
Comparing Planners: Beyond Coverage Tables

Caleb Hill1, Stephen Wissow2, Wheeler Ruml2

1Department of Mathematics and Statistics, 2Department of Computer Science
University of New Hampshire, USA

caleb.hill@unh.edu, sjw@cs.unh.edu, ruml@cs.unh.edu

Abstract

It is currently common practice in the automated planning
community to compare two planners by providing a table
of coverage by domain. Surprisingly, there is no commonly-
used quantitative test for whether one planner is better than
another, even within a single domain. Given the coverage ta-
ble, researchers merely draw informal conclusions. In this pa-
per, we articulate several desirable features of a formal statis-
tical comparison of planner running times. We evaluate clas-
sical statistical tests against these desiderata and we present a
new test, Bootstrapped Exponential Estimates (BEE), that is
explicitly designed for planners. We hope this work initiates
discussion on how the planning community can best formal-
ize quantitative comparison.

Introduction
The purpose of implementing planners and evaluating their
empirical behavior, as in the International Planning Com-
petition, is to formally measure which algorithms are faster
and when. ICAPS papers are often full of sophisticated con-
cepts, definitions, and theorems, but current practice in ex-
perimental evaluation remains informal. Results are usually
presented in terms of coverage, which is the number of plan-
ning tasks that were solvable within a per-task time bound.
Many researchers assume that, because planner running time
often increases exponentially as problems grow in size, solv-
ing even a few additional tasks is highly significant. But
evaluation methods such as comparing coverage numbers
lack nuance in that they do not provide any measure of cer-
tainty of the result. Given the usefulness of quantitative sta-
tistical analysis in the social and physical experimental sci-
ences, not to mention the rest of computer science and AI,
a formal measure suitable for planner benchmarking would
likely benefit the planning community.

We fully acknowledge that, in some cases, coverage num-
bers alone can indeed give a clear picture of which planner
is superior. But sometimes they can’t. And furthermore, hav-
ing a sensitive statistical test can bring other benefits. For
example, it could be used during experimentation in order
to perform just enough tests in order to reach a reliable re-
sult, saving the experimenter (or IPC organizer) computation
time and therefore energy and likely atmospheric carbon.

Our work aims to develop a metric that is precise, that
is based on clearly articulated assumptions, that quantita-

tively captures uncertainty, and that respects the exponential
growth of problem difficulty. Our work is in a preliminary
stage and we do not claim to have developed the ultimate
statistic. However, our work articulates several of the issues
at play and we present two types of statistics that have not
been used in the planning community but that we believe
hold promise for comparing planners.

Desiderata
We start with a few desired characteristics of a test for com-
paring two planners. An ideal metric would:
1. be based on precise and easy-to-understand assumptions

that are hopefully few in number;
2. return a numerical score that quantifies the certainty with

which we can say that planner A is better than planner B;
3. provide an interpretable score that is easy to understand.

For example: if assumptions X, Y, and Z hold, what is the
probability that planner A is better than planner B;

4. take running times as input, rather than just coverage, as
this can help distinguish between planners with identical
coverage;

5. tolerate censored running times — measurements where
all running times above a known time bound were not
obtained;

6. take the time bound into account, so that running times
that were censored by a high bound would influence the
score more than running times censored by a bound that
is not as high;

7. take into account the fact that some planning tasks are
much harder than others, so if A solves a much harder
task than B is able to, that means more than if A were
to solve a problem that is only slightly harder than the
hardest problem B solved, or an easy problem that B hap-
pened to not solve;

8. take into account information about the planning tasks
that might help predict their difficulty. For example, the
parameters to a stochastic problem generator often in-
clude the number of objects in the domain, or other size
information, and task difficulty is often correlated with
this;

9. when assessing the difficulty of a task, take into account
if multiple planners take a long time (or a short time) on

that task, with more planners lending more evidence for
the difficulty of that task;

10. in the absence of other evidence, assume that planner
running time increases roughly exponentially as prob-
lems become larger (we consider it a subjective issue of
semantics whether one ascribes this to difficulty increas-
ing exponentially with problem size or to planner running
time increasing exponentially with problem difficulty);
and,

11. be relatively quick and easy to compute.

