
PbFCEGAR: Pre-refined by Facts Counterexample-Guided Abstraction
Refinement

Martı́n Pozo, 1 Álvaro Torralba, 2 Carlos Linares López 1

Universidad Carlos III de Madrid, Madrid, Spain
Aalborg University, Aalborg, Denmark

Abstract

Counterexample-Guided Abstraction Refinement (CEGAR)
is a prominent technique to generate Cartesian abstractions
for guiding search in cost-optimal planning. The core idea is
to iteratively refine an abstraction, by finding a flaw of the cur-
rent optimal abstract plan when it is replicated in the concrete5

state space. It has shown a significant improvement in perfor-
mance when used to generate additive abstractions combined
by saturated cost partitioning.
But other ways of refining the abstraction are possible, and
one of the problems of additive heuristics is the lack of diver-10

sity, alleviated by computing a different abstraction for sub-
problems that use each landmark as the only goal of the prob-
lem. At first, refining the abstraction by facts chosen by other
domain-independent heuristics could be a good idea to speed
up the abstraction creation and to provide diversity, by ap-15

plying a different heuristic for each abstraction, getting one
heuristic to dominate them all, the so long-awaited legendary
omni-heuristic! We observed, however, that it does not work
well because the quality of the refinements (and even the or-
der in which they are applied) is paramount, and limiting the20

size of the abstraction is essential too.

Introduction
Counterexample-guided abstraction refinement (CEGAR) is
a method that originated in model-checking (Clarke et al.
2000), where it is widely used to prove that error states25

are unreachable. The key idea is to iteratively refine an ab-
straction by finding an optimal abstract plan, understanding
why it is not an actual plan by using interpolation to find a
logic formula that explains the difference, and changing the
abstraction to reflect the difference. The idea was brought30

to planning by Seipp and Helmert (2013b; 2018), using
CEGAR to generate Cartesian abstractions that result in in-
formative admissible heuristics for A∗ search (Hart, Nilsson,
and Raphael 1968). Since then, CEGAR has become one of
the dominant approaches for generating all kinds of abstrac-35

tion heuristics (Rovner, Sievers, and Helmert 2019; Kreft
et al. 2023). This is best exemplified by the state-of-the-art
Scorpion planner (Seipp 2018), which uses this method to
compute a diverse set of Cartesian abstraction heuristics and
combine them additively (Seipp and Helmert 2013a, 2014)40

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

using saturated cost-partitioning (Katz and Domshlak 2010;
Seipp, Keller, and Helmert 2017, 2020).

But the question of how to guide the refinement process
in CEGAR to generate informative abstractions has compar-
atively received much less attention. One possibility is to 45

perform batch refinement (Speck and Seipp 2022), where
the abstraction is refined at each iteration based on multi-
ple plans instead of only one. Regression flaws is another
successful approach that has been proposed recently (Pozo,
Torralba, and Linares López 2024), consisting in search- 50

ing flaws backwards from the goals partial state. In this
paper, we pre-refine the abstraction before the loop by the
refinement of facts chosen by other families of domain-
independent heuristics, with the hope of speeding up the ab-
straction creation as much as incorporating the knowledge 55

of other heuristics into it. Furthermore, each heuristic can be
used to refine a different abstraction, getting another source
of diversity for additive abstractions.

Background
We consider tasks in SAS+ representation (Bäckström and 60

Nebel 1995), where states are described in terms of a set
of variables V , and each v ∈ V has a finite domain, Dv .
A partial state p is a partial variable assignment over some
variables vars(p) ⊆ V . A (concrete) state s is a full assign-
ment, i.e., vars(s) = V . We write p[v] = d for the value 65

d assigned to the variable v ∈ vars(p) in the partial state p,
and we call a fact to this assignment. Two partial states p and
c are consistent if p[v] = c[v] for all v ∈ vars(p) ∩ vars(c).
We denote by S(p) ⊆ S the set of states consistent with p.

