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Abstract 

Airlift operations require the timely distribution of various cargo, 
much of which is time sensitive and valuable. However, these op-
erations have to contend with sudden disruptions from weather and 
malfunctions, requiring immediate rescheduling. The Airlift Chal-
lenge competition seeks possible solutions via a simulator that pro-
vides a simplified abstraction of the airlift problem. The simulator 
uses an OpenAI gym interface that allows participants to create an 
algorithm for planning agent actions. The algorithm is scored using 
a remote evaluator against scenarios of ever-increasing difficulty. 
The second iteration of the competition was underway from No-
vember 2023 to April 2024. In this paper, we describe the compe-
tition and simulation environment. As a step towards applying gen-
eralized planning techniques to the problem, we present a temporal 
PDDL domain for the Pickup and Delivery Problem, a model 
which lies at the core of the Airlift Challenge. 

 Introduction 
An airlift operation comprises movement of cargo, supplies 
and/or personnel often within strict time limits. This is ham-
pered by various factors, ranging from excessive amounts of 
cargo/personnel to conditions at the airports themselves, 
e.g., very limited space for taxiing or parking (Owen, 1997). 
Usually, the air cargo consists of time sensitive and valuable 
supplies. Even just a small change can result in a large 
amount of disruption, requiring extensive replanning which 
takes time and resources. This drives an increased need for 
automation within the planning process. To answer this 
need, we present the Airlift Challenge competition1. 

The airlift planning problem is difficult because of the 
number of constraints and factors. Often, Mixed Integer Lin-
ear Programming (MILP) solutions are utilized, but these 
require recalculation of the entire solution when a disruption 
occurs (Bertsimas, Chang, Mišić, & Mundru, 2019). How-
ever, reinforcement learning has also shown promise in 
quick replanning. Even if a solver can find an optimal solu-
tion to a problem, this solution must be created quickly in 
order to deal with dynamic elements. 

The first iteration of the Airlift Challenge was held with 
the SPIE conference in 2023 and attracted 20 registered us-
ers and two high quality submissions that received 1st and 

 
1 See main website https://airliftchallenge.com/  

2nd place respectively (Delanovic, et al., 2023). In the re-
mainder of this paper, we describe the second iteration held 
in association with ICAPS 2024 and concluded in April 
2024. We then present a Pickup and Delivery PDDL (Plan-
ning Domain Definition Language) domain as a starting 
point for a potential submission to future IPCs (International 
Planning Competitions). 

Simulation Environment Details 
The goal of the competition’s simulation environment is to 
provide a simplified model that captures the major factors 
influencing an airlift operation. This approach is based off 
the Flatlands competition which was focused on train vehi-
cle routing (Mohanty, et al., 2020). The Flatlands competi-
tion focused on “flattening”, or simplifying, a complex en-
vironment into a set of the most important parameters. The 
advantage of a simplified environment is it abstracts away 
details in the environment, while the design of the starter kit 
allows many types of solutions to be used with it.  

The model consists of an air network graph, where each 
node corresponds to an airport and each edge denotes the 
route that agents can traverse. The agents are airplanes that 
travel preset routes between airports. The agents move the 
same predetermined distance at every time step based on the 
speed of their airplane type. Airplanes are limited by fuel, 
routes available, maximum loading weight and speed. Air-
ports themselves can only process a certain number of air-
planes at a time, creating possible bottlenecks. A summary 
of the simulated objects and associated parameters is shown 
in Table 1. 
  

https://airliftchallenge.com/
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Object Parameters 
Airport • Location 

• Working capacity (# of airplanes that can pro-
cess/load/unload at same time) 

Route • Flight Cost (determined based on distance) 
• Flight Time (determined  based on distance and 

flight speed) 
• Start/end airports 
• Availability status (routes may become unavail-

able at random intervals) 
Airplane • Cargo weight capacity 

• Time to process 
• Route Map: Contains all routes available to 

travel 
• Processing priority (determines order in which 

planes process/load/unload) 
Cargo • Weight 

• Source/destination airports 
• Soft delivery deadline 
• Hard delivery deadline 

Table 1: Model Parameters 

At each time-step all agents receive an observation and 
corresponding reward. The agents then decide what action 
to take next using the policy provided by the competition 
participant, and pass it to the environment. This continues 
until either 1) all the cargo is delivered, or 2) a maximum 
number of time steps has elapsed. For the competition, each 
scenario is limited to 5,000 time steps. 

