
Formalization, Development, and Baseline Analysis of a Task and Motion
Planning Domain in RDDL

Miguel Iglesias Alcázar1, Fernando Fernández Rebollo2, Yoonchang Sung3, Yuqian Jiang3

1 Universidad Carlos III de Madrid
2 University of Texas at Austin
3 University of Texas at Austin

migigles@pa.uc3m.es, ffernand@inf.uc3m.es,
jiangyuqian@cs.utexas.edu yooncs8@cs.utexas.edu

Abstract

This paper introduces a new domain for Task and Mo-
tion Planning (TAMP) problems within the Relational Dy-
namic Influence Diagram Language (RDDL), developed in
the pyRDDLGym. This domain accommodates a robotic arm
navigating in a shelf environment, enabling both discrete and5

continuous actions essential for agile manipulation and nav-
igation tasks. This domain formalized in RDDL, serves as
a framework for planners implemented in RDDL. By inte-
grating the JaxPlan algorithm and reinforcement learning, we
refine decision-making policies for these tasks, demonstrat-10

ing the framework’s potential for advancing TAMP research.
The introduced domain not only opens up new avenues for re-
search in TAMP problems but also serves as a robust platform
for developing algorithms or planners leveraging RDDL.

Introduction15

The field of autonomous robotics is rapidly advancing, with
an increasing demand for systems capable of executing com-
plex tasks in diverse environments. A key aspect of these
systems is their ability to plan and make intelligent deci-
sions. This paper introduces a new domain for Task and Mo-20

tion Planning (TAMP) problems within the Relational Dy-
namic Influence Diagram Language (RDDL), developed in
the pyRDDLGym.

This domain features a robotic arm navigating in a shelf
environment, enabling both discrete and continuous actions25

essential for agile manipulation and navigation tasks. The
discrete aspects of this domain pertain to the planning com-
ponent of the problem, determining the actions necessary for
the agent to reach its goal state. In contrast, the continuous
aspect arises from the arm’s movements within the shelving30

environment.
The choice of RDDL over other languages as PDDL-

Stream (Garrett, Lozano-Pérez, and Kaelbling 2020) for
modeling this domain is based on RDDL’s versatility in cap-
turing uncertainties, its parameterization for both discrete35

and continuous actions, and its proven application in related
domains, especially when dealing with stochastic TAMP
domains. While PDDLStream excels in symbolic and ge-
ometric reasoning, RDDL’s capacity to handle uncertain-
ties aligns closely with the complexities of robotic actions40

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

in uncertain environments. RDDL also supports hybrid ap-
proaches of planning and RL.

The newly formulated domain is evaluated using the Jax-
Plan algorithm (Gimelfarb, Taitler, and Sanner 2024), pro-
vided as the baseline for the IPC competition. Furthermore, 45

the domain was integrated and tested within the pyRDDL-
gym environment, providing a structured framework for test-
ing and experimentation. This integration into pyRDDLgym
offers a standardized environment, potentially benefiting fu-
ture researchers by providing a structured framework for ex- 50

ploring and developing TAMP solutions.
The introduction of this domain not only opens up new

avenues for research in TAMP problems but also serves as a
robust platform for developing algorithms or planners lever-
aging RDDL. By integrating reinforcement learning tech- 55

niques with planning methodologies, this work offers an ex-
citing avenue for enhancing the decision-making capabili-
ties of autonomous robots, setting the stage for future break-
throughs in robotic decision-making.

In summary, this research introduces a novel domain for 60

TAMP problems within RDDL, providing a fertile ground
for exploration and setting the stage for future breakthroughs
in robotic decision-making. The use of RDDL, JaxPlan algo-
rithm, and the pyRDDLgym environment provides a founda-
tion for further exploration and development in the field of 65

Task and Motion Planning.

Background
In this section, we review some of the necessary background
on task and motion planning problems, RDDL language,
and the deep reinforcement learning algorithm used in the 70

project.

Task And Motion Planning
Task and Motion Planning (TAMP) (Garrett et al. 2021)
seamlessly integrates high-level, discrete task planning with
low-level, continuous motion planning, forming a foun- 75

dational framework for autonomous decision-making in
robotics.

In TAMP, discrete task planning involves symbolic repre-
sentation and decision-making processes to determine action
sequences within a finite state space. These actions, ranging 80

from opening doors to manipulating objects, constitute the
abstract layer of TAMP.