We will use these to determine how appropriate a given eval-
uation metric might be for assessing planner performance.

Any test for detecting which of two planners is better en-
codes, implicitly or explicitly, a definition of better. One
common definition in computer science is: has a running
time that grows more slowly. This implies that, for suffi-
ciently large problems and the infinite number of problems
larger than that, the better planner will be faster.

Being able to determine which of two planners is better
does not necessarily imply that we are able to predict their
running time on new instances, merely which one will be
faster. Although if one were able to predict running time,
this clearly implies being able to decide which will be faster.
Such detailed predictions might also be useful in gaining
more detailed understanding of planner behavior, aiding in
algorithm research.

Classical Approaches
In this section, we consider several well-established statisti-
cal tests and evaluate them against our list of desiderata. For
complete explanations with examples, see Rice (2007); for
a practical guide, see Warne (2020).

In the terminology of statistics, our data are paired, mean-
ing that for each planning task in a particular domain, we
have the running time of planner A and planner B.

Sign Test
The sign test is perhaps the simplest approach to analyz-
ing running time data for a pair of planners. This test’s null
hypothesis is that the median difference in the planners’
running times is zero; that is, the probability that planner
A solves a problem faster than planner B is 0.5. The sign
test treats runtimes from two planners like a Bernoulli ran-
dom variable, with each paired data point—each of the two
planners’ runtimes on a single problem instance—as a sam-
ple from the random variable. That is, for any two specific
paired runtimes yA and yB for planners A and B on a spe-
cific problem instance, it is either true or false that yA < yB .
The frequency of yA < yB being true over the paired data
points from all the problem instances in the domain repre-
sents the probability that planner A solves a problem faster
than planner B.

One strength of the sign test is that it makes very few as-
sumptions. It is non-parametric: because it reduces the pairs
of running times down to flips of a coin of unknown bias, it
doesn’t assume anything about the shape of the distribution
from which running times are drawn. It does assume that the

probability distribution of signs (i.e., the Bernoulli’s prob-
ability of heads) is stationary. It can handle censored data
when one planner hits the time limit and the other doesn’t,
as it is clear in such cases which sign is implied. When con-
sidering our list of desiderata we see that the sign test only
satisfies 1 (has precise, easy-to-understand assumptions), 2
(quantifies uncertainty), 3 (provides interpretable result), 4
(takes runtimes as input), and 5 (handles censored data). Be-
cause it ignores the magnitude of the difference in running
time between two planners and uses only the sign, we ex-
pect it to be a relatively insensitive test. For example, if the
timings of planner A are 1, 2, 3 and the timings of planner B
are 100, 200, 300, the test will regard this the same as if B’s
times had been 4, 5, and 6.

Wilcoxon Rank-Sum Test
The Wilcoxon rank-sum test is a generalization of the sign
test. The sign test only requires data to be pairwise com-
pared; the Wilcoxon test gains insight by not only order-
ing but ranking data. Like the sign test, the Wilcoxon’s is
non-parametric, and its null hypothesis is that the probabil-
ity planner A solves a randomly chosen problem faster than
planner B is 0.5. The test works by supposing all the run-
times for two planners are uniformly shuffled. Given this
uniform shuffle, one computes the probability of observ-
ing the test statistic: the sum of the runtime ranks of, e.g.,
planner A. If this probability is sufficiently low, the test re-
jects the random shuffle hypothesis. The test presupposes
that the two distributions being compared are only shifts of
one another; that is, they have the same shape and spread.
The Wilcoxon test satisfies desired characteristics 1, 2, 4,
and 5. Despite these positive characteristics, the test leaves
much to be desired. In particular, it can be confounded if the
two different datasets being compared have different shape,
as explained by (Hart 2001).

Paired t-test
While the Sign and Wilcoxon tests are nonparametric, mean-
ing they make no assumptions as to the shape of the data
they analyze, the paired t-test by contrast assumes that the
pair differences are themselves normally distributed. That is,
the paired t-test’s null hypothesis is that the mean of the dif-
ferences is zero. It tests this hypothesis by considering the
differences in running times for the two planners and test-
ing whether the mean of the distribution of the differences
is significantly different from zero. Note that, in order to
calculate the differences, the paired t-test requires specific
running times for both planners—it cannot handle censored
running times.