An agent can be in in one of four states at any given time: 
waiting, processing, ready-for-takeoff, or moving. An agent 
is put into a waiting state after landing at an airport. While 
in the waiting state it is held in a priority queue. Each airport 
has a finite processing capacity. When an airport has capac-
ity and the airplane is next in the priority queue, it will tran-
sition into the processing state. While in this state, cargo 
loading or unloading actions will take place. After pro-
cessing cargo, the airplane will then transition to the ready-

 
2 See https://airliftchallenge.com/chapters/ch2_model/main.html and 
https://airliftchallenge.com/chapters/ch3_interface/main.html for more de-
tails. 

for-takeoff state. An airplane will remain in the ready-for-
takeoff state until it receives actions specifying its next des-
tination. Then, the airplane will transition to the moving 
state, restarting the entire process over again.  

Plans are implemented by issuing actions to change the 
state of an airplane. We briefly summarize the actions and 
their associated preconditions and effects in Table 2. The 
Process action transitions the airplane from the waiting state 
into the processing state. If processing capacity is reached, 
the airplane waits in priority queue based on a priority given 
by the agent policy. Processing must be performed at least 
once after landing, to represent re-fueling and other mainte-
nance, even if there is no cargo to load/unload. Concurrent 
with processing, the Load and Unload actions may be used 
to transfer cargo. The Takeoff action receives a destination 
and transitions from ready-for-takeoff into a moving state. 
A valid destination is defined as any neighboring node of 
the current airport with respect to the route graph. Note that 
the simulator offers a consolidated action space which al-
lows actions to be issued while in flight to the next airport, 
with sequencing at the airport handled automatically. More 
details are provided in the competition documentation2. 
 

Action Preconditions Effects 
Process There is available 

capacity to process. 
Sends airplane into pro-
cessing state. 

Load New cargo will not 
exceed airplane ca-
pacity. Airplane is 
in processing state. 

Loads a piece of cargo. 

Unload Airplane has cargo 
onboard and is in 
processing state. 

Unloads a piece of cargo. 

Takeoff Airplane has fin-
ished processing. 

Sends airplane into moving 
state. 

Table 2: Key components of action. All actions are undertaken 
while an airplane is landed at an airport. 

 

Figure 1: Simulator visualization highlighting aspects of generative models 

https://airliftchallenge.com/chapters/ch2_model/main.html
https://airliftchallenge.com/chapters/ch3_interface/main.html
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A malfunction generator will randomly cause disruptions 
to airplane routes, forcing the planner to reschedule. Mal-
function are generated according to a Poisson distribution 
with the mean number of malfunctions per time step 𝜆𝜆 pre-
determined before generating the scenario. Throughout each 
scenario, cargo will be dynamically generated at random 
times. In addition, the simulator has the option to place 
cargo and airplanes in random initial places. 

Cargo is placed within a designated area called the “pick 
up zone”. The pick-up zone contains a subset of airports. 
The cargo must be picked up and delivered to the “drop off 
zone” that is generally on the other side of the map. An il-
lustration of these zones is shown in Figure 1. The drop-off 
and pick-up zones contain a subset of airports within a spe-
cific area. 

