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Abstract
Planning is the act of making a plan for something, requiring
an initial state to start with and a set of goals to be achieved.
A plan is formed by actions defined over an accurate action
model that describes their semantics. However, the difficulty
of constructing the domain of actions often presents the first
bottleneck in any planning application. Approaches such as
domain repair or domain learning aim to reduce the expert’s
effort by either repairing a given action model to align with
the desired goals or, when such a model is unknown, inferring
it from observations of actions/states, respectively. Resulting
models are usually evaluated based on syntactic metrics with
respect to the ground truth model, ignoring the fact that two
syntactically different models can be semantically equivalent.
But, what happens when the ground truth model is not avail-
able, which is common in the real-world? In this paper, we
foster discussion about the way learned models are currently
evaluated and propose possible semantic-based evaluations,
focused on the dynamics of the model, and challenges arising
in the absence of the ground truth model.

Introduction
Automated planning tasks typically employ the standard
Planning Domain Definition Language (PDDL) (McDer-
mott et al. 1998) to define planning problems and domains.
Problems specify the initial state and goals, while domains,
or action models, define available actions by detailing the
conditions under which they can be applied and the effects
or changes they induce in the world. Domain models must
be concise but complete enough so that, when applying a se-
quence of actions to a given initial state it enables to reach
the goals. Achieving completeness and correctness entails
the primary (knowledge acquisition) bottleneck when de-
signing action models for planning applications (Kambham-
pati 2007): building action models from scratch is tedious,
error-prone and time-consuming. From a human perspec-
tive, designing an action model is somewhat stressful be-
cause any flaw within the domain can result in either unsolv-
able planning tasks or undesired plans, thus jeopardizing the
usability of real-world planning. This is the main reason why
there is a growing interest in automatically repairing a given
action model or, ultimately, learning the model from scratch.
In both cases, the idea is to acquire a better knowledge on the
physics of the actions to improve the quality of the domain,
while reducing the human effort in the modeling stage.

Domain Repair (DR) is the task that focuses on fixing an
incomplete action model to either render an unsolvable task
solvable (Gragera et al. 2023) or accommodate observed ac-
tions (Lin, Grastien, and Bercher 2023). When there is not
an input action model, Domain Learning (DL) is the task to
automatically infer the preconditions, effects, or commons
structures in actions within the domain based on a set of
observations (Aineto, Jiménez, and Onaindia 2019; Garrido
2023; Yang, Wu, and Jiang 2007). Several types of observa-
tions are common in the literature: plan traces with sequen-
tial or parallel actions, full or partial initial and goal states
as defined in the planning problems, full or partial interme-
diate states, mutex (mutual exclusion) relationship informa-
tion, etc.

The aim of DR and DL is to create a new action model that
is similar to the original action model, aka as a Ground Truth
(GT) or reference model. This means that the quality of the
learned model is measured in terms of how similar is such
a model to the GT model. How to evaluate this similarity is
essential in all works that learn action models and need to as-
sess their quality by comparison with GT. Defining a proper
evaluation is not trivial and is more challenging than it seems
at first sight. Traditional evaluation relies on the metrics used
in pattern recognition, information retrieval, object detection
and classification (Minaee et al. 2020), which perform syn-
tactic comparisons in terms of true/false positives and neg-
ative predictions over a population of samples. This allows
us to calculate different indicators such as precision, recall,
F1 score, accuracy, etc. Although these syntax-based indica-
tors appear in almost all the works related to learning plan-
ning domains, as they are usually expected in a thorough
comparison, we believe that they present some difficulties
and limit the evaluation of learning models. First and most
important, in order to use syntactically-oriented metrics, we
assume that we have access to the GT model, which is not al-
ways the case. In most real-world problems, we have sensors
that provide different types of observations, but the original
action model is hidden to the observer and, consequently,
unknown. Second, even when we have some clues on the
GT model, it is highly unlikely to have a unique GT model;
e.g., some structures of preconditions or effects could be in-
terchangeable and depend on the original intention of the hu-
man domain designer. Therefore, a pure syntax-based eval-
uation might return misleading results. Loosely speaking, a



learned model can differ from a GT model but be identical
to an equivalent one. Third, since both DR and DL tasks
generate models that need to satisfy the observations, i.e.,
they are highly data-driven tasks, they might be biased to-
ward the input data, particularly in cases where observability
is partial. This often leads to action models being reformu-
lated and compared w.r.t. the GT model, that are not nec-
essarily syntactically similar, though they remain valid and
capable of reproducing the dynamics of GT. In other words,
the learned model might be syntactically different despite
capturing analogous semantics.

