish hard-
ness even for loop-unrolling problems. This proof translates
to an easier version without the loop-unrolling property and
without trashing.

In Figure 1 we provide an example for a plan that sim-
ulates a concrete Petri net, which might be helpful to the
reader. An explanation of the example can be found at the
end of the proof. Further Figure 2 shows the tasks contained
in the construction’s only recursive method task network
while Table 2 shows the preconditions and effects of all ac-
tions compactly.
Proposition 5. PETRI reduces to PLANEX(C ∩H1 ∩L ∩
B) in polynomial time.

Proof. Let N = (P,Θ) be an ordinary Petri net and τ0 and
τ1 unit states of N . We define Π = (F,C,O,M,δ , t0,s0) ∈

C ∩H1∩L ∩B. Let C = {comp} and M as in (1). τ1 will
be reachable from τ0 in ΦN iff a large number of applica-
tions of cont yields a solution to Π.

Let

F =
{
searchMode,pTrashMode,rTrashMode, (3)

transInProg,pTrashInProg,

inc(p),dec(p) : p ∈ P
}
.

We shall design our problem in such a way that any solu-
tion to Π can be split into three phases, that are charac-
terized by the truth of the variables in (3) and separated
by the tasks in Omain. searchMode simulates the search
in ΦN , pTrashMode trashes unused place tokens and
rTrashMode trashes any remaining tasks.

Omain = {startPTrashMode,startRTrashMode},
O′ =

{
inc(p),dec(p),startPTrash,endPTrash,

startTrans,endTrans,
requestInc(p),checkInc(p),

requestDec(p),checkDec(p),
fakeInc(p), fakeDec(p) : p ∈ P

}
,

O = OmaintO′.
The cont network t is given by Figure 2 where α removes
subscripts. For any p ∈ P, the tasks inc(p) (to be read “in-
crement p”) and dec(p) (to be read “decrement p”) of t to-
gether encode a single occurrence of a token at place p (at
least during searchMode). Specifically, for each p ∈ P,
the value of p in a state of N is given by the number of
copies of t of which task inc(p) has been performed but task
dec(p) has not. δ is given by Table 2 and t0 = (T0,≺0,α0)
with

T0 = {comp}t({
requestInc(p)≺0 checkInc(p) : p∈ P & τ0(p) = 1

}
≺0

(4){
requestDec(p)≺0 checkDec(p) : p∈P & τ1(p)= 1

}
≺0
(5)

Omain

)
,

α0 = id and s0 = {searchMode}.
Observe that in searchMode we can only execute “to-

ken tasks” (inc(p), dec(p)), “transition tasks” (right-most
columns in Figure 2) and “boundary tasks” ((4)–(5)). The
boundary tasks (4) generate τ0 and the boundary tasks (5)
consume τ1. It is w.l.o.g. that a plan starts with (4) and
the searchMode ends with (5) (both accompanied by ex-
ecutions of token tasks). Firing a transition θ corresponds
to executing an entire chain of six transition tasks of θ ,
also accompanied by executions of token tasks. The vari-
able transInProg prevents that we work on two tran-
sitions at the same time. I.e. once startTransθ is exe-
cuted, the task endTransθ in the same copy of t has to
be executed before any other startTransθ ′ can be executed.
The intermediate transition tasks ensure that the Petri net
state encoded by the HTN state is updated appropriately.
All boundary tasks have to be executed before we execute
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cont,stop,
startTransθ , requestInc(p)θ , inc(p),checkInc(p)θ ,endTransθ ,
requestDec(p),dec(p),checkDec(p),
startPTrashMode,
startPTrashq, requestInc(q), inc(q),checkInc(q),
requestDec(q),dec(q),checkDec(q),endPTrashq,
startRTrashMode,
startPTrashp, requestInc(p), fakeInc(p),checkInc(p),
requestDec(p), fakeDec(p),checkDec(p),endPTrashp,
fakeInc(q), fakeDec(q),
startTransη , requestInc(q)η , fakeInc(q)η ,checkInc(q)η ,endTransη ,

fakeInc(p)θ

Figure 1: Example solution to Π (tasks in T0).

