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Abstract

In many scenarios, planning agents do not have enough re-
sources to achieve all of their goals. In those cases, net-benefit
planning aims to maximize the utility of the goals achieved by
the plan, potentially ignoring some goals if the cost of achiev-
ing them is too high. Keyder and Geffner (2009) showed that
these tasks can be reformulated into classical planning. In
this paper we slightly modify their compilation to reduce the
state and plan spaces by allowing the planner to finish only in
those states increasing utility, i.e., when a soft goal has been
achieved. Experimental results show that, although the new
reformulation yields smaller state and plan spaces, the result-
ing tasks turn out to be more challenging. We conjecture this
is due to the uninformative heuristic regions generated by the
new state space, and call for further research on this topic.

Introduction
Classical planning is the task of choosing and organizing a
sequence of deterministic actions such that, when applied in
a given initial state, it results in a state in which all goals are
true (Ghallab, Nau, and Traverso 2004). This setting does
not fit many real-world planning scenarios, where agents
often do not have enough resources to achieve all of their
goals. In those cases, partial satisfaction planning aims to
maximize the utility of the goals achieved by the plan, po-
tentially ignoring some goals if the cost of achieving them
is too high. There exist two main partial satisfaction plan-
ning frameworks in the literature: (i) oversubscription plan-
ning (Smith 2004), where action costs and goal utilities are
not comparable, and the objective is to maximize the utility
of the goals subject to a cost budget (bound); and net-benefit
planning (Van Den Briel et al. 2004), where action costs and
goal utilities are assumed to be comparable, and the quality
of a plan is measured as the difference between the utility of
the obtained end state and the solution cost.

In this paper we focus on the latter setting, and more
specifically in Keyder and Geffner (2009) reformulation of
net-benefit planning tasks into classical planning. This com-
pilation augments the original task with extra actions that en-
code the decision to achieve the goal without increasing the
plan’s cost, or ignore it by paying a penalty. This transfor-
mation opens the door to solving net-benefit planning tasks
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with any existing planner, and has been widely used by many
planning works and applications (Cenamor et al. 2017; Tor-
ralba et al. 2021; Pozanco, Fernández, and Borrajo 2021;
Klassen et al. 2022). Keyder and Geffner’s compilation al-
lows the planner to ignore the remaining goals and finish at
any state during the search. This task structure has two main
drawbacks. First, it entails larger state spaces, which can ul-
timately lead to more challenging tasks. Second, it generates
a large number of valid plans with very low quality, which
is usually a problem when using greedy algorithms to solve
the reformulated tasks.

In this paper we slightly modify Keyder and Geffner
(2009) compilation to tackle these two problems, i.e., re-
ducing the state space and the number of valid plans. This
is done by allowing the planner to finish the search only
in those states increasing utility, i.e., when a soft goal has
been achieved. We empirically evaluate this new compila-
tion in a set of net-benefit planning tasks (Katz et al. 2019).
Preliminary results show that, although the new reformula-
tion yields smaller state and plan spaces, the resulting tasks
turn out to be more challenging for most search algorithms
and heuristics, i.e., they need to expand and generate more
nodes. We conjecture this is due to the uninformative heuris-
tic regions (Xie, Müller, and Holte 2014) generated by the
new state space, and call for further research on this topic.

Background
Classical Planning
A STRIPS classical planning task can be defined as follows:
Definition 1 A STRIPS planning task can be defined as a
tuple P = ⟨F,A, I,G, c⟩, where F is a set of propositions,
A is a set of instantiated actions, I ⊆ F is an initial state,
G ⊆ F is a goal state, and c : A 7→ R+

0 is the cost associ-
ated to each action.

A state consists of a set of propositions s ⊆ F that are true
at a given time. A state is totally specified if it assigns truth
values to all the propositions p ∈ F , as the initial state I of a
planning task. A state is partially specified (partial state) if it
assigns truth values to only a subset of the propositions in F ,
as the conjunction of propositions G of a planning task. Each
action a ∈ A is described by a set of preconditions (pre(a)),
which represent literals that must be true in a state to execute
an action, and a set of effects (eff(a)), which are the literals



that are added (add(a) effects) or removed (del(a) effects)
from the state after the action execution. We write actions as
tuples of the form a = ⟨pre(a), eff(a)⟩.