The aim of this paper is to discuss the limitations of
syntax-based evaluation of learned models and to establish
new ways to capture the semantics of the domain based on
provided input. In particular, we discuss the interest and
challenges of applying a semantic evaluation, rather than a
syntactic one, particularly in absence of GT models. In a
semantic-oriented evaluation, the objective is to determine
if the learned model has adequately captured the dynamics
of the domain w.r.t. unknown samples.

Background
Classical Planning
A classical planning domain is typically defined as the tuple
δ = ⟨P,A⟩, where P is a set of Boolean predicates and A
represents the set of actions1 that define the action model in
GT. We use the semantics introduced in STRIPS (Fikes and
Nilsson 1971), where each action a ∈ A has a set of posi-
tive preconditions (pre(a)) and a set of positive and negative
effects that are asserted and retracted, respectively (eff(a) =
{eff+(a)∪ eff−(a)}); pre(a), eff+(a), eff−(a) ⊆ P . An ac-
tion can be applied when all its preconditions hold, and the
effects happen after its application.

A planning problem ρ for a domain δ is defined as the
tuple ρ = ⟨δ, I,G⟩, where I represents a full state, which
assigns a true/false value to all predicates in P , and G repre-
sents a partial goal state with the true predicates in P to be
reached. It is a partial state because it does not necessarily
include all the predicates in P .

A plan trace for ρ, or simply a plan, is a set π =
{⟨t1, a1⟩, ⟨t2, a2⟩ . . . ⟨tn, an⟩}. Each ⟨ti, ai⟩ contains an ac-
tion ai, which is a fully grounded version of an action a ∈ A,
and ti as the time when ai happens. Note the plan can in-
clude parallel actions. π induces a chronologically-ordered
sequence of full states ⟨S0 . . .Send⟩, where S0 = I and
G ⊆ Send. The plan length is the time for the state Send.

A Simple Example
An example, which we will use through the paper, that
belongs to the well-known blocksworld domain is shown
in Figure 1. It includes predicates such as (clear ?x) and
(ontable ?x) to be used as preconditions/effects in the ac-
tions pick-up and stack. Let us consider that, in this domain,
we define a planning problem with five blocks {A,R,S,T,Y}.

1A is also known as the set of operators or lifted (i.e., non-
grounded) actions.

(:action pick-up

:parameters (?x - block)

:precondition (and (clear ?x) (ontable ?x) (handempty))

:effect (and (not (ontable ?x)) (not (clear ?x))

(not (handempty)) (holding ?x)))

(:action stack

:parameters (?x - block ?y - block)

:precondition (and (holding ?x) (clear ?y))

:effect (and (not (holding ?x)) (not (clear ?y))

(clear ?x) (handempty) (on ?x ?y)))

Figure 1: Example of two actions of the blocksworld do-
main. The domain contains two additional actions put-down
and unstack, as the inverse of pick-up and stack, respectively.

1: (pick-up Y)

2: (stack Y S)

3: (pick-up A)

4: (stack A Y)

5: (pick-up R)

6: (stack R A)

7: (pick-up T)

8: (stack T R)

Figure 2: Optimal plan of length 8 to form the stack
“TRAYS” in the blocksworld domain. Only pick-up and stack
actions are needed in the plan.

For simplicity, all blocks are initially clear and on the ta-
ble: I={(clear T), (ontable T), (clear R), (ontable R), (clear
A), (ontable A). . .}. We want tor reach the stack of blocks
that forms the word “TRAYS”: G={(clear T), (on T R), (on R
A). . .}, i.e., T is on the top and S is on the table. The optimal
plan for this problem is depicted in Figure 2.