Concurrently, continuous motion planning focuses on or-
chestrating the physical movement trajectory of the robot,
addressing challenges such as obstacle avoidance and path85

planning. This component deals with the nuances of naviga-
tion and manipulation in continuous space.

This fusion of discrete and continuous planning elements
in TAMP provides a formal framework for addressing com-
plex robotic challenges, bridging the gap between high-90

level decision-making and low-level action execution in au-
tonomous systems.

RDDL
The Relational Dynamic Influence Diagram Language
(RDDL) (Sanner 2010) is a robust language in AI planning95

that provides a comprehensive framework for defining state
transitions, actions, and observations. It is structured into
several sections, each serving a specific purpose in defining
the planning problem.

RDDL files are divided into domain and instance files.100

The domain file describes the general characteristics of the
problem, while the instance file specifies a particular in-
stance of the problem.

The domain file consists of the following sections:

• ’types’: This section defines the object types in the do-105

main. These types can be used to parameterize state vari-
ables, action variables, and non-fluents.

• ’pvariables’: This section declares parameterized state
variables, action variables, and non-fluents. State vari-
ables represent the state of the world, action variables110

represent the actions that can be taken, and non-fluents
represent static properties of the world.

• ’cpfs’: This section describes the transition dynamics of
the state variables. It defines how the state of the world
changes in response to actions.115

• ’reward’: This section specifies the immediate reward
function. It defines the immediate reward or cost received
after taking an action in a particular state.

• ’state-action constraints’: This section defines the con-
straints on the state and action variables. It specifies the120

legal actions in each state.

The instance file includes the following sections:

• ’objects’: This section declares the objects of each type
defined in the domain file.

• ’non-fluents’: This section specifies the values of non-125

fluent variables. These values are assumed to be static
and known.

• ’init-state’: This section defines the initial state of the
problem. It specifies the values of the state variables at
the start of the planning problem.130

RDDL’s strength lies in its ability to accommodate both
discrete and continuous scenarios seamlessly, making it
well-suited for tasks involving robotic systems, where hy-
brid actions, featuring both discrete and continuous compo-
nents, are common. Its expressive nature allows for the en-135

capsulation of uncertainties and dynamic changes, enabling

planners and learning algorithms to navigate these intrica-
cies effectively.

In summary, RDDL serves as a powerful tool for formu-
lating planning problems involving robots operating in en- 140

vironments with diverse and multifaceted characteristics. Its
versatility and expressive capabilities continue to fuel inno-
vations in the domain of AI planning by providing a robust
foundation for addressing the challenges posed by dynamic
and uncertain environments. 145

JaxPlan Algorithm
JaxPlan algorithm (Gimelfarb, Taitler, and Sanner 2024)
handles complex, hybrid nonlinear domains by blending
Tensorflow for symbolic computation and gradient-based
optimization. Its strength lies in tackling complex planning 150

tasks, excelling particularly in high-dimensional continuous
action spaces.

This algorithm approaches planning in hybrid domains
by optimizing cumulative rewards over a decision horizon,
incorporating both discrete and continuous elements. The 155

problem setup involves hybrid states (S) containing mixed
discrete and continuous state vectors, actions (A) with con-
straints (C), and functions governing reward (R) and state
transitions (T ).

In this domain, each time step involves: 160

• st: The mixed discrete and continuous state vector at time
t.

• at: The mixed discrete and continuous action vector at
time t.

• R(st, at): The reward function providing a non-positive 165

reward at each step.
• T (st, at): The function guiding state evolution over time.

The algorithm focuses on optimizing actions
(a1, ..., aH−1) to maximize the accumulated reward
value V . This is achieved through backpropagation, re- 170

versing the conventional training paradigm to optimize
inputs (actions) with fixed parameters (transition and reward
parameterization). The optimization process employs Mean
Squared Error (MSE) as the loss function, facilitating
efficient convergence, especially in large-scale neural 175

networks. Batch optimization, involving running multiple
instances in parallel, aids in exploring diverse solution
spaces, mitigating the risk of local minima due to the
non-convex nature of transition and reward functions.

