
Conviction-Based Planning for Sparse Reward Reinforcement Learning Problems

Simon Ouellette, Éric Beaudry, Mohamed Bouguessa
Université du Québec à Montréal

Abstract

Deep reinforcement learning (RL) methods require a large
amount of interactions, making them difficult to use in real-
world applications. This is especially true when the rewards
are sparse since random or semi-random exploration strug-
gles to find them. Learning from Demonstrations (LfD) miti-
gates this by eliminating the need for random exploration. So
far, most LfD solutions have been based on model-free RL
approaches that struggle with tasks that require planning. We
propose a new algorithm that successfully combines model-
based RL and LfD by leveraging the notion of uncertainty in
the transition model during planning. We also introduce the
concept of conviction, an uncertainty-to-reward ratio used to
decide on optimal actions while planning. Our approach sig-
nificantly outperforms the relevant baselines in the Minigrid
and Sokoban environments.

Introduction
Deep reinforcement learning has been very successful in cer-
tain areas (Schrittwieser et al. 2020a; Vinyals et al. 2019;
Berner et al. 2019; Badia et al. 2020) where it is possible
to run countless simulations and thus learn from an unlim-
ited number of interactions. However, for robotics, one of its
main limitations is precisely the need for a large number of
interactions. It also struggles when the reward is sparse since
it is difficult for random exploration to reach that reward
within a reasonable number of interactions. This makes deep
reinforcement learning prohibitively slow for most real-
world problems (and sometimes unsafe when dealing with
dangerous or fragile robotic equipment) (Deisenroth, Fox,
and Rasmussen 2013; Pignat and Calinon 2019; Deisenroth
and Rasmussen 2011) .

Various categories of methods exist to mitigate the sparse
reward problem in reinforcement learning (RL). One such
category is the idea of “reward shaping”. It consists of ap-
plying hand-crafted modifications to the reward function,
such as adding intermediate rewards for reaching interme-
diate goals. Another category encompasses more sophis-
ticated exploration strategies (e.g., curiosity-driven explo-
ration) (Ladosz et al. 2022). A special case of that con-
sists of “Learning from Demonstrations” (LfD), in which the
models are trained from expert demonstrations of solutions
rather than model-driven exploration.

This paper presents an approach that falls under the LfD

category, although we will resort to a bit of reward shap-
ing for our experiments on Minigrid (Chevalier-Boisvert,
Willems, and Pal 2018). To the best of our knowledge,
existing LfD approaches rely exclusively on model-free
paradigms. Although model-free RL approaches can be very
effective when there is a sufficient number of data samples,
it can be difficult to learn policies that generalize well in
highly combinatorial environments (e.g., planning intensive)
(Racanière et al. 2017; Schrittwieser et al. 2020b; Moerland,
Broekens, and Jonker 2020).

However, combining model-based RL with LfD is not
trivial. This is because human expert demonstrations are not
complete explorations of the full transition space. Instead,
they typically represent the (quasi-) optimal subset of pos-
sible state transitions (minus the accidental errors). There-
fore, it is difficult for model-based algorithms to learn an
unbiased and complete version of the environment dynamics
from only a demonstration dataset. As a result, attempting
to predict trajectories from state transitions that were either
never observed or rarely observed leads to arbitrary extrap-
olated values, thereby derailing planning.

To address the abovementioned issue, we present a novel
strategy for combining the advantages of LfD and model-
based RL. We achieve this by elaborating a planning al-
gorithm that leverages uncertainty in the learned transition
model to pre-prune planning trajectories. Additionally, our
algorithm searches for the sequence of actions that maxi-
mizes conviction, which we define as the ratio of expected
value to cumulative prediction uncertainty. We conducted
detailed experiments on the Minigrid (Chevalier-Boisvert,
Willems, and Pal 2018) and Sokoban (Schrader 2018) envi-
ronments, and demonstrated that it significantly outperforms
all relevant baselines in low data regimes.

The significance of this work can be summarized as fol-
lows:

1. We propose a novel strategy for sparse reward RL prob-
lems that outperforms state-of-the-art approaches on
Sokoban, in terms of sample efficiency.

2. We introduce the concept of conviction, which is used in
the aforementioned strategy.

3. We devise variants of Iterative Deepening A* (IDA*)
and Monte-Carlo Tree Search that leverage the notions
of conviction and uncertainty to find solutions from an

incomplete world model.

Related work
Dealing with sparse rewards in RL
Some reinforcement learning problems only provide a re-
ward after a long sequence of specific actions that lead to
the desired goal(Ladosz et al. 2022). This makes the tra-
ditional reinforcement learning approach of random explo-
ration quite difficult to apply, as it is unlikely that a sequence
of random actions will reach this elusive reward.