Observations
We define a set of observations O = {Oi}, ranging from the
observations over a single plan (|O|=1, i.e., one-shot learn-
ing) to over hundreds or thousands of plans. In particular,
each Oi represents a sequence of observations over the plan
πi and is defined as Oi = ⟨oi,1, oi,2 . . . oi,n⟩. The time when
each oi,j is observed (time(oi,j)) is typically unknown, but
Oi represents a chronological sequence that preserves the
ordering in πi; that is, time(oi,j) ≤ time(oi,j+1).

There are two types of observations, depending on the in-
put information that is observed over πi:

• Action-based observation, where an observation repre-
sents an action being executed in πi, e.g., oi,j=(pick-up
A).2

• State-based observation, where an observation is the re-
sult of watching the true/false value of one or more pred-
icates over the execution of πi. The (ideal) most infor-
mative case is to observe a full state with all the pred-

2Although it is not an observation in itself, some extra knowl-
edge can be included to represent the fact that two actions are mu-
tex and cannot occur simultaneously. In other words, if two ob-
served actions oi,j and oi,k are mutex, then time(oi,j) ̸= time(oi,k).



icates, e.g., oi,j=I, but a partial state can also be ob-
served because sensoring all predicates at the same time
is unlikely, e.g., oi,j=G. The simplest, least informative
case, is to observe just one predicate, e.g., oi,j={(clear
A)=true}.

While some approaches are limited to specific types of
observations (e.g., only intermediate states or complete plan
traces of actions), many of them are designed to accept a
variable amount of input data, thus comprising a combina-
tion of: initial and goal states, action observations, mutex in-
formation, etc. (Aineto, Jiménez, and Onaindia 2019; Gar-
rido 2022; Kucera and Barták 2018; Yang, Wu, and Jiang
2007).

Domain Repair and Domain Learning Tasks
A DR task works with a partially specified or flawed domain,
aiming to modify it to enable the generation of plans that
achieve the goals or to align resulting plans with given action
observations. The repaired model is an approximation of A
in GT, denoted as App(A). Typically, App(A) is just an ap-
proximation of the actions in δ because the repaired actions
are not always identical to the original ones in GT, as some
preconditions or effects can be missing (incomplete) or mis-
learned (incorrect). In literature, App(A) is typically com-
pared with the reference GT model using syntactic-oriented
comparisons, thus measuring the similarity between δ and
App(A). However, the quality of the reparation usually goes
beyond syntactic metrics and highly depends on the pro-
vided observations. For example, let us consider a scenario
where the goal is to pick up block Y, and the pick-up action
lacks the effect of holding it. An action observation such
as (pick-up Y) would aid in aligning the domain with the GT
model, as it indicates the action that should perform it. In this
case, the repaired model App(A) maintains the capability to
hold blocks within the domain’s dynamics and the compari-
son with the GT model would be correct. On the contrary, in
the absence of observations, modifying any domain action to
add the effect of holding the block would suffice to achieve
the goal. For example, any action that involves block Y, such
as (stack A Y) or (stack Y A), could learn the effect (holding
Y). In this case, App(A) maintains again the capability to
hold blocks, but the comparison with the GT model would
be incorrect now.

In a DR task, the action model is already partially speci-
fied and a few observations are provided as input. In cases
where the model is entirely empty, a DR task is not enough
and a DL task becomes necessary to learn the model from
scratch. This way, DR can be considered as a specific case
of DL. The idea of a DL task is to build an action model from
scratch, also denoted as an approximate model App(A),
that satisfies the highest number of the observations in O
(ideally, all of them). For example, Figure 3 shows a po-
tential action model learned for pick-up and stack. In pick-
up, the preconditions are both correct and complete (all the
preconditions in the GT and the learned action match en-
tirely), whereas the effects are correct but incomplete (only
the positive effect has been learned). In stack, the precon-
ditions are complete (no precondition in the GT action is

(:action pick-up

:parameters (?x - block)

:precondition (and (clear ?x) (ontable ?x) (handempty))

:effect (and (holding ?x)))

(:action stack

:parameters (?x - block ?y - block)

:precondition (and (holding ?x) (clear ?y) (clear ?x))

:effect (and (clear ?x) (handempty) (on ?x ?y)))

Figure 3: Example of a potential action model learned for
pick-up and stack. The actions are an approximation of the
reference actions in Figure 1.

missing) but incorrect (the last precondition should not have
been learned), whereas the effects are correct but incomplete
(again, no negative effects have been learned).