A SAS+ task Π is a tuple ⟨V,O, s0, G⟩ where s0 is the 70

initial state, G is a partial state that describes the goals, and
O is a set of operators. An operator o ∈ O has precondi-
tions pre(o) and effects eff (o), both of which are partial
states, and a non-negative cost cost(o) ∈ R+

0 . An operator
o is applicable in progression in a state s if s is consistent 75

with pre(o). The result of applying o to s is another state
sJoK where sJoK[v] = eff (o)[v] if v ∈ vars(eff (o)) and
sJoK[v] = s[v] otherwise. s o−→ s′ is a shorthand for the ap-
plication of o on s when s′ = sJoK. The state space of a task
Π is a transition system, Θ = ⟨S,O, T, s0, SG⟩, where S is 80

the set of all states, SG = {s ∈ S | s is consistent with G}
is the set of goal states, and T = {(s, o, s′) | s o−→ s′} is



the set of transitions. A plan π for s is a sequence of opera-
tors ⟨o1, o2, . . . , on⟩, s.t. the trace s

o1−→ s1
o2−→ . . .

on−→ sn
reaches a goal state sn ∈ SG. The cost of π is the summed85

up cost of its operators. The goal distance from s to the goal,
h∗(s), is the minimum cost of any plan for s, or ∞ if no plan
exists. A plan for Π is a plan for the initial state, s0.

A common approach to find optimal plans is to use A∗

search with an admissible heuristic. A heuristic is a function90

h : S 7→ R+
0 ∪ {∞}. The heuristic is admissible if h(s) ≤

h∗(s) for all s ∈ S.
An abstraction is a function α : S 7→ Sα, where Sα is

a finite set of abstract states. The abstract state space Θα =
⟨Sα, O, Tα, sα0 , S

α
G⟩ is a homomorphism of the state space,95

i.e., Tα = {(α(s) o−→ α(t) | s o−→ t ∈ T )}, sα0 = α(s0),
Sα
G = {α(s) | s ∈ SG}. Each abstraction induces a heuristic

function where hα(s) is the distance from α(s) to the goal
in Θα. Each abstract state sα ∈ Sα is identified with the set
of states mapped to it, S(sα) = {s | s ∈ S, α(s) = sα}.100

Cartesian abstractions are a type of abstractions where the
set of states S(sα) is Cartesian for all sα ∈ Sα (Seipp and
Helmert 2018). A set of states is Cartesian if it is of the form
A1 ×A2 × · · · ×An, where Ai ⊆ Dvi for all vi ∈ V . Given
a Cartesian set a, we denote by a[vi] the set of values that105

vi can take in a, i.e., a[vi] = Ai ⊆ Dvi . The intersection of
two Cartesian sets a′ = a1∩a2 is also a Cartesian set, where
a′[v] = a1[v] ∩ a2[v] for all v ∈ V .

Note that Cartesian sets generalize partial states. For any
partial state p, we can build a Cartesian set C(p) such that110

C(p) = S(p), by making C(p)[v] = {p[v]} if v ∈ vars(p)
and C(p)[v] = Dv otherwise. Slightly abusing notation, we
will keep this conversion implicit and define the intersection
of a Cartesian set a and a partial state p as a∩p = a∩C(p).

The most successful technique to obtain informative115

Cartesian abstractions is CEGAR (Counterexample-Guided
Abstraction Refinement) (Seipp and Helmert 2013b, 2018).
CEGAR starts with the trivial abstraction with a single ab-
stract state a s.t. a[v] = Dv ∀v ∈ vars(v). Then, it is it-
eratively refined until reaching a termination condition or120

finding a concrete plan. The refinement loop finds an opti-
mal abstract plan trace τα = a0

o1−→ a1
o2−→ . . .

on−→ an
and executes it in the concrete space, resulting in a trace
s0

o1−→ s1
o2−→ . . .

on−→ sn. If this execution succeeds and
sn ∈ SG, then it is an optimal plan for the task. If the plan125

execution fails at some step, a flaw is reported and the ab-
straction is refined by splitting an abstract state along the
plan into two in such a way that the same flaw cannot happen
again. A flaw is a tuple ⟨si, c⟩ consisting of a state si ∈ S
and a Cartesian set c. There are three types of flaws, which130

correspond to different reasons that can cause the execution
of τα to fail at step i: (1) si is the first state in which oi+1 is
not applicable and c is the set of states in ai in which oi+1

is applicable, i.e. c = ai ∩ pre(oi+1). (2) si is the first state
where oi+1 is applicable but its successor is not mapped to135

ai+1, so c is the set of states in ai from which ai+1 is reached
when applying oi. (3) The sequence can be executed but sn
is not a goal state, producing the flaw ⟨sn, G⟩.