Various paradigms have been proposed to address this
sparse reward challenge. One such approach, reward shap-
ing, consists of artificially imposing a more suitable reward
function on top of the intrinsic one. This hand-crafted re-
ward function generally provides intermediate goals that are
easier to attain while being a general indicator of progress
toward the goal (Hu et al. 2020; Trott et al. 2019; Eschmann
2021).

Another paradigm uses different exploration algorithms
than purely random actions. An example is curiosity-driven
exploration (Ladosz et al. 2022; Eschmann 2021; Pathak
et al. 2017). In this method, the model attempts to predict the
next state of the environment. Prediction errors are treated
as a positive reward related to surprise. The agent will then
attempt to visit these states of surprise more often since
they are states for which the model has incomplete informa-
tion. Part of this paradigm is the method of Learning from
Demonstrations (LfD). Since this is the main focus of this
work, we discuss it in more detail in the following section.

Learning from Demonstrations
In LfD, the policy is learned at least partially through the
use of expert demonstrations rather than random exploration
alone. The motivation is twofold: (1) to reduce the number
of interactions with the environment as much as possible and
(2) to work around reward sparsity by offering complete ex-
amples of solutions (and, therefore, rewards) to the model.

LfD should not be confused with Inverse RL. They have
significant overlap in their techniques since they both rely
on expert demonstrations, but their goals are different. In In-
verse RL, the goal is to infer the reward function from user
examples. In other words, the Inverse RL literature does not
express concern for sparse rewards or sample efficiency. In-
stead, it is motivated by the fact that for some problems, it is
difficult to explicitly describe the reward function because it
is too complex, elusive, or subtle (Abbeel and Ng 2004).

Deep Q-Learning from Demonstrations (DQfD) is a hy-
brid model-free RL algorithm that combines exploration and
LfD (Hester et al. 2018). It can reach state-of-the-art per-
formance on tasks from the Arcade Learning Environment
from much fewer samples. In addition, due to its ability
to learn from exploration, it can exceed the demonstration
performance on a significant number of cases. They com-
pared DQfD to the Prioritized Dueling Double Deep Q-
Network(Schaul et al. 2015) algorithm, which does not use
demonstrations. In the games Hero, Pitfall, and Road Run-
ner, the human demonstrations enable DQfD to achieve bet-

ter performance than any previously published result, espe-
cially from the standpoint of sample efficiency.

DQfD achieves this via a special supervised learning loss
term in which, for a given state in a demonstration, the un-
observed actions’ Q-values are penalized. Soft Q Imitation
Learning (SQIL)(Reddy, Dragan, and Levine 2019), Nor-
malized Actor-Critic (Gao et al. 2018), Monte Carlo aug-
mented Actor-Critic (Wilcox et al. 2022), Cycle-of-Learning
(Goecks et al. 2020) and Deep Deterministic Policy Gradi-
ent from Demonstrations (DDPGfD) (Vecerik et al. 2017)
all use the same core idea, along with pretraining on ex-
pert demonstrations. SQIL does not require an explicit re-
ward from the environment, while Monte-Carlo augmented
Actor-Critic uses actor-critic instead of Q-Learning.

Implicit planning
There is a line of research that involves using model-free
approaches with neural architectures that are structured to
learn to plan implicitly. The Deep Repeated ConvLSTM
(Guez et al. 2019) is a recurrent algorithm that allows iter-
ations over a latent state maintained by stacked ConvLSTM
layers. This architecture can learn to predict several moves
ahead, since each iteration of the loop can model an interac-
tion in its latent state.

Working Memory Graphs (Loynd et al. 2020) (WMG) are
the state of the art in that line of research. It uses a Trans-
former architecture along with preprocessed, factored ob-
servations. They outperform previous implicit planning ap-
proaches on Sokoban, such as Deep Repeated ConvLSTMs.
This approach will be used as a reference algorithm in our
experiments on Sokoban.

Methodology
Problem formulation
The theoretical framework for reinforcement learning relies
on the Markov Decision Process formulation for sequential
decision making (Sutton and Barto 2018). It is defined as a
tuple (S,A,R, P, γ), where:

• S is a set of discrete states;
• A is a set of discrete actions;
• R(s, a) is a mapping from state-action to reward;
• P (st+1|st, a) is a mapping from state-action to the next

state;
• γ is a discount factor, 0 < γ ≤ 1.