The learned model in App(A) highly depends on the
given observations. For example, no negative information
has been observed to learn the model shown in Figure 3.
Consequently, there is no need to learn negative effects. In
other words, once one predicate is asserted it is never re-
tracted, thus remaining forever true. This is the reason why
(clear ?x) is learned as a precondition in stack. Intuitively,
the block ?x had to be clear at any moment before execut-
ing stack and, in absence of negative effects, it will maintain
such a state.

Syntactic-based Evaluation Metrics
Syntactically-oriented metrics for learning action models
keep the classical notation used in machine learning classifi-
cation. Although these metrics are standard, we include how
they are calculated to improve the readability of the paper.
Let TP, FP, TN, FN be true positive, false positive, true neg-
ative, and false negative, respectively, in App(A) calculated
over a number N of preconditions and effects of the actions
A in the GT model. For each action learned, TP stands for
a precondition/effect that is both in App(A) and in GT, i.e.,
it is a successful match, whereas a TN is not present in any
of them. In terms of TP and TN, the precondition/effect is
syntactically identical in App(A) and in GT. FP stands for
a precondition/effect that is learned in App(A) but it is not
in GT (it should not have been learned), whereas a FN is in
GT but it has not been learned in App(A). In terms of FP
and FN, the precondition/effect is different in App(A) and
in GT. These positive and negative values allow us to define
different performance indicators, among others:

• Missing information and error counting, defined as FN.
Intuitively, one count of error occurs if an action precon-
dition/effect is not learned in App(A) when it should.

• Accuracy and error rate. Accuracy is defined as
(TP+TN)/N, while error rate is defined as (FP+FN)/N.
Accuracy provides relative indicators over the total num-
ber of preconditions or effects in GT, and error rate the
opposite.

• Precision. It is the fraction of relevant instances among
the learned ones, and provides an idea of how error-free



and sound App(A) is. It is defined as TP/(TP+FP). Pre-
cision=1 means no FP.

• Recall or TP rate. It is the fraction of the total amount of
relevant instances that are learned, and gives an idea of
how complete App(A) is. It is defined as TP/(TP+FN).
Recall=1 means no FN. Alternatively, FN rate=1-TP rate.

• Specificity or TN rate. It is the proportion of correctly not
learned instances over the instances not to be learned. It
is defined as TN/(TN+FP). Specificity=1 means no FP.
Alternatively, FP rate=1-TN rate.

• F1 score. It is the harmonic mean of the precision and re-
call, which analyzes equally both values in one metric.
It is defined as 2·Precision·Recall/(Precision+Recall).
In perfect learning Precision=Recall=1, which implies
F1=1.

• ROC (Receiver Operating Characteristic) curves to
graphically compare TP rates vs. FP rates, or TN rates vs.
FN rates, in order to evaluate the false instances that are
learned. In the ROC curve, the diagonal line represents
a random guess to learn and the points above/below the
diagonal represent better/worse performance than such
random learning.

• AUC (Area Under the Curve). It provides a summary of
the ROC curve. In perfect learning AUC=1, which means
App(A) correctly distinguishes between all the positive
and the negative instances. If AUC=0, all negative in-
stances are learned as positives and all positive instances
as learned as negatives.