The JaxPlan algorithm manages stochasticity through 180

clever parametrization techniques, like the reparameteriza-
tion trick, introduced in (Bueno et al. 2019). By transform-
ing stochastic variables using deterministic functions, it en-
sures smooth gradient computations, crucial for efficient op-
timization in uncertain environments. 185

Domain definition
The Robotic Arm domain replicates a simplified environ-
ment mimicking a robot’s operations in a shelf setting. It
involves an abstract representation of a robot manipulating
cans on shelves, inspired by real-world robotic tasks (figure 190

1). The domain comprises three primary components: the



arm, cans, and shelves. In this domain, two main areas are
distinguished: the working and safe position. The working
position is the actual shelves and in the safe position, the
arm can change from one shelf to another.195

1

Figure 1: Real world robotic arm

State Definition
The state variables encompass spatial characteristics and
task-related indicators. These include the dimensions and
boundaries of shelves, sizes of objects, and positional at-200

tributes of the arm and cans. Additionally, relationships are
included as can placement on shelves, the arm holding a can,
and the arm’s working position.

Actions
The domain involves both discrete and continuous actions.205

Discrete actions enable specific manipulations, including
movements, shelf interactions, can operations, and shelf
changes. Continuous actions include the movements of the
arm in both dimensions. These actions allow the arm to per-
form precise movements, interact with objects, and navigate210

the environment.

Task Objective
The primary objective of the robotic arm within this domain
is to consolidate all the cans onto a designated shelf. This
involves strategic decision-making to select the appropriate215

shelf and precise movements to transfer the cans effectively.

Constraints
Various constraints govern the arm’s actions to ensure safe
and efficient operations. Constraints include limitations on
arm movements within shelf boundaries, avoidance of col-220

lisions with objects, and specific conditions for can interac-
tions, such as lifting and placement criteria.

Modeling and formalization
The domain previously defined is formalized in RDDL, in
this section we describe the most relevant sections of the225

domain file.

1https://www.youtube.com/watch?v=srAzGAcahTA

Actions
In our domain, we can find the following actions. move x
and move y: real value action that moves the robotic arm
a certain amount in the x and y axis respectively. retract- 230

off-shelf and extend-to-shelf boolean actions that move the
arm from the working position to the safe position or vice
versa. pick-up and put-down boolean actions that make the
arm pick up or put down a can. change-shelf boolean action
that makes the arm change from one shelf to another. 235

Intermediate fluents
The intermediate fluents do not belong to the domain, they
were created to compute certain preconditions or to be used
as auxiliary functions to make the implementation easier and
more readable. Among these fluents we can find the follow- 240

ing. safe-position boolean fluent that tells whether the arm
is in the safe position. arm-free returns if the arm is hold-
ing a can. break-extension and break x check if the arm col-
lides with a can when moving forward (break-extension) or
moving horizontally (break x). These fluents are the most 245

complex ones as there are so many different cases to be con-
sidered and the implementation in RDDL is not trivial at all.
For instance, it has to be checked the case where the arm
collides with another can when it is not holding a can and
the case where it is holding a can. This second case can be 250

divided into subcases depending on the position of the can
being held by the arm with respect to the can to be avoided
when moving and also the size of both cans.

put-down-conditions and pick-up-conditions check if the
arm can put down or pick up a can. The latter is a rather 255

complex fluent as it has to check that the can to be picked up
lies within some boundaries so the arm is close enough and
in a position where it can pick up the can and also it has to
check that no other can is in between the arm and the can to
be picked up. Finally different-can just checks whether two 260

can are the same one.

State fluents
State fluents are the fluents forming the states of the domain,
we can find the following. on-shelf boolean fluent that deter-
mines whether a can is on a shelf. holding tells if the arm is 265

holding a can. working-shelf is a boolean fluent that returns
true if the arm is working on a specific shelf. x position a,
y position a, x position c, y position a are real value fluents
that define the coordinates of the cans and the arm.

Reward 270

The reward is just defined as 1 if a goal state is reached,
that is, if all the cans are placed on the same shelf, and 0
otherwise.

Stochastic version
Expanding upon the deterministic planning domain, this sec- 275

tion delves into the stochastic iteration of the robotic arm en-
vironment. Here, uncertainties in action execution are intro-
duced to mimic real-world variations and complexities en-
countered during task execution. The conceptual framework



and formalization of this stochastic domain are detailed be-280

low.