At each observed state st ∈ S, the agent takes an ac-
tion a ∈ A. In the subsequent step, the agent receives a
reward R(s, a) and observes a new state st+1 based on
P (st+1|st, a). In the sparse rewards case of interest to us,
in the vast majority of cases R(s, a) returns a zero (or neg-
ative) reward. The goal of the agent is to learn a behavior
policy π that will maximize the expected discounted total
reward. Markov Decision Processes have the Markov prop-
erty, which is that the current state st contains all of the nec-
essary information to predict the next state st+1. Formally:

P (St+1|St) = P (St+1|S1, S2, . . . , St) (1)

In LfD, instead of observing a direct exploratory interac-
tion with the environment, we have an expert who demon-
strates successful interactions with the environment. The
collected data is then fed to the model for training. In hy-
brid solutions like DQfD, this can be a pre-training phase,
subsequently followed by learning from exploration in the
environment.

Model-based RL
Description In model-based RL, we have a model of the
environment dynamics:

D : (st, ai) → ŝt+1 (2)

That is, given a current state st and an action ai, it pro-
duces a prediction ŝt+1 of the upcoming state. We also have
an action-value model:

Qπ : (st, ai) → E
[K∑
k=0

γkrt+k

]
(3)

This is the discounted sum of rewards (over the remaining
K interactions) that are expected to be obtained by applying
action ai in state st if we subsequently use the policy π.
This policy consists of a planning algorithm (which can be
learned) that searches for the sequence of actions to maxi-
mize the total cumulative reward given the transition model
D and the value model Qπ .

Advantage Given a sufficiently combinatorially complex
environment, it may be considered implausible (and undesir-
able) to observe demonstrations over all possible sequences
of events, or even to cover that space sufficiently to expect
robust interpolation by a neural network. An agent that lacks
the ability to plan will need to extrapolate, and thus under-
perform in sequences of states that are far from the observed
ones. Model-based RL moves away from merely interpolat-
ing over previously seen trajectories towards a more fun-
damental estimation of environment dynamics coupled with
planning ahead. This tends to generalize better than directly
learning mappings from state to action as in model-free RL
(Racanière et al. 2017; Schrittwieser et al. 2020b; Moerland,
Broekens, and Jonker 2020).

Disadvantage In the sparse reward context, random ex-
ploration presents challenges in observing positive rewards,
making it difficult to learn the action-value function. The
probability of reaching the rare reward for a randomly gen-
erated sequence of actions is very low, which means that a
much higher number of such interaction sequences must be
made in order to get positive reward examples. Because the
action-value model needs to observe a significant number
of such positive rewards to learn anything, this sets a much
higher lower bound on the number of interactions required
(compared to an LfD approach).

Learning from Demonstrations
Description Each demonstration step is a tuple (s, a, s’,
r) consisting of a preliminary state s, an action taken a, a

Algorithm Sparse Rewards Ability to plan
Model-based RL No Yes
Model-free LfD Yes No
Conviction-
based Planner

Yes Yes

Table 1: Comparison of Model-based RL, LfD, and our
Conviction-based Planner approach.

resulting state s′, and reward r. In the case of hybrid solu-
tions, the policy is pre-trained on these demonstration se-
quences, and a second phase of exploration-driven RL train-
ing is made. In the case of our proposed approach, the tran-
sition model and the value model are trained entirely from
these demonstrations, and no exploration-driven RL training
is needed.

Advantage Because the expert demonstrations all include
rare rewards, this allows to train the value model from rel-
atively few interactions, compared to random exploration.
Expert demonstrations can be thought of as much more
reward-dense interaction sequences than those obtained
from random exploration.

Disadvantage Model-free LfD is not equipped with a
planning algorithm or a model of the environment (by defi-
nition). Therefore, its direct policy must learn to map states
to actions. This is difficult when the environment presents a
combinatorial explosion of possible state-action sequences.

Combining Model-based RL and LfD
We seek to combine Model-based RL and LfD to obtain the
sample-efficiency advantages of both (see Table 1). Com-
bining model-based RL with LfD suggests that the transi-
tion model is learned from expert demonstrations rather than
(only) from random exploration. Expert demonstrations are
sequences of (quasi-)optimal actions that lead to solutions
for each provided problem. Most of the time, these state-
action transitions do not cover the whole range of possi-
ble state-action transitions because invalid, nonsensical, or
counter-productive state-action transitions are not usually at-
tempted in expert demonstrations.

For example, in Minigrid1, a human expert will not volun-
tarily try to move into a wall or move into a closed door. Be-
cause of this, a transition model trained from expert demon-
strations is generally incomplete. If one were to query it for
state-action transitions that were never (or very rarely) ob-
served during training, it would give unreliable predictions.
In Minigrid, for instance, we found that the transition model
would predict that the agent will move through the wall or
through the closed door if we asked it what happens when
we move forward in such a state.