Furthermore, we observed the assumption of normality
to be false. As evidence for this, see Figure 1, which con-
tains a normal quantile-quantile plot for the runtime differ-
ences between using greedy search (eager) in FastDown-
ward with the causal graph heuristic with and without pre-
ferred operators on the gripper domain (for brevity, we re-
fer to these configurations as ‘cg’ and ‘cgpo’ henceforth).1
Quantile-quantile plots help show how well data follow a

1See https://www.fast-downward.org/.

Figure 1: Normal quantile-quantile plot for running time dif-
ferences between cg and cgpo on the gripper domain.

cgpo+ cgpo-
cg+ 67 2
cg- 1 80

Table 1: Contingency table for cg and cgpo on all autoscale
benchmarks with a single linear parameter.

certain distribution. In this case, we compare the empirical
runtime differences, whose quantiles are expressed along the
vertical axis, with a normal distribution, whose quantiles are
expressed along the horizontal axis. The line is a linear fit
of the resulting points. If the runtime differences were dis-
tributed normally, we would expect the plotted points to fol-
low the line more closely. This makes intuitive sense, as we
might expect the gap between two planners to grow as prob-
lems become more difficult.

In summary, the paired t-test, despite its popularity more
generally, is inapplicable to planner running times. Also, it
has only the first three desired characteristics 1, 2, 4, and 11.
It considers neither the size nor difficulty of the tasks solved
by the planners.

McNemar’s Test
McNemar’s test analyzes paired coverage data from two
planners by using a contingency table of those planners’
coverage. For example, Tables 1 and 2 count the number
of instances solved (“+”) or unsolved (“-”) by each planner
(‘ffpo’ refers to greedy search (eager) using the FF heuris-
tic with preferred operators in FastDownward). The null hy-
pothesis of McNemar’s test is that the probabilities of the
off-diagonal cells (i.e., upper-right and lower-left) are equal,
which we would interpret to mean that the two planners are
equally likely to not solve a problem.

McNemar’s test ignores running time and depends on
having censored data. The test also lacks ease of interpre-
tation, as one must understand exactly the implications of
the null or alternative hypotheses; this is not immediately
obvious. For instance, Torralba, Seipp, and Sievers (2021)
demonstrate that under a given experimental time limit, one
may observe equal coverage even when one planner solved

ffpo+ ffpo-
cg+ 29 10
cg- 7 74

Table 2: Contingency table for cg and ffpo on all autoscale
benchmarks with a single linear parameter.

every instance faster than another by a constant factor. In
summary, McNemar’s test only satisfies desiderata 2 (quan-
tifies uncertainty) and 5 (handles censored data).

There is precedent for using McNemar’s test in the con-
text of portfolio planning. Seipp et al. (2012) apply McNe-
mar’s test to compare their uniform portfolio with the winner
of the 2011 International Planning Competition, and the re-
sult of the test, a p-value of p = 0.0002, is strong evidence
in favor of the claim that their portfolio plans better than the
IPC winner. This claim, however, does not directly address
the system’s parameters.

All of the above statistical tests are focused on detecting
whether or not one planner is faster than another. They do
not attempt to quantify how much their performance differs.

A Generative Model of Running Time
We present a model that has desired characteristics 1, 2,
3, 4, 5, 10, 11. In concert with desideratum 10, we as-
sume that problem difficulty increases exponentially as prob-
lem size increases. This is a common assumption: Torralba,
Seipp, and Sievers (2021) bake this assumption into their
definition of what they call ‘linear parameters’. We will as-
sume that difficulty increases exponentially along some one-
dimensional subspace of the parameter space of each do-
main’s problem generator. We assume additionally that plan-
ner running time is linear in difficulty, although one might
imagine other monotone choices.

Let I be the collection of problem instances belonging to
a given domain, and let T = (0,∞) be the set of possible
running times. Informally, G takes in a random seed r and a
N -tuple of parameters ρ and returns a problem to be solved.

Definition 1. A problem generator is a stochastic function
G : N× RN → I.

Once a problem has been generated, Φ then solves the
problem in some amount of time.

Definition 2. A planner running time function is a func-
tion of instances Φ : I → T.