Cargo is assigned a weight, a soft deadline and a hard 
deadline. The weight of the cargo varies. As shown in Figure 
2, cargo is considered to be on-time if it is delivered within 
the soft deadline. If the cargo is delivered past the soft dead-
line, it is considered late. If the agents are unable to deliver 
the cargo within the hard deadline, the cargo is considered 
missed, and the agent is penalized heavily for it.   

 
Figure 2: Deadlines for delivery. 

Maps are generated using the Perlin noise algorithm, 
whereby a certain threshold value decides if an area is con-
sidered land or water, and airports are placed uniformly at 
random on the landmasses (Perlin, 1985). The generator also 
ensures that airports are not placed too close to each other. 
An example of a scenario can be seen in Figure 1.   

The environment supports multiple airplane types, since 
this is required for successful airlift operations given the va-
riety of airplanes and potential landing areas. Airplane types 
have speed, maximum travel range and maximum carrying 
capacity. The edges on the graph network correspond to the 
maximum range of the airplane type. The disparate graph 
networks for each airplane type are combined to from a sin-
gle muti-graph where the edges contain data on which air-
plane type can traverse it. Certain airplane types may not be 
able to reach all airports and would have to work together 
with the others to complete cargo delivery.  

For the ICAPS Airlift Challenge we introduced agent pri-
ority. Given the finite processing capacity of airports, this 
addition enables solutions to prioritize agents for pro-
cessing, regardless of their arrival time. Proper prioritization 
of agents provides the ability to improve cargo delivery out-
comes from missing the hard deadline to late or even on-
time.  

 
3 See https://codalab.lisn.upsaclay.fr/competitions/16103 

Baselines 
There are three baselines provided. These are the random 
agent, shortest paths as well as a MILP. The random agent 
samples the observation and generates a random valid ac-
tion. The shortest paths agent only traverses airports using 
the shortest path available. If a route along a path becomes 
unavailable, the agent will re-route to the next shortest path.  

The MILP solution uses constraints as formulated in 
(Bertsimas, Chang, Mišić, & Mundru, 2019). It utilizes the 
GNU Linear Programming Kit (GLPK), an open-source 
solver that can be used for linear programming or MILPs 
(Makhorin, 2012). This solution does not scale well when 
additional agents are added to the scenarios and currently 
only runs with one agent and simple scenarios.  

Scoring 
The competition evaluator is hosted on Amazon Web Ser-
vices (AWS). The services do not allow communication 
with any outside resources. This ensures that all participants 
receive an even playing field and that there is no bias in scor-
ing the submission. A participant will use the CodaLab plat-
form to make a submission (Pavao, et al., 2022)3. The sub-
mission is immediately sent to AWS, where it will start the 
evaluation process. Results are shown on a leaderboard. 

For each phase of the competition, over four hundred sce-
narios are generated to score the submitted algorithms. Sce-
narios increase in difficulty. This is accomplished by chang-
ing “static” as well as “dynamic” parameters. The static pa-
rameters include the quantity of agents, airports and cargo. 
The dynamic parameters include the rate at which new cargo 
is generated, as well as how often routes become unavaila-
ble. The evaluation scenarios are not released to the public, 
although a test set is provided. 

A submission will run until it either reaches the allotted 
four-hour time limit, exceeds an overall 30% missed deliv-
eries, or completes all scenarios within the time constraint. 
Upon either of these occurring, a score is generated and 
placed on the leaderboard. Figure 3 shows visualizations of 
the environment for four tests, ranging from the simplest to 

https://codalab.lisn.upsaclay.fr/competitions/16103
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most difficult scenarios. The blue and white colored edges 
represent different airplane types.  

To generate an overall score for any submission, we first 
assign an episode score. For each level that the submission 
completes, a score is assigned based on missed cargo, late 
cargo and total flight cost. An overall score is calculated by 
summing the normalized score over all tests and levels. 

A starter-kit is provided and hosted on the competition 
GitHub page with detailed description on what a submission 
should include4. Additionally, instructions are included on 
generating custom-made scenarios, and we provide a large 
number of pre-generated scenarios stored in serialized form 
as pickle (.pkl) files. 