The execution of an action a in a state s is defined by
a function γ such that γ(s, a) = (s \ del(a)) ∪ add(a) if
pre(a) ⊆ s, and s otherwise (it cannot be applied). The out-
put of a planning task is a sequence of actions, called a plan,
π = (a1, . . . , an). The execution of a plan π in a state s can
be defined as:

Γ(s, π) =

{
Γ(γ(s, a1), (a2, . . . , an)) if π ̸= ∅
s if π = ∅

A plan π is valid if G ⊆ Γ(I, π). The plan cost is com-
monly defined as

c(π) =
∑
ai∈π

c(ai). (1)

A plan with minimal cost is called optimal.

Net-benefit Planning
While in classical planning a plan is only valid if all
goals (propositions) are achieved, net-benefit planning (Van
Den Briel et al. 2004) relaxes this assumption and allows
plans that do not fully satisfy all the goals but maximize a
utility function. Formally:
Definition 2 A STRIPS net-benefit planning task can be de-
fined as a tuple Pu = ⟨P, u⟩ where P is a planning task and
u is a partial function u : F 7→ R+ that maps a subset of
propositions (the soft goals) into positive reals.

In a STRIPS net-benefit planning task Pu, the utility of
a plan is given by the difference between the total utility
obtained by the plan and its cost:

u(π) =
∑

p∈Γ(I,π)

u(p)− c(π) (2)

A plan π optimally solves a net-benefit planning task when
no other plan π has a utility u(π′) higher than u. The implicit
assumption of u(π) is that action costs and goal utilities are
comparable, and solution quality is measured as the differ-
ence between the utility of the obtained end state and the
solution cost.

Soft Goals Can be Compiled Away
Keyder and Geffner (2009) proposed the following compila-
tion of the net-benefit planning task into a standard planning
task. We will refer to it as K:
Definition 3 Given a STRIPS net-benefit planning task Pu,
a K STRIPS planning task is PK = ⟨FK , AK , IK , GK , cK⟩
with
• FK = F ∪ S′(P) ∪ S̄(P) ∪ {normal-mode, end-mode}
• AK = A′ ∪{collect(p), forgo(p) | p ∈ SG(P)}∪{end}
• IK = I ∪ S̄(P) ∪ {normal-mode}
• GK = G ∪ S′(P)

• cK(a) =

{
c(a) if a ∈ A′

u(p) if a = forgo(p)
0 if a = collect(p) or a = end

where

• SG(P) = {p | (p ∈ F ) ∧ (u(p) > 0)}
• S′(P) = {p′ | p ∈ SG(P)}
• S̄(P) = {p̄′ | p′ ∈ S′(P)}
• end = ⟨{normal-mode}, {end-mode,¬normal-mode}⟩
• collect(p) = ⟨{end-mode, p, p̄′}, {p′,¬p̄′}⟩
• forgo(p) = ⟨{end-mode, p̄, p̄′}, {p′,¬p̄′}⟩
• A′ = {⟨pre(a) ∪ {normal-mode}, eff(a)}⟩ | a ∈ A}

For each soft goal p in Pu, the compilation adds a hard
goal p′ in PK that can be achieved in two ways: with the
collect(p) action, that has cost 0 but requires p to be true; or
with the forgo(p) action, that has cost equal to the utility of
p yet can be performed when p is false, or equivalently when
p̄ is true. These two actions can be executed only after the
end action makes the end-mode proposition true, while the
actions from the original problem P can be executed only
when the normal-mode proposition is true, i.e., before exe-
cuting the end action. Moreover, each soft goal p can only
be achieved by either a collect or forgo action, as both delete
their shared precondition p̄′, which no action makes true. As
there is no way to make normal-mode true again after it is
deleted by the end action, all plans πK that solve the refor-
mulated task PK have the form πK = ⟨π, end, π′⟩, where
π is a plan for P and π′ is a sequence of |S′(P)| collect
and forgo actions in any order, the former appearing when
p ∈ Γ(I, π), and the latter otherwise. As proven in (Keyder
and Geffner 2009), finding an optimal (maximum utility)
plan for Pu is equivalent to finding an optimal (minimum
cost) plan for the reformulated task PK .