Conceptual model
The stochastic rendition retains the core characteristics of its
deterministic counterpart while integrating probabilistic el-
ements to encapsulate uncertainties linked with the robot’s285

actions. Notably, actions involving picking up cans and arm
movements are adjusted to account for the inherent variabil-
ity in execution.

In the stochastic domain, the success probability of the
arm picking up a can is contingent upon the distance be-290

tween the arm and the can itself. The likelihood of success
diminishes as the distance increases, reflecting the scenario
where grasping a closer can is more probable due to en-
hanced accuracy.

Additionally, arm movements in the stochastic domain295

follow a stochastic process. Rather than deterministic po-
sitional updates, the new position post-movement action is
sampled from a normal distribution. This distribution has a
mean equivalent to the previous position plus the intended
movement, with a variance of 1. This incorporation intro-300

duces variability in movement execution, mirroring the in-
herent uncertainties in motion control.

Formalization
The formalization of the stochastic domain entails integrat-
ing these probabilistic aspects into the existing RDDL for-305

malization. These adaptations primarily involve modifying
the success probabilities of actions and determining new po-
sitions post-movement actions.

The incorporation of probabilistic success probabilities
and stochastic movement processes enhances the domain’s310

realism. This augmentation facilitates a more accurate repre-
sentation of uncertainties in action execution, thereby broad-
ening the domain’s applicability and adaptability to real-
world scenarios.

Implementing Baseline Algorithm315

In this section, we present how the JaxPlan can be applied
to our arm domain. The algorithm utilizes a recurrent neural
network (RNN) (Medsker and Jain 2001) that operates based
on the differentiability of state and reward functions. How-
ever, the functions expressed in RDDL lack differentiability,320

posing a critical challenge to the algorithm’s implementa-
tion. To address this limitation, Fuzzy Logic techniques are
employed, transforming non-differentiable RDDL functions
into differentiable forms. This adaptation enables the suc-
cessful utilization of the RNN-based algorithm within the325

Robotic Arm domain, overcoming the hindrance posed by
non-differentiability.

Fuzzy Logic Transformations
To facilitate the transition from non-differentiable RDDL
functions to differentiable forms, a weight parameter is in-330

troduced, multiplying the input of the fuzzy logic transfor-
mations (Zadeh 1988). This parameter allows for a con-
trolled adjustment of the impact of each function, enabling

a smooth transition from discrete to continuous representa-
tions. Some transformations examples are shown: 335

• Greater Than or Equal To (≥): sigmoid(a - b)
• Greater Than (>): sigmoid(a - b)

Test Domain
To assess the impact of the weight parameter on the al-
gorithm’s performance, a simpler domain was constructed. 340

This domain represents a bi-dimensional space of size
11x11, where the agent’s objective is to navigate from the
bottom left corner to the top right corner within the space.
The RDDL code for the transition function for the position
of the agent and the reward is the following: 345

1 x_position_a’ = if((x_position_a +
x_motion) > MAX_X | (x_position_a
+ x_motion < 0)) then
x_position_a else x_position_a +
x_motion; 350

2 y_position_a’ = if((y_position_a +
y_motion) > MAX_Y | (y_position_a
+ y_motion < 0)) then
y_position_a else y_position_a +
y_motion; 355

3 };
4
5 reward = (x_position_a’ >=

x_position_c ˆ y_position_a’ >=
y_position_c); 360

By applying the fuzzy logic transformations to the state
update functions and the reward function, we obtain the fol-
lowing continuous functions:

x′a(xa, xm, XMAX) = cx · xa + (1− cx) · (xa + xm)

y′a(ya, ym, Y MAX) = cy · ya + (1− cy) · (ya + ym)

r(x′
a, y

′
a, xc, yc, xm, ym) = sigmoid(x′

a − xc)+

sigmoid(y′a − yc)− 0.1 · (sech2(−xm) + sech2(−ym))

where y′a is the next y position of the arm, ya is the current
y position, ym is the motion in the y direction, YMAX is the 365

maximum y coordinate that the arm can reach, xc and yc are
the x and y positions of the target can, and cx and cy are
given by

cx = tconorm (sigmoid ((xa + xm)−XMAX) ,

sigmoid (0− (xa + xm))

cy = tconorm (sigmoid ((ya + ym)− YMAX) ,

sigmoid (0− (ya + ym))

The weight parameter’s influence on the continuous func-
tions and their derivatives directly affects the algorithm’s 370

performance. Observations reveal that exceedingly high val-
ues of this parameter result in derivative functions with steep
curves, rendering them unsuitable for Stochastic Gradient



Descent (SGD) optimization. As depicted in figure 2, such
elevated parameter values yield derivatives that are imprac-375

tical for effective optimization, posing challenges for the al-
gorithm’s convergence.