When there is no danger of confusion, we will conflate a
planning algorithm with its running time function.

Here comes our major assumptions about planners’ inter-
actions with problems. Let D = (0,∞). We will use D as a
measure of the difficulty of a given problem instance.

Definition 3. A difficulty function is a function d : I → D,
such that for any planner Φ,

d(x) ≈ d(y) =⇒ Φ(x) ≈ Φ(y). (1)

We make the following crucial assumption.

Assumption 1. Such a difficulty function d exists.

This allows us to analyse the performance of a planner via
its performance on problems of similar difficulty; that is, we
may approximately factor a planner running time function
through difficulty.
Definition 4. Given a planner Φ and difficulty function d, a
pure running time function for Φ is a function Φ : D → T
such that Φ(x) ≈ Φ(d(x)).

In the definition for a pure running time function for Φ,
the equation

Φ(x) ≈ Φ(d(x)) (2)
may be visualized by considering the following approxi-
mately commuting diagram2

N× RN G // I
d

##

Φ // T

D

Φ

;; (3)

With these definitions, we are interested in the running times
Φ ◦G(r, ρ). Assumption 1 allows us to instead consider Φ ◦
d ◦G(r, ρ).

We perform our analysis in the case that N = 1, and
ρ = n ∈ R (in some cases we take ρ to be an element of
a one-dimensional subspace of parameter space). Motivated
by Equation 2 (the lower triangle of Diagram 3), we make
the following additional assumptions.
Assumption 2. Fix r = r0. Difficulty is approximately ex-
ponential in the generator parameter:

d ◦G(r0, n) ≈ a2kn (4)

where a and k are positive.
The motivation for Assumption 2 comes from the pres-

ence of linear parameters in the work of Torralba, Seipp,
and Sievers (2021). These are parameters whose variation,
when all others are fixed, results in exponential increase in
running time.
Assumption 3. Pure running time is approximately linear
in problem difficulty:

Φ(d) ≈ md (5)

where m is positive.
In Assumptions 2 and 3 we take “≈” to mean that there are
some unmodeled phenomena.

Putting these assumptions together, we get:
Problem 1. Consider a fixed problem generator G with dif-
ficulty function d; fix r = r0. Let ΦA and ΦB be two pure
running time functions for two planners. Suppose that we
have

ΦA ◦ d ◦G(r0, n) = m12
k1n (6)

ΦB ◦ d ◦G(r0, n) = m22
k2n

Given running time data for both planners, estimate the
probability P (k1 < k2).

2The diagram would be said to commute if Φ(x) = Φ(d(x)).
The weakening of “=” to “≈” is what makes the diagram approxi-
mately commute.

To interpret these equations, we start by noting that the num-
ber of nodes in a naive search tree for a planning problem of
size n is exponential in n. We can then interpret the slope
parameter m as modeling the time it takes a planner to ex-
pand a node. As for the scale parameter k, we note that Korf,
Reid, and Edelkamp (2001) found that the effect of a more
accurate heuristic on a search tree of size O(bd) is to reduce
the depth term d in the exponent. Put simply, a heuristic of
average value h resulted in O(bd−h) nodes being expanded.
Our intuition is that, as size increases, the average heuris-
tic value will as well, resulting in m2kn nodes for some
planner-dependent values of m and k.

We observed a degree of subexponential growth in the
planner runtimes we examined. Following Janke and Tins-
ley (2005), we examined other linear models of the form

f1(runningtime) = b+ af2(size) (7)

For example, a plot of log planner running time against log
problem size showed a more linear relationship than when
inspecting a plot of log planner running time against prob-
lem size. The left panel of Figure 2 shows one such log-log
plot of running times for ffpo, cgpo, and cg on the Autoscale
benchmarks in the gripper domain.

The linearity of the log-log plots might encourage one to
assume the model in Equation 7 where f1(x) = f2(x) =
log(x). However, we retain the model proposed in Problem
1 for two reasons. First, the exponential model seems to fit
the runtime data better for larger problems than the general
linear model: whereas the exponential fit closely matches
the runtimes of the larger problem instances in the center
panel of Figure 2, the general linear model fit in the right
panel appears to diverge from the empirical data as problem
size increases. Second, the exponential model aligns more
closely with the behavior we would expect from the types of
search algorithms under consideration.