The main limitations of these metrics are twofold. First,
they ignore the fact that two syntactically different models
can generate equivalent dynamics. Second, they require (and
rely on) the GT model. Overcoming the first limitation while
retaining the GT model may not be a significant challenge.
Various alternative metrics derived from the GT can ad-
dress this issue. For example, comparing whether the learned
model and the GT can generate the same states/number of
states, the number of the expanded nodes, the initial heuristic
value or the heuristic regions generated using both domains,
etc. Overcoming the second limitation is more challenging,
as there is not a reference model on which to rely. In the re-
mainder of the paper, we present various proposals and chal-
lenges for evaluating a learned domain model in the absence
of the GT model, relying only on the provided input data.
We categorize these proposals into scenarios characterized
by different levels of observability.

Semantic-based Evaluation Metrics in
Absence of GT

Once the DR/DL task has found an action model, we need
to evaluate its quality. Let us revisit the simple example in-
troduced above. The original domain δ that represents the
GT model is the one depicted in Figure 1. Let us assume
that the action model learned App(A) is the one depicted in
Figure 3, where the negative effects are not learned. A pure
syntactical-oriented comparison between δ and App(A) re-
turns different performance indicators, e.g., Precision≈1,
FN>0, error rate>0, Recall<1, F1<1, etc. This variability

in the indicators, e.g., almost perfect result w.r.t. the pre-
cision but worse result w.r.t. the recall, is a limitation for
the evaluation of the true quality of App(A). One could be
tempted to avoid this syntax-based comparison by defining
new planning problems and use App(A) to find plans that
should be compared with the plans created when using δ.
Although this overcomes the limitations of the syntactical-
oriented comparison, it still requires an absolute knowledge
of δ, as defined in GT. But what happens when GT is un-
known or not entirely known? In such a case, a type of eval-
uation that does not depend on GT is necessary. Since we do
not have access to GT, we cannot solve new planning prob-
lems either. In consequence, we need to evaluate the qual-
ity of App(A) w.r.t. the observations given in O. In order
to assess whether App(A) can reproduce unknown obser-
vations without inconsistencies, typical learning approaches
split the dataset of observations into two disjoint sets and
run a two-fold cross-validation evaluation. Thus, O is dis-
tributed into two sets: the first set for the DR/DL task and
the second one for the evaluation, denoted as ORL and Oev ,
respectively.

We now analyze the observations in Oev , and propose
semantic-based alternatives for the evaluation of App(A)
w.r.t. all observations in Oev . Intuitively, the underlying idea
of the semantic evaluation is to test whether App(A) has
learned the essential dynamics of GT, thanks to ORL, that
satisfy Oev . We define four scenarios. The Scenarios 1, 2 and
3 are organized w.r.t. the observability of the observations,
that is, full, partial and null observability. These three sce-
narios assume the observations are always noiseless, which
means that observed values are actual values with no uncer-
tainty. The Scenario 4 relaxes such assumption and allows
for uncertain observations.

Scenario 1. Full observability: initial and goal
states + actions in the plan + intermediate states
This is the task that uses the most complete and infor-
mative set of observations, where in every Oi ∈ Oev

we observe the initial and goal states in ρi, the en-
tire plan πi, and all its intermediate states Si,j ; that is,
Oi = ⟨Si,0 = Ii, ai,1,Si,1, ai,2,Si,2 . . . ai,n,Si,end ⊇ Gi⟩.
Despite having access to full observability, only positive in-
formation is observed in Gi and Si,j , with j>0, as we follow
the STRIPS assumptions.3

Evaluation proposal and challenges. We propose to
use the learned model in App(A) as the new domain to
solve the planning problem with Ii and Gi, i.e., ρApp =
⟨App(A), Ii,Gi⟩ to find a plan πApp that solves it. Then,
πApp is evaluated to check whether it fully satisfies each
Oi. This can be considered as a semantic-based evaluation.
The advantage of this type of evaluation is twofold. First,
it focuses on the semantics of the actions and the way they
change the world states, rather than on their syntax. Second,

3Note that, if all the intermediate states Si,j are full states, the
learning task becomes easier as we can derive the effects of every
action ai,j from the difference between Si,j and Si,j−1, and we
have only to learn its preconditions.



it does not need to have access to GT, as it only uses the
observation Oi.