Figure 2: State functions and its derivatives

Experiments
In this section, we explore the application of the JaxPlan
algorithm within the original arm domain. Our focus is on380

comprehensively analyzing the influence of various hyper-
parameters on the algorithm’s performance. This involves
meticulous tuning of weights, learning rates, epochs, and
other crucial factors, providing insights into their impact on
both effectiveness and efficiency.385

Hyperparameters and Experimental Design
We detail the critical hyperparameters dictating the al-
gorithm’s behavior within the Task and Motion Planning
(TAMP) domain and present the rationale behind their se-
lection. The experimental design employed for evaluation is390

elucidated as follows:

Hyperparameters The hyperparameters under scrutiny
are:

• Weight: Controls the steepness of fuzzy logic function
transformations.395

• Learning Rate: Influences convergence speed and stabil-
ity.

• Epochs: Defines the number of iterations.

Experimental Design We meticulously designed system-
atic experiments for each combination of hyperparameter 400

values. The selected ranges for hyperparameters are as fol-
lows:

• Weight: 0.005, 0.05, 0.1, 1.0, 10.0
• Learning Rates: 0.01, 0.1, 1.0
• Epochs: 100, 1000, 10000 405

These ranges were chosen based on relevance and effec-
tiveness in similar scenarios. The algorithm was executed for
each combination across four distinct instances of the arm
domain. The discount factor was set to 0.99 and the rollout
horizon to 200. 410

Arm Domain Instances
Four arm domain instances of varying complexity were se-
lected to evaluate the algorithm’s performance. In the fol-
lowing images, the black square represents the arm, the red
ones the cans and the brown squares represent the shelves: 415

Instance 0 Description: Relatively simple scenario with
three cans distributed across two shelves.

Figure 3: Visualization of instance 0

Instance 1 Description: Slightly more complex setup with
five cans distributed across two shelves.

Figure 4: Visualization of instance 1

Instance 2 Description: Features two cans distributed on 420

separate shelves, offering an interesting challenge due to
symmetry.

Instance 3 Description: Higher complexity with four
cans distributed across three shelves, requiring navigation
through varying distances. 425

The evaluation across these instances with diverse hyper-
parameter settings provides comprehensive insights into the
algorithm’s behavior under varying conditions.



Figure 5: Visualization of instance 2

Figure 6: Visualization of instance 3

Results and Analysis
This section presents the outcomes of the algorithm’s perfor-430

mance across diverse hyperparameter configurations in the
original arm domain.

Hyperparameter Analysis Across our experiments, the
weight hyperparameter emerged as the key influencer on
the algorithm’s performance within the arm domain. While435

other hyperparameters were explored extensively, their vari-
ations showed minimal impact on the algorithm’s efficacy.

Learning Rate, Epochs, and Horizon: Despite altering
these parameters within reasonable ranges, their variations
did not notably influence the algorithm’s performance. The440

diverse settings tested showed limited impact on plan effi-
ciency and convergence, suggesting a relatively stable algo-
rithm response.

Weight Parameter Significance: In stark contrast, the
weight parameter significantly influenced the planning pro-445

cess. Varied weight values produced distinct outcomes, with
a weight of 1.0 consistently yielding efficient plans across
different hyperparameter configurations. Smaller or larger
weights affected the steepness of fuzzy logic function trans-
formations, altering the behavior and convergence of the al-450

gorithm noticeably.
This observation highlights the weight parameter’s pivotal

role in the algorithm’s performance optimization, overshad-
owing the relatively negligible impact of other hyperparam-
eters. This can be observed in figure 7 where each bar repre-455

sents one value of the weight hyperparameter and the y-axis
shows the average length plan obtained with that value (200
means no plan reaching the goal was found).