A flaw ⟨s, c⟩ is repaired by splitting α(s) into two abstract
states d and e with s ∈ S(d) and S(c) ⊆ S(e). Usually,140

multiple possible splits exist in different variables to fix the
flaw. A split selection strategy is a criterion to choose a split
among the ones that fix the flaw (Seipp and Helmert 2018).

The process refines the abstraction until solving the prob-
lem either by finding an optimal plan or proving the task 145

unsolvable. The process can be stopped by some termina-
tion condition (typically a time or memory limit), resulting
in a Cartesian abstraction that induces a heuristic.

Domain-Independent Heuristics Guided Fact
Refinement 150

The CEGAR algorithm is a well-known technique to obtain
Cartesian abstractions in planning. However, it starts with
the trivial abstraction, so it needs thousands of refinements
until getting a good heuristic, and each iteration consists of
several steps: getting an optimal abstract plan, finding a flaw 155

by replicating it in the concrete state space, computing the
possible splits, choosing one of them and splitting the ab-
stract state into two states. This process can be computation-
ally expensive, especially the computation of the optimal ab-
stract plan, getting the possible splits and choosing one of 160

them.
In addition, CEGAR abstractions have shown a much bet-

ter performance when used to create additive abstractions
in a saturated cost-partitioning scheme (Seipp and Helmert
2018), but to be successful the used abstractions must be di- 165

verse, since otherwise the costs are saturated by the first ab-
stractions so that the last abstractions are useless. To achieve
it, a sub-problem is created using each landmark as the only
goal, but this solution does not work well in problems where
capturing the interactions among different goals is necessary 170

to get good goal-distance estimates.
Therefore, starting the refinement loop from a pre-refined,

non-trivial, abstraction seems a promising idea to speed up
the creation of the abstractions. Starting the process from
different initial abstractions can be an alternative method to 175

diversify additive abstractions without completely ignoring
the interactions among goals. In this work we propose to de-
fine an initial Cartesian abstraction in which a set of facts of
the planning task have been fully refined, similar to Pattern
Database heuristics (Edelkamp 2001). 180

Definition 1 (Fact Refinement). A fact (v = d) is refined
in an abstraction α if and only if the value d it is the only
value of the variable v in all abstract states where (v = d)
is contained. Formally, a[v] = {d} ∨ d ̸∈ a[v] ∀a ∈ Sα.

We propose to select facts based on domain-independent 185

heuristics that indicate the relevance of facts, e.g., by assign-
ing a value to each fact. The heuristics we have used are:
• Fact landmarks (Hoffmann, Porteous, and Sebastia 2004)

are facts that must be achieved at some point along any
plan that solves the task. While computing a complete 190

set of all fact landmarks is NP-hard, there are different
methods to find a set of fact landmarks (Richter, Helmert,
and Westphal 2008; Keyder, Richter, and Helmert 2010;
Bonet and Castillo 2011), often based on the relaxed
planning graph (Blum and Furst 1997). As these facts 195

are essential to solve the problem, we expect the initial
abstraction to be already informative.



• Potential heuristics (Seipp, Pommerening, and Helmert
2015) assign a potential value to each fact by solving a
linear program. This value can be interpreted as a mea-200

sure of the importance of the fact. We used the 10 facts
with the smallest potential values in our experiments, but
other criteria based on potentials are also possible.