Current Competition 
The competition hosted on CodaLab began in November 

2023, attracting 40 registered users. The competition was di-
vided into Phase 1 and Phase 2. Phase 1 of the competition 
utilized one airplane type and assisted the team in debugging 
any environment issues that the participants may encounter. 
Phase 1 concluded on January 12th, 2024, followed immedi-
ately by the start of Phase 2. Unlike Phase 1, Phase 2 intro-
duces two airplane types: a larger aircraft with greater car-
rying capacity and a smaller one with a reduced carrying ca-
pacity. 

The competition concluded on April 18th, 2024, and we 
are happy to announce the following winners of the compe-
tition: 
 

• 1st place: Team JLH4E – 1201.01 points 
• 2nd place: Team FKIE – 507.70 points 
• 3rd place: The Down Underdogs – 372.31 points 

 
Detailed results and approaches are deferred to an extended 
version of this paper5. 

 
4 See https://github.com/airlift-challenge/airlift-starter-kit 
5 We plan to post the extended version as a revision at the following link: 
https://arxiv.org/abs/2404.17716  

PDDL Domain: Pickup and Delivery with 
Time Windows  

As a first step towards applying AI Planners to the Airlift 
Planning problem, we have developed a PDDL domain that 
captures some core deterministic aspects of the airlift prob-
lem (Fox & Long, 2003). This model essentially embodies 
a Pickup and Delivery with Time Windows (PDPTW) prob-
lem (Berbeglia, Laport, & Cordeau, 2010). We refer to the 
new domain as the PDPTW domain. 

The basic pickup and delivery problem (without time 
windows) has been explored through the LOGISTICS do-
main in IPC going back to the AIPS-98 Planning Competi-
tion, see (Long, et al., 2000) and (Seipp, Fawcett, Masataro, 
Muise, & Blonet, 2022). A domain for the closely related 
Vehicle Routing Problem has also been proposed in (Cheng 
& Gao, 2014). However, these domains do not include tem-
poral aspects. 

The PDPTW domain incorporates temporal elements in 
the form of durative actions (movement, loading, an un-
loading) and time windows via Timed Initial Literals 
(Haslum, Lipovetzky, Magazzeni, & Muise, 2019). This 
model can be considered a temporal variant of the 
TRANSPORT∞+ planning task introduced in (Helmert, 
2008), which represents a transportation problem with no 
fuel constraints, no vehicle capacity constraints, and one ve-
hicle type. For simplicity, we initially consider a fully con-
nected transport graph with uniform travel times between all 
locations. We also leave multiple vehicles and action costs 
as a future extension. 

It could be interesting to use PDDL solvers in order to 
compare the results between the OpenAI version and the 
PDDL version, or even to solve sub-components of the over-
all problem. There is promise in not only using other gener-
alized planners but possibly using Large Language Models 
(LLMs) for planning tasks using PDDL. See for example 
(Silver, et al., 2023) and (Valmeekam, Sreedharan, 
Marquez, Olmo, & Kambhampati, 2013) 

In order to more closely match the current environment, 
probabilistic elements of malfunctioning routes and dy-
namic cargo generation would have to be added. An ideal 
candidate for expressing this model may be RDDL (Rela-
tional Dynamic Influence Diagram Language)6. RDDL 
could also model rewards which are an important element 
of the OpenAI Gym interface for techniques such as rein-
forcement learning. 

The PDPTW domain is listed in the appendix and is also 
available under the Airlift Challenge Github account7. 