Pruning the State Space
Keyder and Geffner’s compilation allows the planner to ig-
nore the remaining goals and finish at any state during the
search. This generates many states and valid plans that can
be pruned by slightly modifying the compilation to allow
finishing planning only in those states increasing utility. We
will refer to this pruned compilation as P , and formally de-
fine it as follows:

Definition 4 Given a STRIPS net-benefit planning task Pu,
a P STRIPS planning task is PP = ⟨FP , AP , IP , GP , cP ⟩
with

• FP = FK ∪ {endable}
• AP = Ae∪A¬e∪{collect(p), forgo(p) | p ∈ SG(P)}∪
{end, continue}

• IK = I ∪ S̄(P) ∪ {endable}
• GK = G ∪ S′(P)
• cP = cK ∪ {0 if a = continue}

where everything remains as in PK except for

• end = ⟨{endable}, {end-mode,¬normal-mode,¬endable}⟩
• continue = ⟨{endable}, {normal-mode,¬endable}⟩
• Ae = {⟨pre(a) ∪ {normal-mode,¬endable}, eff(a) ∪
{¬normal-mode, endable}⟩ | (a ∈ A | G ∩ eff(a) ̸= ∅)}

• A¬e = {⟨pre(a) ∪ {normal-mode,¬endable}, eff(a)⟩ |
(a ∈ A | G ∩ eff(a) = ∅)}
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Figure 1: Pairwise comparison of the number of expanded nodes in log scale. Each point in the plots corresponds to a problem,
with its color indicating the domain it belongs to. Points above the diagonal indicate that the given configuration needs to
expand less states when solving PP than when solving PK .

In this new compilation, we introduce a new endable
proposition that serves as a flag indicating when we can
switch from normal-mode to end-mode. This proposition is
true in the initial state, as in some settings that could be the
state with the higher utility. When endable is true, only two
actions are applicable: (i) end, which will finish planning
and start the sequence of collect and forgo actions; and (ii)
continue, which makes endable false and activates normal-
mode, indicating that the actions from the original problem
can be executed. The endable proposition is only made true
again when the plan achieves a soft goal, i.e., after applying
one of the actions in Ae. Therefore, it is only in these states
when we can switch to end-mode, as opposed to PK , which
allows the planner to switch to end-mode from any state.

All plans πP that solve the reformulated task PP have the
same form as those solving PK , with the only exception that
they will have a number of continue actions interleaved in
π, depending on how many soft goals π achieves. Following
the equivalence proof by (Keyder and Geffner 2009) we can
easily prove that since the only extra action that we include
has cost 0, finding an optimal (maximum utility) plan for Pu

is equivalent to finding an optimal (minimum cost) plan for
the reformulated task PP .

Evaluation
We compare both reformulations in a set of planning tasks
taken from the PDDL benchmarks for oversubscription

planning (Katz et al. 2019)1. We remove the cost bound
so we can turn the oversubscription tasks into net-benefit
planning tasks. In order to conduct a preliminary evalu-
ation, we selected the first 5 problems for each of the
following 4 domains: BLOCKS-WORLD, GRIPPER, LOGIS-
TICS, and TPP. This gives us 20 different planning tasks
that we solve with A∗ (Hart, Nilsson, and Raphael 1968)
and 3 different heuristics, as they are implemented in Fast
Downward (Helmert 2006): LMCUT (Helmert and Domsh-
lak 2009), IPDB (Haslum et al. 2007), and FF (Hoffmann and
Nebel 2001), which is the only inadmissible heuristic in the
set. We also run a version of Fast Downward that expands
all the reachable states, so we can analyze the state spaces
generated by both compilations. We refer to this algorithm
as EXHAUST. We measure the number of nodes expanded
by each configuration across the 20 planning tasks. Experi-
ments were run on an Apple M1 with 8GB of memory and
a timeout of 600 seconds.