Experiments
We implemented the sequence refinement within the Fast205

Downward planner (Helmert 2006). Our experiments run
on the Autoscale 21.11 benchmark set (Torralba, Seipp, and
Sievers 2021), which contains the 42 domains of the Inter-
national Planning Competitions (IPC) up to 2018 with 30
tasks scaled with the number of objects each, so for optimal210

planning runtime typically scales exponentially. All experi-
ments are limited to 30 minutes and 8 GB of RAM and run
in an Ubuntu Linux 20.04 server with an Intel Xeon X3470
processor at 2.93 GHz, 16 GB of RAM and a 1 TB HDD.

Table 1 shows the coverage at each domain of each con-215

figuration. All configurations are executed with the default
parameters. All landmarks are used to refine facts when re-
fining by facts, and the 10 facts with the smallest potential
when refining by potentials in all configurations. Additive
abstractions by subtasks use the default strategy of splitting220

the problem using each landmark as the only goal, and then
creating an abstraction for that problem, while additive ab-
stractions by heuristic generate an abstraction over the whole
problem refining by landmarks (Cadd

land), by the lowest poten-
tial facts (Cadd

pot ) or one abstraction for each one (Cadd
land+pot),225

and then they run CEGAR on each one and over another
more abstraction not pre-refined. So they use 2 abstractions
for Cadd

land and Cadd
pot and 3 abstractions for Cadd

land+pot com-
bined by saturated cost partitioning.

Additive abstractions by subtasks get the highest cover-230

age, solving 66 more problems than CEGAR over a single
abstraction without pre-refinement, the second-best configu-
ration. The total coverage of all heuristic-guided refinements
is always lower than using the default CEGAR algorithm,
especially for landmarks-based refinements. The main prob-235

lem is exceeding memory, what happens in more than 1000
problems for configurations over a single abstraction re-
fining landmarks and in more than 800 problems for the
other configurations over a single abstraction. For additive
heuristics over subtasks, heuristic-guided refinement is al-240

ways detrimental except in 1 problem of data-network and
2 problems of parking . For a single abstraction, heuristic-
guided refinement is always detrimental except when us-
ing potentials in ged . Potentials-guided refinements always
work better than landmarks-guided refinements, in most245

cases due to the limited number of refined facts.
We can summarize the problems of heuristic-guided re-

finements as follows:
• Choosing heuristics and limiting the number of refined

facts is not a trivial task, so the pre-refinement can easily250

create too big abstractions, even exhausting memory.
• The quality of the refinements is paramount, but the

heuristic approach favors the speed of getting refine-
ments instead.

• The diversity created by the heuristics does not actu- 255

ally improve the quality of additive abstractions because
many portions of the abstraction are not relevant for the
optimal abstract plans, so they are irrelevant for the re-
finements and for the saturated cost reductions.

Conclusions 260

The quality of the refinements is essential to achieve a good
abstraction heuristic for Automated Planning. Also, the or-
der in which the refinements are applied is also crucial be-
cause each refinement modifies the abstraction, and only one
refinement is needed in the trivial abstraction, while up to 2n 265

refinements may be needed after applying n refinements.
In this paper, we have explored the use of some criteria

based on other domain-independent heuristics to pre-refine
the abstraction before searching flaws, with the possibility to
use a different combination of heuristics for each abstraction 270

to get diverse additive abstractions. However, the quality of
these refinements is lower than the search of flaws in the
concrete space, so the resulting abstractions are larger and
less effective. Shrinking strategies could be used to undo the
lowest quality refinements, but this have limited effects and 275

it only mitigates the problem slightly. Furthermore, the im-
pact of the diversity created this way is low in the saturated
cost partitioning because many of the refined states are not
involved in the optimal abstract plans.

In addition, the usage of incremental search (Seipp, von 280

Allmen, and Helmert 2020) to get optimal abstract plans
largely alleviates the cost of the refinement loop iterations,
which is also smaller in the first iterations of the loop, so the
impact in the abstractions build time is irrelevant.

Future Work 285

Other heuristics can be used as a criterion to choose the facts
to refine. Specifically, PDBs (Edelkamp 2001) and the h2

(Helmert and Domshlak 2009) heuristics can be used to in-
crease the diversity of additive abstractions.