This is a problem for model-based RL because the plan-
ning algorithm, whether it is IDA*, Monte-Carlo Tree

1Minigrid is a grid-based environment in which an agent can
navigate rooms and open doors, while trying to reach a specific
goal cell. A detailed description of Minigrid is provided in the Ex-
periments section.

Search or other, will necessarily query such invalid state-
action transitions. The predicted outcome may be favorable,
even though it is incorrect, which will derail planning. This
is why naively combining Model-based RL, and LfD is rel-
atively ineffective, as will be shown empirically in our abla-
tion studies (NaivePlanner-MCTS and NaivePlanner-IDA*).

The Proposed Strategy
The strategy that we propose in order to leverage the bene-
fits of model-based RL and LfD is to get an estimate of un-
certainty in the transition model and use it to ignore highly
uncertain predictions during planning. The key elements of
our proposed strategy consist of:
• An encoder that shapes the encoding space in a way that

is semantically meaningful.
• A mechanism to return prediction uncertainty in the tran-

sition model.
• A modification to the planning algorithm that prunes

planning paths whose uncertainty exceeds a threshold
while prioritizing high value-to-uncertainty ratios (that
we call conviction).

The mechanism that returns prediction uncertainty in the
transition model can be implemented in a number of ways,
such as Bayesian approaches or Deep Neural Network En-
sembles (Lakshminarayanan, Pritzel, and Blundell 2017).
The method we used technically fits neither category but can
be interpreted as an implementation of a Gaussian Process.
We save the latent space encodings from the training dataset
in an in-memory table. At inference time, we essentially
use k-nearest neighbors to retrieve the Euclidean distance
between the generated encodings and the nearest encoding
seen during training. This distance is treated as a proxy for
uncertainty in our model: if the distance is zero, it means we
have already seen this state during training; therefore, one
can expect the prediction to be trustworthy.

The success of this uncertainty-based approach depends
on whether the latent space encodings are semantically
meaningful. What is meant by that is that there should be
no unnecessary distinction between semantically equivalent
states, yet there should be sufficient distinctions to separate
the semantically different states. Unnecessary distinctions
between semantically equivalent states imply an unnecessar-
ily inflated encoding space. That is, the dimensionality of the
encoding space needs to be larger in order to be able to repre-
sent the additional, superfluous distinctions. Doing so, how-
ever, reduces the sample efficiency of the algorithm because
more examples are needed to obtain a dataset that properly
covers that larger encoding space. On the other hand, the
lack of necessary semantic distinctions will result in incor-
rect transition predictions.

To give a concrete example of the impact of semantically
meaningful distinctions in the encoder, we can look at Mini-
grid. In this problem domain, some levels have doors of dif-
ferent colors. However, the color of the door has no impact
on the solution. In order to get a compact and efficient latent
space, the encodings should be such that doors of different
colors in the raw observation space are not encoded as dis-
tinct objects in the encoding space. In contrast, the state of

Figure 1: Architecture of the Conviction Planner.

being in front of a closed door and the state of being in front
of an open door should be encoded as distinct states. The
reason for this is that the state of a door is crucial for the so-
lution: the agent cannot pass through it without first opening
the door.

Learning an encoder that generates semantically mean-
ingful solutions does not necessarily happen on its own,
which means that it is generally not possible to use a trained
encoder. Furthermore, it is not possible to train an encoder
in a supervised way for this purpose, since the encoder itself
would be subject to the uncertainty present in the training
set. Instead, this encoder must be a hard-coded module that
takes as input a state and action and outputs the most com-
pressed, semantically meaningful encoding. This feature en-
gineering effort is, in a sense, comparable to the type of
effort required in reward shaping to make a sparse reward
problem learnable by traditional RL methods. There is “no
free lunch” in machine learning, after all, and if we want
to gain sample efficiency, we must compensate with strong
priors.

The Model Architecture
The model architecture closely follows typical Model-based
RL. As depicted in Figure 1, our approach consists of three
main modules:
• the internal encoder: E : (st, at) → zt.

• the value model: V : st → V̂t.
• the transition model: T : (zt, a) → (δs|a, σt).

For Minigrid, the value model simply corresponds to the
reward associated with state st (0 everywhere except when
reaching the goal). For Sokoban, the details vary (see sub-
section ”Sokoban” of the Experiments section).