p q
θ 1 0
η 0 1
τ0 0 0
τ1 1 0

Table 1: Example instance of PETRI.

comp inc(p)

dec(p)

startPTrashp

requestInc(p)

checkInc(p)

requestDec(p)

checkDec(p)

endPTrashp

fakeInc(p)

fakeDec(p)

requestDec(p−)θ

startTransθ

checkDec(p−)θ

requestInc(p+)θ

checkInc(p+)θ

endTransθ

fakeDec(p−)θ

fakeInc(p+)θ

Figure 2: Task network t= (T,≺,α) (include instances for all p, p−, p+ ∈ P, θ ∈Θ with θ(p+) = 1, θ(p−) =−1).

pr π+ π− e+ e−
startPTrashMode searchMode transInProg pTrashMode searchMode
startRTrashMode pTrashMode pTrashInProg rTrashMode pTrashMode

startPTrash searchMode pTrashInProg
pTrashInProg

endPTrash pTrashInProg
startTrans pTrashMode transInProg

transInProg
endTrans transInProg

inc(p) inc(p) rTrashMode inc(p)
dec(p) dec(p) rTrashMode dec(p)

requestInc(p) inc(p) inc(p)
checkInc(p) inc(p)

requestDec(p) dec(p) dec(p)
checkDec(p) dec(p)

fakeInc(p) rTrashMode inc(p)
fakeDec(p) rTrashMode dec(p)

Table 2: Action mapping δ (pr) = (π+,π−,e+,e−).
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startPTrashMode. Hence the crucial claim is that an HTN
state without remaining boundary tasks and with proposi-
tional state {searchMode} encodes the zero state of N
iff executing startPTrashMode allows one to reach 0 in
ΦΠ. But in pTrashMode, only token tasks and tasks in the
third column of Figure 2 can be executed. Hence in view of
pTrashInProg, for each p ∈ P, equally many copies of
inc(p) as dec(p) are executed in this phase, so (since they
cannot be executed in the final phase) the HTN state must
encode the zero state of N when entering pTrashMode.
Conversely, it is easy to show that after trashing the tokens
all remaining tasks can be finished in rTrashMode using
the “fake” tasks.

As an example, suppose that P = {p,q} and Θ = {θ ,η}
and τ0,τ1 are as in Table 1. Then τ1 is reachable from τ0 by
firing just θ . Hence to solve Π only one copy of t is needed.
See Figure 1. Notice that at the start of pTrashMode, both
slot tasks for p have been executed while neither slot task
for q has been executed; at the start of rTrashMode, all
slot tasks have been executed.

The method task network t in Figure 2 has the shape of
parallel sequences. This type of structure occurs frequently
in HTN planning; cf. (Behnke et al. 2022).

Conclusion and Future Work
We introduced several new fragments of HTN planning and
proved that multiple combinations of them are complete for
the large class ACKERMANN of decidable problems:

Theorem 6. Let C ∩H1 ∩L ∩B ⊆ Q ⊆H1 ∪I ∪F .
Then PLANEX(Q) is ACKERMANN-complete.

Proof. Theorem 2 and Propositions 4 and 5.

Table 3 lists some natural fragments of HTN planning.
Notice that the new fragments have higher computational
complexity than the previously known ones. Our proof relies
on the recently established ACKERMANN-completeness
of the Petri net reachability problem. In future work we hope
to further investigate the relationship between HTN plan-
ning and Petri nets, and use it to invent new algorithms for
HTN planning. In particular, the construction in the proof of
Proposition 4 can be carried out for any HTN problem, and
may provide a heuristic.

Moreover, we would like to investigate the class H2 of
two-hole-digging problems, that have two compound tasks
in the initial task network but only one compound task
per method task network. It is known that PLANEX(H2)
is undecidable; see (Höller et al. 2023). However, is
PLANEX(H2∩L ) decidable?

References
Alford, R. 2013. Search complexities for HTN planning.
Ph.D. thesis.
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