Experiments conclusion
The best model found during the experimentation was the460

following:
Weight: [1.0], Learning Rate: [0.1], Epochs: [10000],
Horizon: [200], Batch Size: [128]

As depicted in Figure 8, the algorithm’s performance with
the best hyperparameters found exhibits variability across465

different instances within the TAMP domain. Each bar
within the plot represents a distinct instance, while the y-axis

Figure 7: Weight parameter influence on performance

signifies the frequency of successful completion for each in-
stance during the experiments. Notably, the results highlight
that instance 2 posed the least challenge, being solved more 470

frequently compared to other instances. Conversely, instance
3 presented a significant challenge, as the algorithm failed to
solve it within the experimentation framework.

Figure 8: Instances results

These outcomes underscore the algorithm’s capability
to solve specific instances effectively while facing diffi- 475

culties with more complex scenarios. While the algorithm
demonstrated success in simpler configurations, it struggled
or failed outright in more intricate instances. This empha-
sizes the nuanced nature of the TAMP domain, showcasing
that while solvable, certain configurations pose considerable 480

challenges for current planning algorithms. This insight con-
tributes to understanding the algorithm’s limitations and the
complexities inherent in solving TAMP problems compre-
hensively.

The determination of this model was informed by a com- 485

prehensive evaluation of numerous experimental outcomes.
However, an examination of the plans derived using this
best model reveals a noteworthy issue – each state transi-
tion often involves the execution of multiple actions. This
phenomenon initially posed a challenge due to the fact that 490

the original domain formalization (RDDL code) did not ac-
count for this multi-action execution scenario. The underly-
ing cause of this occurrence can be attributed to the nature
of the planner algorithm and its gradient ascent-based ap-



proach.495

Stochastic version results
We applied the algorithm, optimized for the deterministic
domain, to its stochastic counterpart. Despite its success in
solving the deterministic setup, the algorithm consistently
failed to reach the goal state across all instances in the500

stochastic domain.
This limitation exposes challenges in adapting planning

algorithms to uncertainties. It suggests a need for specialized
optimization techniques tailored for complex probabilistic
landscapes. While revealing the algorithm’s shortcomings,505

these findings offer crucial insights for advancing planning
algorithms in stochastic domains.

We believe that the reasons behind the failure of the algo-
rithm are related to the algorithm itself not being able to find
a solution and not to the formalization of the domain as it510

has been checked that the stochastic modeling was correctly
made.

Related Work
The integration of Task and Motion Planning (TAMP) in
robotics has been a subject of extensive research. The com-515

bination of high-level symbolic representations of tasks with
low-level geometric constraints to generate feasible plans
has been a notable line of research (Khodeir, Agro, and
Shkurti 2023; Alami 2005; Hepburn and Montana 2022).
These approaches aim to handle the complex continuous520

spaces inherent in TAMP domains, facilitating efficient ex-
ploration of feasible paths.

The JaxPlan algorithm has been used in hybrid nonlin-
ear domains for planning (Beeson and Montana 2022). This
algorithm leverages the power of recent advances in gradi-525

ent descent with highly optimized toolkits like Tensorflow.
It has shown promising results in terms of scalability and
performance in various planning tasks.

The integration of reinforcement learning with planning
techniques in robotics has also been a significant area of530

research (Ibarz et al. 2021). Reinforcement learning has
been recognized as a successful method for performing low-
level robot control under noisy conditions (Eppe, Nguyen,
and Wermter 2019). The integration of action planning with
model-free reinforcement learning has been explored, with535

reward sparsity serving as a bridge between the high-level
and low-level state and action spaces.

In conclusion, while there has been considerable research
in the areas of TAMP (Zhang et al. 2022), robotic arm opera-
tion, the use of the JaxPlan algorithm, and the integration of540

reinforcement learning with planning techniques, our study
introduces a novel TAMP domain implemented in RDDL.
This domain, centered around a robotic arm operating within
a shelf environment, integrates reinforcement learning with
the JaxPlan algorithm, offering valuable contributions to au-545

tonomous robotics.

Conclusions
In conclusion, this study represents a substantial stride in the
realm of autonomous robotics by introducing a novel Task

and Motion Planning (TAMP) domain in the Relational Dy- 550

namic Influence Diagram Language (RDDL). The creation
of this domain serves as a pivotal contribution, offering a
comprehensive framework for modeling both discrete and
continuous actions within uncertain and dynamic environ-
ments. 555

The experiments conducted within this domain under-
score the challenges of planning and decision-making, re-
vealing nuances in algorithmic performance across varied
hyperparameter settings. Furthermore, the insights gained
from the application of planning algorithms within this 560

domain illuminate the intricate interplay between uncer-
tainties, planning methodologies, and the efficacy of au-
tonomous systems.