6 See https://users.cecs.anu.edu.au/~ssanner/IPPC_2011/RDDL.pdf   
7 See https://github.com/airlift-challenge/PDDL-Domain 

Figure 3: Example scenarios exhibiting difficulty increase. 

https://github.com/airlift-challenge/airlift-starter-kit
https://arxiv.org/abs/2404.17716
https://users.cecs.anu.edu.au/%7Essanner/IPPC_2011/RDDL.pdf
https://github.com/airlift-challenge/PDDL-Domain
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Future Work 
Both iterations of the Airlift Challenge have brought in sev-
eral high-quality submissions. Despite this success, a num-
ber of future formats are possible which may allow better or 
different solutions as well. One of the criticisms we had in 
the past from participants interested in reinforcement learn-
ing was that the randomized environments create entirely 
new air route maps for each episode, which required rein-
forcement learning algorithms to work in a very general 
manner. In fact, this was not as indicative of real-world sit-
uations where airports would stay in the same areas and the 
air network would remain relatively unchanged. 
 The PDDL domain may serve as an initial step towards a 
domain submission for a future IPC. It could allow for gen-
eral planners as possible solutions for this challenge.  

References  
Berbeglia, G., Laport, G., & Cordeau, J.-F. (2010). 

Dynamic pickup and delivery problems. 
European Journal of Operational Research, 
202(1), 8-15. 

Bertsimas, D., Chang, A., Mišić, V. V., & Mundru, N. 
(2019). The Airlift Planning Problem. 
Transportation Science, 773-795. Retrieved 
November 30, 2021 

Cheng, W., & Gao, Y. (2014). Using PDDL to Solve 
Vehicle Routing Problems. Intelligent Information 
Processing VII, 207-215. 

Delanovic, A., Chiu, C., Kolen, J., Gnanasekaran, A., 
Surana, A., Srivastava, K., . . . Beckus, A. (2023). 
Results of the airlift challenge: a multi-agent AI 
planning competition. Artificial Intelligence and 
Machine Learning for Multi-Domain Operations 
Applications. SPIE. 

Fox, M., & Long, D. (2003). PDDL2.1: An Extension to 
PDDL for Expressing Temporal Planning 
Domains. Journal of Artificial Intelligence 
Research, 61-124. 

Haslum, P., Lipovetzky, N., Magazzeni, D., & Muise, C. 
(2019). An Introduction to the Planning Domain 
Definition Language. Switzerland: Springer 
Cham. 

Helmert, M. (2008). Domain Complexity and Heuristic 
Decomposition. Berlin: Springer-Verlag Berlin 
Heidelberg. 

Long, D., Kautz, H., Selman, B., Blonet, B., Geffner, H., 
Koehler, J., . . . Fox, M. (2000, June 1). The 
AIPS-98 Planning Competition. AI Magazine, 
21(2), 13-34. 
doi:https://doi.org/10.1609/aimag.v21i2.1505 

Makhorin, A. (2012, June 23). GLPK GNU Linear 
Programming Kit. Retrieved from GNU: 
https://www.gnu.org/software/glpk/#introduction 

Mohanty, S., Nygren, E., Laurent, F., Schneider, M., 
Scheller, C., Bhattacharya, N., . . . Spigler, G. 
(2020). Flatland-RL : Multi-Agent Reinforcement 
Learning on Trains. arXiv:2012.05893. 

Owen, R. C. (1997). The Airlift System: A Primer. Air 
Power Journal. 

Pavao, A., Guyon, I., Letournel, A.-C., Escalante, H., 
Escalera, S., Thomas, T., & Xu, Z. (2022). 
CodaLab Competitions: An open source platform 
to organize scientific challenges.  

Perlin, K. (1985). An image synthesizer. (pp. 287-296). 
ACM SIGGRAPH Computer Graphics. 

Seipp, J., Fawcett, C., Masataro, A., Muise, C., & Blonet, 
B. (2022). PDDL Generators. Zenodo. 
doi:https://doi.org/10.5281/zenodo.6382173 

Silver, T., Dan, S., Srinivas, K., Tenenbaum, J. B., 
Kaelbling, L. P., & Katz, M. (2023). Generalized 
Planning in PDDL Domains with Large Language 
Models. arXiv. 