One way to improve our results is limiting the number 290

of refined fact landmarks. Likewise, the creation of a higher
number of additive abstractions using a lower number of re-
fined facts in each one, and even combining facts chosen by
different heuristics in the same abstraction.

Also, when using potential heuristics as a criterion to 295

choose facts, the maximum between the sum of potentials
of the state and the abstraction heuristics could be used al-
most for free as the heuristic value.

Shrinking the abstractions could reduce the size of the ab-
stractions by merging states, but the only criterion we have 300

found to do it is merging the abstracts states with the same
distance to goal which are strictly equal but in one variable,
whose values can be merged in a single state. We think this
criterion merges very few states, so it was not implemented.

Finally, we think that the pre-refinement of the abstraction 305

before CEGAR is not a totally wrong idea, and other types
of pre-refinements could be done. One promising approach
is to generate a small domain abstraction by using CEGAR
(Kreft et al. 2023) and then mapping it into a Cartesian ab-
straction to continue the CEGAR refinements. 310



Single abstraction Additive abstractions by subtasks Add. abstr. by heuristic
Coverage C Cland Cpot Cland+pot Cadd subt Cadd subt

land Cadd subt
pot Cadd subt

land+pot Cadd
land Cadd

pot Cadd
land+pot

agricola (30) 5 0 5 0 4 0 1 0 0 5 0
airport (30) 5 0 5 0 5 3 1 0 0 5 0
barman (30) 12 6 10 1 12 10 9 9 6 10 6
blocksworld (30) 12 9 12 7 12 12 12 12 9 12 9
childsnack (30) 5 5 5 5 5 5 5 5 5 5 5
data-network (30) 10 8 8 8 13 14 11 14 9 8 8
depots (30) 11 3 11 1 12 10 12 11 3 10 3
driverlog (30) 5 3 3 3 5 3 2 2 3 3 3
elevators (30) 11 11 11 11 12 12 11 11 11 11 11
floortile (30) 5 4 5 4 6 5 4 5 4 5 4
freecell (30) 6 0 6 0 17 0 0 0 0 6 0
ged (30) 17 16 22 12 20 20 16 16 16 22 16
grid (30) 13 10 11 10 14 13 8 8 11 10 11
gripper (30) 12 12 12 9 12 12 12 11 12 12 12
hiking (30) 10 9 9 9 11 9 7 7 10 9 10
logistics (30) 11 11 11 11 20 13 11 12 11 11 11
miconic (30) 4 2 4 0 5 3 3 3 2 4 2
mprime (30) 6 5 5 5 7 6 5 6 5 5 5
nomystery (30) 6 4 6 4 7 7 4 5 4 5 4
openstacks (30) 6 0 6 0 6 2 6 2 0 6 0
organic-synth (30) 10 0 10 0 9 4 8 4 0 10 0
parcprinter (30) 10 3 10 3 19 9 9 9 3 9 3
parking (30) 8 3 8 3 8 10 10 11 3 8 3
pathways (30) 9 9 9 6 10 10 9 10 9 9 9
pegsol (30) 28 1 28 0 28 27 27 27 1 28 1
pipesworld-not (30) 17 12 16 4 19 19 18 16 12 16 12
pipesworld-tank (30) 14 12 14 10 14 13 10 10 12 13 12
rovers (30) 4 2 4 1 4 4 2 3 2 4 2
satellite (30) 5 4 5 1 9 9 5 9 4 5 4
scanalyzer (30) 9 9 9 9 9 9 9 9 9 9 9
snake (30) 15 2 15 1 15 15 14 14 2 15 2
sokoban (30) 10 0 9 0 13 6 6 5 0 9 0
storage (30) 5 5 5 5 14 11 5 11 5 5 5
termes (30) 13 13 13 13 13 13 1 0 13 13 13
tetris (30) 17 5 17 1 16 15 15 15 5 17 5
thoughtful (30) 5 0 5 0 5 0 0 0 0 5 0
tidybot (30) 9 1 8 0 10 8 8 8 1 8 1
tpp (30) 2 2 2 2 3 2 2 2 2 2 2
transport (30) 12 11 11 11 13 13 12 13 11 11 11
visitall (30) 8 2 8 1 5 4 2 3 2 7 2
woodworking (30) 5 2 5 1 5 5 5 5 2 5 2
zenotravel (30) 7 6 6 5 14 12 8 12 5 7 5

Sum (1260) 394 222 384 177 460 377 325 335 224 379 223

Table 1: Coverage of all experiments in all domains.