The inability of established planning algorithms to seam-
lessly handle uncertainties, particularly in stochastic variants 565

of the domain, emphasizes the need for further advance-
ments in planning techniques. This emphasizes the critical
role played by the newly introduced TAMP domain in guid-
ing future research endeavors towards enhancing planning
algorithms capable of effectively addressing uncertainties in 570

real-world robotic applications.
By providing a structured platform for simulating com-

plex robotic scenarios, the RDDL-based TAMP domain
stands as a cornerstone for advancing planning and decision-
making strategies in autonomous robotics. Its utility in eval- 575

uating and fine-tuning algorithms within dynamic and un-
certain environments serves as an invaluable asset for re-
searchers and practitioners alike, fostering progress in the
pursuit of agile and adaptive robotic systems.

Acknowledgements 580

We extend our thanks to Peter Stone, from the University of
Texas at Austin for his initial contributions to this project
and for providing valuable feedback along the way. His in-
sights and guidance have been greatly appreciated during the
development process. 585

References
Alami, R. 2005. A Robot Task Planner that Merges Sym-
bolic and Geometric Reasoning. Springer Tracts in Ad-
vanced Robotics.
Beeson, A.; and Montana, G. 2022. Improving TD3-BC: 590

Relaxed Policy Constraint for Offline Learning and Stable
Online Fine-Tuning. arXiv:2211.11802.
Bueno, T. P.; de Barros, L. N.; Mauá, D. D.; and Sanner,
S. 2019. Deep reactive policies for planning in stochastic
nonlinear domains. In Proceedings of the AAAI Conference 595

on Artificial Intelligence, volume 33, 7530–7537.
Eppe, M.; Nguyen, P. D. H.; and Wermter, S. 2019. From
semantics to execution: Integrating action planning with
reinforcement learning for robotic causal problem-solving.
arXiv:1905.09683. 600

Garrett, C. R.; Chitnis, R.; Holladay, R.; Kim, B.; Silver, T.;
Kaelbling, L. P.; and Lozano-Pérez, T. 2021. Integrated Task
and Motion Planning. Annual Review of Control, Robotics,
and Autonomous Systems.



Garrett, C. R.; Lozano-Pérez, T.; and Kaelbling, L. P.605

2020. PDDLStream: Integrating Symbolic Planners and
Blackbox Samplers via Optimistic Adaptive Planning.
arXiv:1802.08705.
Gimelfarb, M.; Taitler, A.; and Sanner, S. 2024. JaxPlan
and GurobiPlan: Optimization Baselines for Replanning in610

Discrete and Mixed Discrete and Continuous Probabilistic
Domains. In 34th International Conference on Automated
Planning and Scheduling.
Hepburn, C. A.; and Montana, G. 2022. Integrating Sym-
bolic and Geometric Planning for Mobile Manipulation.615

arXiv preprint arXiv:2211.11603.
Ibarz, J.; Tan, J.; Finn, C.; Kalakrishnan, M.; Pastor, P.; and
Levine, S. 2021. How to train your robot with deep rein-
forcement learning: lessons we have learned. The Interna-
tional Journal of Robotics Research, 40(4–5): 698–721.620

Khodeir, M.; Agro, B.; and Shkurti, F. 2023. Learning to
Search in Task and Motion Planning With Streams. IEEE
Robotics and Automation Letters, 8(4): 1983–1990.
Medsker, L. R.; and Jain, L. 2001. Recurrent neural net-
works. Design and Applications, 5(64-67): 2.625

Sanner, S. 2010. Relational Dynamic Influence Di-
agram Language (RDDL): Language Description.
Http://users.cecs.anu.edu.au/ ssanner/IPPC2011/RDDL.pdf.

Zadeh, L. 1988. Fuzzy logic. Computer, 21(4): 83–93.
Zhang, X.; Zhu, Y.; Ding, Y.; Zhu, Y.; Stone, P.; and Zhang,
S. 2022. Visually Grounded Task and Motion Planning for
Mobile Manipulation. arXiv:2202.10667.