Let us assume the observed plan πi is the one depicted
in Figure 2, where the goal Gi is to reach TRAYS, being
all the blocks initially clear and on the table (Ii). A po-
tential plan πApp that solves ρApp is shown in Figure 4.
As can be seen, both the observed plan πi and the new one
πApp reach the same goals in Gi, starting from the same Ii,
no matter the quality or optimality of πi and πApp. Addi-
tionally, πApp induces almost the same sequence of partial
states ⟨Si,1,Si,2 . . .Si,end⟩ observed in Oi.4 This evaluation
is fairer than a syntactic one: in terms of the current Oi,
App(A) can be considered as semantically equivalent to GT
because it reaches the same goals and traverses very similar
states.

The fact of having access to full observability is an ad-
vantage for the semantic evaluation, because it remains valid
even if: 1) the intermediate states are missing, but Gi is still
observed; or 2) Gi is missing, but the intermediate states are
still observed; or 3) πi is empty (no actions are observed
whatsoever) but the intermediate states or Gi are still ob-
served. Consequently, this evaluation is valid for a different
range of observations. In any case, the idea is that App(A)
allows us to find a plan πApp that reaches the observed goals
or traverses the observed states induced by πi, when avail-
able.

One may argue four important aspects regarding the se-
mantic evaluation. First, App(A) is an approximation of GT.
In this example, the negative effects are missing in App(A),
so GT and App(A) will never be equivalent. Although this
is absolutely true, the absence of negative information in
App(A) is due to its absence in Oi, and the task must learn a
model according to the given observations. Second, the ac-
tions in the resulting plans are the same, but they are not
planned in the same order; actually, πApp is a parallel plan,
whereas πi is clearly sequential. But it is important to note
that, without negative effects, πApp could be sequentialized
in exactly the same order as πi (actions in a plan are tem-
porally planned due to causal links or the particular order-
ing the planner decides). Third, how to deal with scenarios
where there are multiple plans that solve the same goals?
For example, when πi is an optimal plan but πApp is not,
or vice versa, or when there might be some multiple opti-
mal plans. In these cases, there might be differences w.r.t.
the actions and the evaluation would get low scores. Fourth,
App(A) and πApp are evaluated when using the observed
Ii and Gi in Oi, rather than using a brand new problem.
However, if we want to compare with a brand new prob-
lem we will require to know the action model in GT, which
does not make too much sense when we are trying to learn
the action model. Therefore, although these four aspects are
certainly convincing and represent a challenge, it is also con-
vincing that both GT and App(A) are somewhat equivalent
and show the same utility in this first scenario.

Finally, it is important to note that a learned model

4The only difference in the sequence of partial states is given
by the negative effects: once a predicate is achieved by πApp it will
be maintained forever, whereas in πi it can appear and disappear.

1: (pick-up T)

1: (pick-up R)

1: (pick-up A)

1: (pick-up Y)

2: (stack T R)

2: (stack R A)

2: (stack A Y)

2: (stack Y S)

Figure 4: A potential plan πApp to solve ρApp in Scenario 1.

App(A) that fails to reach some (intermediate or goal) state
in Oi cannot be considered semantically equivalent to GT.
For example, let us imagine that the stack action does not
learn the effect (on ?x ?y). In such a case, there will be
no plan to solve ρApp, which means that App(A) is not an
equivalent approximation to the actions in GT. In this case,
App(A) is neither syntactically nor semantically equivalent
to GT.

Scenario 2. Partial observability: partial initial and
goal states + some actions in the plan + some
intermediate states
The observability of each Oi in this Scenario is more re-
duced than in Scenario 1, as now the initial/goal/intermedi-
ate states and the actions are incomplete.

We use again the example introduced above, but now the
goal in ρi is not totally observed, e.g., Gi={(on T R), (on A
Y), (ontable S)}, and similarly for Ii, where only the state
of the blocks T, A and S are observed. Informally speaking,
in this scenario we do not know in detail the initial state
of the world or which are all the desired goals in ρi. Also,
the observed plan πi is incomplete, e.g., we have only ob-
served the stack actions of Figure 2. Similarly, the interme-
diate states that are observed are partial. Let us assume again
that App(A) is as depicted in Figure 3.