Measuring the Resulting State Spaces
Figure 1 shows the results of our evaluation as a pairwise
comparison of the number of expanded nodes when solving
PK (y axis) and PP (x axis) with the different configura-
tions. As we can see in Figure 1a, where we run both refor-
mulations with EXHAUST, the state spaces generated by our
new compilation are always smaller than those induced by

1https://zenodo.org/records/2576024
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Figure 2: f value (y axis) of the node selected to be ex-
panded at each iteration of A∗ (x axis) when solving the
smallest GRIPPER instance with the LMCUT heuristic. The
orange line shows the algorithm solving PK , and the blue
line the algorithm solving PP .

Keyder and Geffner’s compilation. In some BLOCKS prob-
lems, PP achieves a reduction of up to 80% expanded states,
i.e., our compiled tasks have 20% of the states of PK . In the
largest GRIPPER problem, PP has ≈ 33M (million) states
versus the ≈ 140M states of PK , therefore representing a
saving of ≈ 106M states. This behavior is consistent across
domains and problems, indicating that our compilation is
achieving its purpose of pruning the state space.

Planning in the Reformulated Tasks
Next, we wanted to evaluate whether the new compilation
helps planning, i.e., if solving PP is faster than solving PK .
Figures 1b, 1c and 1d show the number of nodes expanded
by LMCUT, IPDB and FF, respectively. As we can see, PP is
not amenable for the three configurations: although its state
space is smaller than that of PK , the algorithms need to ex-
pand more states to find a solution. For example, LMCUT
needs to expand up to 2.6 times more states to find an opti-
mal solution in PP than in PK . This difference is even worse
when solving the reformulated tasks with IPDB. In a LOGIS-
TICS task, IPDB finds a solution to PK in less than a second,
expanding only 184 states, while it needs 10 seconds and
223 335 expanded states in PP .

We conjecture this bad performance is due to the uninfor-
mative heuristic regions (Xie, Müller, and Holte 2014) gen-
erated by the new state space. In the new reformulation, we
are adding continue, a zero cost action that decides whether
to finish planning or keep achieving soft goals. Reasoning
about this decision, as well as introducing a zero cost action,
seems to negatively affect the search performance. In order
to shed some light into this, we analyzed the search behavior
by getting the f value of the node selected to be expanded
at each iteration of A∗. Figure 2 shows the results of this
analysis when solving the smallest GRIPPER instance with
the LMCUT heuristic. As we can see, when solving PP , A∗

encounters some f value plateaus, with more states having
an f value of 9 and 10 compared to those encountered when
solving PK .

Conclusions and Future Work
In this paper we slightly modified Keyder and Geffner’s soft
goals compilation to reduce the generated state space. This
is done by allowing the planner to finish only in those states
increasing utility, i.e., when a soft goal has been achieved.
Preliminary results in some planning instances show that,
although the new reformulation yields smaller state spaces,
the resulting tasks turn out to be more challenging for most
search algorithms. Therefore, one should still use Keyder
and Geffner’s (2009) compilation over ours when facing net-
benefit planning tasks.

This result opens the door to some interesting research
questions.

1. Further study PP . In our preliminary evaluation, we only
tested one search algorithm (A∗) and few heuristics in a
limited number of domains and problems. We would like
to broaden the scope of the evaluation to be able to draw
more solid conclusions. Moreover, we would like to in-
vestigate potential patterns: how does the number of soft
goals affect the search behavior? Are there any combina-
tions of search algorithm and heuristic that benefit from
the new compilation? Are there any domains where PP

generates easier tasks than PK?
2. Can PP be improved? We would like to analyze the full

search tree in small instances to see how heuristics assign
values to each state. This would allow us to better under-
stand why the compilation generates heuristic plateaus,
and potentially provide us useful insights on how to im-
prove it.

3. Adversarial attacks to planning domains. By slightly
modifying a planning task (Keyder and Geffner’s com-
pilation), we have generated a new planning task that
is much harder (sometimes even orders of magnitude)
than the original one. Many interesting research ques-
tions arise from this result. Can planning domains (or
planning tasks) be minimally modified (or attacked) to
disrupt the behavior of search algorithms? What is the
definition of minimal changes? Can we build robust do-
mains (or planning tasks) that are more difficult to be at-
tacked?

We hope this negative result and some of the above research
questions serve as a source of discussion and inspiration for
the planning community.
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