Bootstrapped Exponential Estimates
We now introduce a statistical comparison method that in-
stantiates the ideas above into a concrete algorithm, which
we call Bootstrapped Exponential Estimates (BEE).3 In
overview: we will fit Eq 6 for each planner and then use
a resampling technique called bootstrapping to derive prob-
ability distributions that quantify our uncertainty about the
value of the scale parameters k. BEE returns an estimate of
the probability that one planner’s k is less than the other’s.
We focus on the scale parameter k rather than the slope pa-
rameter m as it is more important for asymptotic behavior.

To understand bootstrapping, consider the example of es-
timating the mean of a Gaussian from n samples. If we
didn’t have access to a formula for the confidence interval
around the sample mean, how might we estimate the un-
certainty of our estimate? The uncertainty comes from the
fact that, if we were to take another set of n samples, they
would almost certainly be different, resulting in a different
estimate of the mean. In bootstrapping, we simulate this pro-
cess many times, creating r new hallucinated datasets, each
containing n samples and resulting in its own estimate of

3Code at https://github.com/chill1017/ComparingPlanners.

Figure 2: Left: log-log plot of running times. Center: exponential fit. Right: GLM fit for log(runtime) = b+ a log(size).

1. let there be data for planner i
2. fit exponentials to get m̂i and k̂i
3. estimate the residuals of the exponential fits as ϵi
4. do r times
5. simulate data for each planner using m̂i, k̂i, and ϵi
6. fit exponentials and extract estimates for mi and ki

Figure 3: A sketch of BEE.

the mean. To create each dataset, we use the mean and vari-
ance of the original data to create a Gaussian from which to
sample. The r hallucinated means form a distribution repre-
senting the uncertainty of our original sample mean and the
2.5th and 97.5th percentiles would form an estimate of the
95% confidence interval.

BEE uses bootstrapping to estimate the uncertainty sur-
rounding the scale parameter k of the exponential function
of Eq 6 for each planner. An overview is given in Figure 3.
In a given problem domain, we start by fitting an exponen-
tial function to the original runtime data for a given planner.
However, instead of simply using the slope and scale pa-
rameters of this single exponential fit for comparison with
other planners, we estimate our uncertainty using bootstrap-
ping. To create hallucinated data, we first take the residuals
from the original fit and use them to estimate the distribu-
tion of the unexplained ‘noise’ in the original data. We then
(1) sample from this estimated distribution of runtime noise,
and, together with the first exponential fit to the original run-
time data, use the sampled noise to (2) hallucinate new run-
ning time data. We finally (3) fit a new exponential function
to this batch of new, hallucinated runtime data, and record
the resulting slope (m) and scale (k) values. The sampling
(1), hallucination (2), and fit (3) all occur in each bootstrap
iteration, and, for r bootstrap iterations, result in a set of
r (m, k) tuples for the given planner. This process is per-
formed for each planner in the given problem domain. Com-
paring different planners’ sets of (m, k) values provides di-
rect answers to questions like P (mi < mj) and P (ki < kj)

−0.5 0.0 0.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

scanalyzer residuals: ffpo

N = 9 Bandwidth = 0.1494

De
ns

ity

Figure 4: Distributions of additive log-runtime residuals.

for estimated slope m and scale k parameters for algorithms
i, j run on problem instances from a given domain.

Both to perform the first exponential fit to the original
runtime data, and also to fit a new exponential function
to each bootstrap iteration’s batch of hallucinated data, we
first transform the data from runtime space into log-runtime
space by taking the log of each point’s runtime and fitting a
line to the result. We then exponentiate the line to produce
the exponential fit to the data in runtime space.