Acknowledgments
This work was partially funded by grant PID2021-127647NB-C21
from MCIN/AEI/10.13039/501100011033, by the ERDF “A way
of making Europe”, and by the Madrid Government under the Mul-
tiannual Agreement with UC3M in the line of Excellence of Uni-315

versity Professors (EPUC3M17) in the context of the V PRICIT
(Regional Programme of Research and Technological Innovation).
This work has been supported by the Otto Mønsted foundation.

References
Bäckström, C.; and Nebel, B. 1995. Complexity Results for SAS+

320

Planning. Computational Intelligence, 11(4): 625–655.

Blum, A.; and Furst, M. L. 1997. Fast Planning Through Planning
Graph Analysis. Artificial Intelligence, 90(1–2): 281–300.

Bonet, B.; and Castillo, J. 2011. A Complete Algorithm for Gen-
erating Landmarks. In Bacchus, F.; Domshlak, C.; Edelkamp, S.;325

and Helmert, M., eds., Proceedings of the Twenty-First Interna-
tional Conference on Automated Planning and Scheduling (ICAPS
2011), 315–318. AAAI Press.

Clarke, E. M.; Grumberg, O.; Jha, S.; Lu, Y.; and Veith, H. 2000.
Counterexample-Guided Abstraction Refinement. In Emerson,330

E. A.; and Sistla, A. P., eds., Proceedings of the 12th International
Conference on Computer Aided Verification (CAV 2000), 154–169.

Edelkamp, S. 2001. Planning with Pattern Databases. In Cesta, A.;
and Borrajo, D., eds., Proceedings of the Sixth European Confer-
ence on Planning (ECP 2001), 84–90. AAAI Press.335

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A Formal Basis
for the Heuristic Determination of Minimum Cost Paths. IEEE
Transactions on Systems Science and Cybernetics, 4(2): 100–107.

Helmert, M. 2006. The Fast Downward Planning System. Journal
of Artificial Intelligence Research, 26: 191–246.340

Helmert, M.; and Domshlak, C. 2009. Landmarks, Critical Paths
and Abstractions: What’s the Difference Anyway? In Gerevini, A.;
Howe, A.; Cesta, A.; and Refanidis, I., eds., Proceedings of the
Nineteenth International Conference on Automated Planning and
Scheduling (ICAPS 2009), 162–169. AAAI Press.345

Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered Land-
marks in Planning. Journal of Artificial Intelligence Research, 22:
215–278.

Katz, M.; and Domshlak, C. 2010. Optimal admissible composition
of abstraction heuristics. Artificial Intelligence, 174(12–13): 767–350

798.

Keyder, E.; Richter, S.; and Helmert, M. 2010. Sound and Com-
plete Landmarks for And/Or Graphs. In Coelho, H.; Studer, R.;
and Wooldridge, M., eds., Proceedings of the 19th European Con-
ference on Artificial Intelligence (ECAI 2010), 335–340. IOS Press.355

Kreft, R.; Büchner, C.; Sievers, S.; and Helmert, M. 2023. Com-
puting Domain Abstractions for Optimal Classical Planning with
Counterexample-Guided Abstraction Refinement. In Koenig, S.;
Stern, R.; and Vallati, M., eds., Proceedings of the Thirty-Third
International Conference on Automated Planning and Scheduling360

(ICAPS 2023). AAAI Press.

Pozo, M.; Torralba, Á.; and Linares López, C. 2024. When CE-
GAR Meets Regression: A Love Story in Optimal Classical Plan-
ning. In Proceedings of the Thirty-Eighth AAAI Conference on
Artificial Intelligence (AAAI 2024), 20238–20246. AAAI Press.365

Richter, S.; Helmert, M.; and Westphal, M. 2008. Landmarks Re-
visited. In Proceedings of the Twenty-Third AAAI Conference on
Artificial Intelligence (AAAI 2008), 975–982. AAAI Press.