Evaluation proposal and challenges. The semantic-
based evaluation proposed in the Scenario 1 cannot be di-
rectly used here because Ii and Gi are not fully observed
and, consequently, we cannot always define a complete plan-
ning problem ρApp. A preliminary evaluation is to use the
partially observed Ii and Gi, and try to find a plan πApp.
Two scenarios are possible for this evaluation:

• Scenario 2.1. If the information observed is too limited
and insufficient to get a plan, no πApp will be found.
This is the result in the current example, because noth-
ing about the initial state of blocks R and Y are known.
In absence of πApp, no comparative evaluation between
the observed πi and πApp is possible and we need to use
another type of evaluation, as we will propose in Scenario
3.

• Scenario 2.2. If the information observed is sufficient to
get a plan, πApp will be found. For example, let us con-
sider that more predicates are initially observed, such as
Ii={(ontable T), (ontable R), (ontable A), (ontable Y),
(ontable S), (clear T), (clear R), (clear A), (clear Y),
(clear S), (handempty)}, while Gi remains as above. A



1: (pick-up T)

1: (pick-up A)

2: (stack T R)

2: (stack A Y)

Figure 5: A potential plan πApp to solve ρApp in Scenario
2.2.

potential plan πApp that solves this new problem is de-
picted in Figure 5. As can be seen, both the observed
plan πi and the πApp reach the goals in Gi, starting from
the same Ii, so it seems to be a fairer way to evaluate
the model than a syntax-based one. This scenario shares
the same important aspects regarding the semantic eval-
uation as in Scenario 1. Regarding the plans, it is impor-
tant to note that πApp and πi are different. Although the
two stack actions in πApp are present in the partially ob-
served plan πi, they are not planned in the same order;
these actions are parallel in πApp and sequential in πi.
This is due to the partially observed goals in Gi that do
not induce a particular ordering. Although this entails an
additional challenge in the comparison, πApp could be
sequentialized again in exactly the same order as πi.

Scenario 3. Zero observability: empty observation
This is the task that uses the least complete set of observa-
tions; the initial and goal states are fully unknown and there
is no knowledge on the plan actions or intermediate states
(Oi is empty). It is important to highlight that the initial and
goal states were known to build the plan, but we have no
observations on them or the plan. Assuming the only infor-
mation that we have is App(A), as depicted in Figure 3, no
ρApp can be defined from the information in Oi and, con-
sequently, no plan πApp can be generated (similarly to Sce-
nario 2.1). Actually, in the hypothetical case where we might
come up with an artificial or synthetic plan πApp, it could not
be evaluated without an observation Oi to satisfy. Therefore,
the semantic evaluation used in Scenarios 1 and 2.2. cannot
be applied here.

Evaluation proposal and challenges. In absence of Oi,
the only option to verify some evaluation metrics on App(A)
is to come up with some synthetic observations in Oev .
Thus, we propose to create a set of Oi ∈ Oev with its
corresponding Ii and Gi, to define a new planning problem
ρApp = ⟨App(A), Ii,Gi⟩ and find the corresponding plan
πApp.

Each new problem ρApp is characterized by the purpose of
testing the model learned. From our suspicions, it is impor-
tant to determine if all actions in the domain are reachable,
which combination of predicates can be achieved as goals
and which ones cannot, etc. If we think that Ii and Gi are
correct in ρApp, but no plan πApp can be found, is this an
indication that App(A) does not meet the tested guarantee
or, on the contrary, our beliefs are false and the initial/goal
state are incorrect? Unfortunately, we do not have a clear an-
swer to this yet. In our opinion, how to define these correct
planning problems is an open challenge and we are still in

the process of understanding the causes of the setbacks in
this scenario. Having a clear understanding of the evaluation
in this scenario will allow us to apply it to Scenario 1 and
2 as well. After all, we can always discard the original Oev

and replace it by a synthetic O′
ev to broaden the scope of the

evaluation.