We assume multiplicative log-normal noise in the origi-
nal runtime data (i.e., additive Gaussian noise in log-runtime
space), so we estimate the noise Gaussian from the linear
fit residuals in log-runtime space; see Figure 4 for a Ker-
nel density estimate of the additive residuals in log-runtime
space. To hallucinate new data, we walk along the x values
of the original runtime data, computing for each the runtime
predicted by the first exponential fit to the original runtime
data, and multiply each predicted runtime by the exponen-
tiation of a sample from the noise Gaussian. The result is a
new batch of hallucinated data, for the same problem sizes,

0 5 10 15 20

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0
runtimes on parking

size

ru
n

tim
e

ffpo
cgpo
cg

0 5 10 15 20

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

parking bootstrap iter: 1

size
si

m
u

la
te

d
 r

u
n

tim
e

ffpo
cgpo
cg

0 5 10 15 20

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

parking bootstrap iter: 9

size

si
m

u
la

te
d

 r
u

n
tim

e

ffpo
cgpo
cg

Figure 5: Running times (left) and example bootstrapped data and corresponding fits (center and right).

generated by combining the first exponential fit to the orig-
inal data with random sampling of the noise distribution es-
timated from the first fit’s residuals. Note that when estimat-
ing our residual error model and generating new data, we
don’t consider any data with y < 0.25 out of concern that
any measurement noise in the original data could lead to un-
realistically large estimates of multiplicative error.

Figure 5 shows an example of bootstrapping using data
from the parking domain. The left panel shows the origi-
nal runtime data for all three algorithm configurations con-
sidered on the parking domain. The center and right panels
show example hallucinated data and their fits for two differ-
ent bootstrap iterations. In the original data, it is not obvi-
ous which planner is scaling better and we see that the fits
in the two hallucinated datasets differ in which curve is the
least steep (red in the center and likely blue in the right).
This illustrates how the bootstrapped data can be useful in
reflecting the uncertainty in the original data, even though
the bootstrapped data is hallucinated.

BEE has desired characteristics 1 (precise, easy-to-
understand assumptions), 2 (quantifies uncertainty), 3 (pro-
vides interpretable result), 4 (takes running times as input),
5 (tolerates censored data), 10 (assumes running times are
roughly exponential in problem size), and 11 (quickly and
easily computable).

Results
We ran BEE on running times of cg, cgpo, and ffpo on
the autoscale benchmarks with a single linear parameter:
blocksworld, childsnack, gripper, parking, and scanalyzer.
Figure 6 shows the estimated distribution of the scale pa-
rameter for each planner on gripper. The probability that
BEE assigns to planner A being better than planer B is the
probability that a sample from A’s distribution is less than a
sample from B’s distribution.

Table 3 shows the resulting pairwise comparisons. Each
entry is the estimated probability that the row planner’s
scale parameter is lower than that of the column planner’s:
P (krow < kcolumn). Every planner had complete coverage

0.050 0.055 0.060

0
50

10
0

15
0

20
0

25
0

scale parameters for gripper

scale parameter

pr
ob

ab
ilit

y

ffpo
cgpo
cg

Figure 6: BEE’s distributions for planners’ scale parameters.

ffpo cgpo cg
ffpo 0.4995 0.107552 0.12147
cgpo 0.892448 0.4995 0.495829
cg 0.87853 0.504171 0.4995

Table 3: Pairwise comparisons of ffpo, cgpo, and cg’s scale
parameters on the gripper domain.

in gripper under our 2 min time limit. As Figure 6 suggests,
BEE judges cgpo to be likely better than ffpo, and cg is likely
better than ffpo. However, the test is not able to confidently
distinguish cg and cgpo. Similarly, Table 4 shows the pair-
wise scale parameter comparisons in the parking domain, a
domain in which not all problem instances were solved.

Next, we investigate the sensitivity of BEE as the number
of planning tasks solved increases. Figure 7 shows BEE (left
panel) and the sign test (right panel) as we consider longer
and longer prefixes of the running times data. The right pan-
els show the p-value for given sample sizes at a standard

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

bootstrap method scanalyzer

problem instance number

pr
ob

ab
ili

ty

P(k_ffpo < k_cgpo)
P(k_cgpo < k_cg)
P(k_cg < k_ffpo)

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

sign test scanalyzer

problem instance number

p−
va

lu
e

k_ffpo v k_cgpo
k_cgpo v k_cg
k_cg v k_ffpo

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

bootstrap method parking

problem instance number

pr
ob

ab
ili

ty

P(k_ffpo < k_cgpo)
P(k_cgpo < k_cg)
P(k_cg < k_ffpo)