Valmeekam, K., Sreedharan, S., Marquez, M., Olmo, A., & 
Kambhampati, S. (2013). On the Planning 
Abilities of Large Language Models: A critical 
Investigation with a Proposed Benchmark. 
arXiv:2302.06706. 

 

Acknowledgments 
We would like to thank ICAPS for allowing us to host the 
Airlift Challenge competition using their venue, and facili-
tating outreach to the wider planning community. 
 We extend our gratitude to the Flatland challenge for its 
influence on our competition and code base.  
 We also extend our appreciation and thank you to all the 
registered users and participants of the challenge, and most 
importantly, to the winners. Their contributions and bug re-
ports played the most significant role in the success of this 
competition.  



Distribution Statement A: Approved for Public Release; Distribution Unlimited: Case Number AFRL-2024-1614 

Appendix: PDDL Domain listing 

The PDPTW domain incorporates temporal elements from the PDDL 2.1 specification (Fox & Long, 2003). The temporal 
PDPTW domain is defined as follows: 
 
;; Simple Pickup and Delivery with Time Windows (PDPTW) Domain 
 
(define (domain PDPTW) 
  (:requirements :strips :typing :durative-actions :timed-initial-literals)  
  (:types package 
          vehicle - physobj 
          place 
          physobj - object) 
  (:predicates 
    (objat ?obj - physobj ?loc - place) 
    (in ?pkg - package ?veh - vehicle) 
    (available ?pkg - package)) 
 
 (:durative-action LOAD 
  :parameters   (?pkg - package ?vehicle - vehicle ?loc - place) 
  :duration (= ?duration 1) 
  :condition (and (at start (objat ?pkg ?loc)) 
                  (over all (and (objat ?vehicle ?loc) 
                                 (available ?pkg)))) 
  :effect (and (at start (not (objat ?pkg ?loc))) 
               (at end (in ?pkg ?vehicle)))) 
 
 (:durative-action UNLOAD 
  :parameters   (?pkg - package ?vehicle - vehicle ?loc - place) 
  :duration (= ?duration 1) 
  :condition (and (at start (in ?pkg ?vehicle)) 
                  (over all (and (objat ?vehicle ?loc) 
                                 (available ?pkg)))) 
  :effect (and (at start (not (in ?pkg ?vehicle))) 
               (at end (objat ?pkg ?loc)))) 
 
 (:durative-action MOVE 
  :parameters (?vehicle - vehicle ?loc-from - place ?loc-to - place) 
  :duration (= ?duration 2) 
  :condition (and (at start (objat ?vehicle ?loc-from))) 
  :effect (and (at start (not (objat ?vehicle ?loc-from))) 
               (at end (objat ?vehicle ?loc-to)))) 
) 
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An example problem is as follows (this problem contains three locations, three packages, and two vehicles): 
 
(define (problem PDPTW-3-3-2) 
(:domain PDPTW) 
(:objects 
 veh1 veh2 - vehicle 
 loc1 loc2 loc3 - place 
 pkg1 pkg2 pkg3 - package) 
 
(:init  
 ; Vehicle locations 
 (objat veh1 loc1) 
 (objat veh2 loc1) 
 ; Package pickup locations 
 (objat pkg1 loc1) 
 (objat pkg2 loc2) 
 (objat pkg3 loc3) 
 ; Package times available for pickup 
 (at 10 (available pkg1)) 
 (at 1 (available pkg2)) 
 (at 2 (available pkg3)) 
 ; Package delivery deadlines 
 (at 15 (not (available pkg1))) 
 (at 10 (not (available pkg2))) 
 (at 7 (not (available pkg3))) 
) 
 
; Package delivery locations 
(:goal (and  (objat pkg1 loc2) 
             (objat pkg2 loc3) 
             (objat pkg3 loc1) 
       ) 
) 
) 
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