Scenario 4. Uncertain observability
In the previous three scenarios, we have assumed that all the
observations are noiseless. But in the real-world, sensors are
not always available nor are able to capture flawless infor-
mation: some information is observed when it should not
(noise), whereas other information is not observed when it
should (missing data). Therefore, observations are typically
uncertain. The semantic evaluation discussed in the previous
scenarios is still valid in presence of uncertain observations,
but it needs to be slightly relaxed. The relaxation comes in
terms of not requiring the full satisfiability of the entire Oev

because the learned model App(A) can still be equivalent to
GT even if it does not satisfy one (or more) uncertain Oi.

Evaluation proposal and challenges. Let us consider the
example above for a given Oi. As usual, in Ii all the blocks
are initially clear and on the table, but now Gi={(clear T),
(holding T), (on R A), (on A Y), (on Y S), (ontable S)}. The
observed plan πi is the one depicted in Figure 2. Clearly, Oi

is unsatisfiable because it contains contradictory informa-
tion. On the one hand, we know that it is impossible to reach
both (clear T) and (holding T), i.e., these two goals are un-
solvable. On the other hand, the action (stack T R) in πi as-
serts (clear T) but retracts (holding T), so Gi is not achieved.
However, in absence of GT we cannot find out where the
problem is. For example, is (clear T) a noisy observation,
or is (holding T), or perhaps both? Is the action (stack T R)
a noisy observation (if we really want to achieve (holding
T)) or are there missing actions? Unfortunately, there is not
a conclusive answer to this because all options are possible
when dealing with uncertainty.

If we assume that App(A) is given by Figure 3, we can
try to find a plan πApp for ρApp to be compared with πi.
Similarly to Scenario 2, two scenarios are possible for this
comparison:

• Scenario 4.1. The information observed in Ii and Gi

makes ρApp unsolvable, so no πApp can be found. In ab-
sence of πApp, no evaluation is possible and we need to
use the type of evaluation proposed in Scenario 3.

• Scenario 4.2. The model learned in App(A) supports the
uncertain observations in Ii and Gi, and a plan πApp is
found. This is the result in the current example. A poten-
tial plan πApp for ρApp is shown in Figure 6. All actions
in πApp appear in πi. Intuitively, the fact of not learning
the negative effects makes it possible to achieve the entire
Gi because (clear T) and (holding T) are simultaneously
possible in a relaxed situation. As can be seen, all actions
in πApp appear in the observed πi, although in a different
order. But, without the negative effects, πApp could be
sequentialized in exactly the same order as πi.



1: (pick-up R)

1: (pick-up A)

1: (pick-up Y)

1: (pick-up T)

2: (stack R A)

2: (stack A Y)

2: (stack Y S)

Figure 6: A potential plan πApp to solve ρApp in Scenario
4.2.

Conclusions
Classical approaches on Domain Repair and Domain Learn-
ing evaluate the quality of the learned model App(A) by
comparing it with the GT. But loosely speaking, if we have
access to GT (as a reference model) to compare to, there
would be no need for learning or repairing. However, in real-
world situations, we typically only have access to some in-
put data in the form of observations. Therefore, in this paper
we offer alternative approaches to evaluate App(A) based
on the available observations, which might be uncertain.

More specifically, this paper discusses different ways to
evaluate learned models without the limitations of syntactic-
based evaluations. We name these new ways as semantic-
based evaluations, which are mainly oriented to assess
whether the learned model captures the semantics of GT in
terms of achieving the same goals, executing the same ac-
tions (perhaps in the same order) or traversing the same or
similar intermediate states. Further, we explore alternatives
for semantically evaluating models in the absence of the GT,
where the evaluation is limited to the input data and the ob-
servability directly impacts the evaluation. We think these
alternatives raise new problems and challenges, unsolved
yet, in the evaluation of learned planning models.

From the exploratory study of scenarios that we have pre-
sented, we can draw two main conclusions:

1. In the presence of observations, if the information is suf-
ficient to generate a plan using the learned model, such a
plan can be evaluated to determine if it fully satisfies the
observations.

2. In the absence of observations, an alternative is to create
synthetic observations to test the learned model. How-
ever, creating these planning problems correctly remains
an open challenge.
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