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

sign test parking

problem instance number

p−
va

lu
e

k_ffpo v k_cgpo
k_cgpo v k_cg
k_cg v k_ffpo

Figure 7: Comparisons as more data are considered: BEE (left) and sign test (right); scanalyzer (top) and parking (bottom).

ffpo cgpo cg
ffpo 0.4995 0.933775 0.957738
cgpo 0.066225 0.4995 0.668305
cg 0.042262 0.331695 0.4995

Table 4: Pairwise comparisons of ffpo, cgpo, and cg’s scale
parameters on the parking domain.

significance level α = 0.05. The left panels show the prob-
ability estimates for P (kcg < kffpo), P (kcgpo < kcg) and
P (kffpo < kcgpo). The subsets of the data we used to gen-
erate these probabilities were the first s problem instances,
where s = 4, 5, . . . , 30.

The top left plot shows that, in the scanalyzer domain,
BEE becomes fully confident that the scale parameters of
cg and cgpo are less than that of ffpo after seeing the run-
ning times for only the first four planning tasks. On the other
hand, the sign test (top right) requires a longer prefix of tim-
ing data to become sure of its conclusion. In the parking
domain (bottom row), we see that BEE develops certainty
that the scale parameters of cg and cgpo are less than that of
ffpo more slowly. Interestingly, it consistently returns about
a 0.5 probability that the scale parameter of cg is less than

that of cgpo. Manual inspection of the runtime data shows
that this conclusions appears justified: there is little differ-
ence between the two planners’ performance.

Future Work
Future work is warranted in improving our modeling of
planner data—our bootstrapped data was sometimes un-
realistically noisy because poor fits to the original data
gave rise to high variance in the estimated error distribu-
tion. Examination of the error residuals in these cases sug-
gested that the remaining unmodeled errors could be cap-
tured by a quadratic term (e.g., an overall model such as
y = (c1x

2 + c2x+ c3)2
c4x). Figure 8 shows an example in

the gripper domain; note the residuals are expressed here as
multiples of the original exponential fit’s prediction. Having
a better model would result in better bootstrap data, resulting
in more accurate estimates of uncertainty. However, such a
model is also harder to fit.

A Bayesian Model
We briefly discuss an alternative approach to solving Prob-
lem 1 by way of Bayesian inference via probabilistic pro-
gramming. Bayesian inference transforms (possibly uninfor-
mative) prior assumptions about parameter distributions into

Figure 8: Multiplicative residuals from the exponential fit.

more accurate posterior distributions by conditioning on ob-
served data. The key to this method is Bayes’s Theorem,
which allows one to compute the informed posterior. The
statement boils down to

f(θ|y) ∝ f(y|θ)f(θ)
where f(θ) denotes the prior distribution on the parameter
θ and f(y|θ) denotes the conditional distribution of the ob-
served data y given a parameter value θ. See Hoff (2009)
for more details. The value we are concerned with is f(θ|y),
which is the posterior density for θ values given the observed
data. Aside from specifying priors, Bayesian inference soft-
ware packages, we hoped, would require few initial assump-
tions.

The Bayesian translation of Assumption 2 is

d ◦G(n) ∼ N(a2kn, σ2) (8)

where a, k have uninformative prior distributions. Combin-
ing this with Assumption 3 we get a formulation similar to
Problem 1:

ΦA ◦ d ◦G(n) ∼ N(m12
kn, σ2)

ΦB ◦ d ◦G(n) ∼ N(m22
kn, σ2)

When conditioning on the available running time data, the
hope is that we can obtain posterior distributions for each
d ◦G(n), m1, and m2. The hope of extra flexibility offered
by Bayesian inference allows for one to make fewer assump-
tions on the form of the difficulty and running time func-
tions. Overall, this method has the potential, we believe, to
obtain ideal characteristics 1, 2, 3, 4, 5, 9, 10, and 11.

We were unable to fully implement this approach. Our ini-
tial attempt using the Stan language is shown in Listing 1.
The problem we found has to do with the need to spec-
ify the model in greater detail. While Stan can often sam-
ple efficiently, our model is apparently complex enough that
one needs to manually specify the likelihood function to aid
the sampler. Specifically, a nonlinear variable transforma-
tion is needed (Stan Development Team 2024, Section 25.3
‘Changes of variables’). Further work is needed to explore
the potential of this approach.