Rovner, A.; Sievers, S.; and Helmert, M. 2019. Counterexample-
Guided Abstraction Refinement for Pattern Selection in Optimal 370

Classical Planning. In Lipovetzky, N.; Onaindia, E.; and Smith,
D. E., eds., Proceedings of the Twenty-Ninth International Confer-
ence on Automated Planning and Scheduling (ICAPS 2019), 362–
367. AAAI Press.
Seipp, J. 2018. Fast Downward Scorpion. In Ninth International 375

Planning Competition (IPC-9): Planner Abstracts, 77–79.
Seipp, J.; and Helmert, M. 2013a. Additive Counterexample-
guided Cartesian Abstraction Refinement. In desJardins, M.; and
Littman, M. L., eds., Late-Breaking Developments in the Field of
Artificial Intelligence – Papers Presented at the Twenty-Seventh 380

AAAI Conference on Artificial Intelligence (AAAI 2013) – AAAI
Technical Report WS-13-17, 119–121. AAAI Press.
Seipp, J.; and Helmert, M. 2013b. Counterexample-guided Carte-
sian Abstraction Refinement. In Borrajo, D.; Kambhampati, S.;
Oddi, A.; and Fratini, S., eds., Proceedings of the Twenty-Third 385

International Conference on Automated Planning and Scheduling
(ICAPS 2013), 347–351. AAAI Press.
Seipp, J.; and Helmert, M. 2014. Diverse and Additive Cartesian
Abstraction Heuristics. In Chien, S.; Fern, A.; Ruml, W.; and Do,
M., eds., Proceedings of the Twenty-Fourth International Confer- 390

ence on Automated Planning and Scheduling (ICAPS 2014), 289–
297. AAAI Press.
Seipp, J.; and Helmert, M. 2018. Counterexample-Guided Carte-
sian Abstraction Refinement for Classical Planning. Journal of Ar-
tificial Intelligence Research, 62: 535–577. 395

Seipp, J.; Keller, T.; and Helmert, M. 2017. Narrowing the Gap
Between Saturated and Optimal Cost Partitioning for Classical
Planning. In Singh, S.; and Markovitch, S., eds., Proceedings of
the Thirty-First AAAI Conference on Artificial Intelligence (AAAI
2017), 3651–3657. AAAI Press. 400

Seipp, J.; Keller, T.; and Helmert, M. 2020. Saturated Cost Parti-
tioning for Optimal Classical Planning. Journal of Artificial Intel-
ligence Research, 67: 129–167.
Seipp, J.; Pommerening, F.; and Helmert, M. 2015. New Optimiza-
tion Functions for Potential Heuristics. In Brafman, R.; Domsh- 405

lak, C.; Haslum, P.; and Zilberstein, S., eds., Proceedings of the
Twenty-Fifth International Conference on Automated Planning and
Scheduling (ICAPS 2015), 193–201. AAAI Press.
Seipp, J.; von Allmen, S.; and Helmert, M. 2020. Incremental
Search for Counterexample-Guided Cartesian Abstraction Refine- 410

ment. In Beck, J. C.; Karpas, E.; and Sohrabi, S., eds., Proceedings
of the Thirtieth International Conference on Automated Planning
and Scheduling (ICAPS 2020), 244–248. AAAI Press.
Speck, D.; and Seipp, J. 2022. New Refinement Strategies for
Cartesian Abstractions. In Thiébaux, S.; and Yeoh, W., eds., Pro- 415

ceedings of the Thirty-Second International Conference on Auto-
mated Planning and Scheduling (ICAPS 2022), 348–352. AAAI
Press.
Torralba, Á.; Seipp, J.; and Sievers, S. 2021. Automatic Instance
Generation for Classical Planning. In Goldman, R. P.; Biundo, S.; 420

and Katz, M., eds., Proceedings of the Thirty-First International
Conference on Automated Planning and Scheduling (ICAPS 2021),
376–384. AAAI Press.