Listing 1: Preliminary Stan code for the Bayesian inference
approach to planner parameter estimation.
1 functions {
2 real PhiBar(int n, real m, real k){
3 return m*2ˆ(k*n);
4 }
5 }
6 data {
7 int<lower=0> N;
8 vector[N] Y;
9 }

10 parameteters {
11 real<lower=0> k;
12 real<lower=0> m;
13 real<lower=0> sigma;
14 }
15 model {
16 for(n in 1:N)
17 Y[n] ˜ normal(PhiBar(n,m,k), sigma);
18 k ˜ uniform(0, 2);
19 m ˜ uniform(0, 5);
20 sigma ˜ uniform(0, 1);
21 }

Discussion
An alternative perspective to comparing planners could be
to consider them as adversarial players in a game, compet-
ing to solve a planning task first. If a given problem instance
is considered a match or duel, then the models put forward
by Minka, Cleven, and Zaykov (2018) or Elo (1978) may
be used to estimate the relative ‘strength’ or ‘win probabil-
ity’ of two planners on a given problem instance. However,
even if the prediction of which planner will finish first can
be made accurately, it is not obvious if a who-will-win pre-
diction can also capture by-how-much. Even the more gen-
eral system designed by Cowan (2023), of which TrueSkill
(Minka, Cleven, and Zaykov 2018) is a special case, only
predicts the win-loss outcome and provides no insight into
the generator’s or planner’s parameters or scaling.

Ideally, a model of planner behavior would predict plan-
ner performance on the basis of features of the domain,
rather than considering each domain in isolation. This would
allow us to understand planner performance more deeply
and predict performance in new domains.

Conclusion
We have presented a method, Bootstrapped Exponential Es-
timates, that has desired characteristics 2, 3, 4, 5, 10, and 11
. This method offers new insight into planner performance
that is not offered by classical statistical methods. BEE
yields in a more nuanced picture of planner performance and
depends on only a few simple assumptions about the plan-
ners being analyzed. The largest drawback at this stage of
development is that, as of now, we only have a method that
analyzes problems generated from a one-dimensional sub-
space of problem parameter space. We hope in the future to
see extensions of this method that utilize richer models for
running time and use higher dimensional subsets of problem
parameter space.

Acknowledgements
We are grateful for helpful discussions with Pei Geng, Ernst
Linder, Marek Petrik, and Jendrik Seipp and for support
from the United States National Science Foundation via
NSF grant 2008594.

References
Cowan, A. 2023. Paired comparisons for games of chance.
arXiv:2303.14857.
Elo, A. E. 1978. The Rating of Chessplayers, Past and
Present. Arco Pub.
Hart, A. 2001. Mann-Whitney test is not just a test of
medians: differences in spread can be important. BMJ,
323(7309): 391–393.
Hoff, P. D. 2009. A First Course in Bayesian Statistical
Methods. Springer Publishing Company, Incorporated, 1st
edition. ISBN 0387922997.
Janke, S. J.; and Tinsley, F. 2005. Introduction to linear
models and statistical inference. Nashville, TN: John Wiley
& Sons.
Korf, R. E.; Reid, M.; and Edelkamp, S. 2001. Time com-
plexity of iterative-deepening-A*. Artif. Intell., 129(1-2):
199–218.
Minka, T.; Cleven, R.; and Zaykov, Y. 2018. TrueSkill 2: An
improved Bayesian skill rating system. Technical Report
MSR-TR-2018-8, Microsoft.
Rice, J. A. 2007. Mathematical statistics and data analysis.
Brooks/Cole.
Seipp, J.; Braun, M.; Garimort, J.; and Helmert, M. 2012.
Learning Portfolios of Automatically Tuned Planners. In
Proceedings of ICAPS, 368–372.
Stan Development Team. 2024. Stan User’s Guide.
https://mc-stan.org/docs/stan-users-guide/ [Accessed: April
2, 2024].
Torralba, A.; Seipp, J.; and Sievers, S. 2021. Automatic In-
stance Generation for Classical Planning. In Proceedings of
ICAPS, 376–384.
Warne, R. T. 2020. Statistics for the social sciences. Cam-
bridge University Press, 2 edition.