In the transition model, δst|a is the predicted differential
of the input vector st as a result of the application of the
action a. σt is the distance of zt to the nearest encoding in
the uncertainty table, which is used as proxy for the notion of
uncertainty. The transition model acts like a residual connec-
tion: its output is a predicted difference between the current
and the next frame representation, which is added onto the
input.

The optional external encoder would be necessary in cases
where the environment does not output a symbolic observa-
tion. In such a case, it would be helpful to have a Convolu-
tional Neural Network (e.g., an autoencoder) that condenses
the raw observation into a manageable state space. This state
space is where the planning iterations occur. In our experi-
ments, we deal with symbolic representations, so ot = st.

The loss function that is minimized by the Conviction-
based Planner during training is:

L = Ls + LV (4)
, where:

Ls =
∑

(δŝt+1|a′t − δst+1|a′t)2 (5)

LV =
∑

(V̂t − Vt)
2 (6)

In the loss function, δŝt+1|a′t is the predicted change
in state from applying the demonstration action a′t, while
δst+1|a′t is the corresponding ground truth. Note that the un-
certainty output σt of the transition model is not part of the
loss function, it is trained in an unsupervised way. It consists
of the nearest neighbor’s Euclidean distance in the encoding
space.

At each epoch of the training procedure, we sample a
batch from the demonstrations. Optionally, the raw obser-
vation is passed through the external (e.g., convolutional)
encoder. The state st is fed to the internal encoder E, which
outputs zt. This is then fed to the transition model T , which
outputs its predicted state delta δst. Concurrently, st is fed
directly to the value model, which outputs its value predic-
tion V̂t. We then have all of the necessary predictions to cal-
culate the loss function and apply gradients.

Conviction-Based Planning
Once the transition and value models have been trained, we
can start solving tasks with the help of a planning algorithm.
In our experiments, we use two algorithms: Iterative Deep-
ening A* (with a learned heuristic function) (Korf 1985) and
Monte Carlo Tree Search (Coulom 2006). In both cases, the
general idea is that we start from a given state st of the en-
vironment. The algorithm then iteratively searches for the
sequence of actions that leads to a final predicted state ŝt+K

for which the value model returns the best value. This search
is made possible by using the transition model to predict the
state of the environment after each suggested action.

A notable feature of our proposed solution is that we
leverage information about uncertainty while planning,

since our transition model cannot be trusted for any arbitrar-
ily suggested state-action transition. Instead of merely opti-
mizing for the predicted value of the end state, we optimize
a metric ψ, which we call conviction, that is mathematically
described as follows:

ψ =
V̂t+K

t+K∑
τ=t

στ + ϵ

(7)

In Eq. (7), the denominator consists of the cumulative un-
certainty of actions in the planned sequence of length K, ϵ
is a very small constant to prevent division by zero.

Additionally, as a search optimization, we prune sub-trees
when a particular transition prediction is associated with an
uncertainty that surpasses a given threshold (which is an em-
pirically determined hyper-parameter).

Experiments
Since our proposed solution combines model-based RL and
LfD approaches, we compared those two strategies indi-
vidually. Models ModelBasedRL-IDA* and ModelBasedRL-
MCTS implement traditional model-based RL with the same
planning algorithms (except for the conviction-related mod-
ifications) as our proposed solutions ConvictionPlanner-
IDA* and ConvictionPlanner-MCTS respectively.

For our LfD benchmark, we use Deep Q-Learning from
Demonstrations (DQfD) (Hester et al. 2018) because it is the
state of the art in discrete environments. We run three dif-
ferent experiments from this algorithm: DQfD-PreTraining,
DQfD-Hybrid and DQfD-Model-Free.

DQfD-PreTraining consists of only the pre-training phase
from demonstrations. We do not perform any random ex-
ploration phase, and as such the policy is learned strictly
from supervised training on expert demonstrations. It is es-
sentially equivalent to Behavioral Cloning methods. DQfD-
Model-Free uses the DQfD algorithm without any pre-
training on demonstrations, so it is essentially the same as
standard Deep Q-Learning. DQfD-Hybrid implements both
aspects of DQfD.

We consider what happens if we train a Model-based RL
approach on a mixture of demonstrations and random ex-
ploration. Presumably, this would eliminate the need to han-
dle uncertainty, since the random explorations would cover
the transition space. This is the experiment HybridPlanner-
IDA*, which we carry out on the Sokoban environment.

We also perform an ablation study to show that
uncertainty-aware planning is necessary to combine Model-
based RL and LfD in an effective way. NaivePlanner-
IDA* and NaivePlanner-MCTS are exactly the same models
as ConvictionPlanner-IDA* and ConvictionPlanner-MCTS,
with the notable exception that planning optimizes estimated
value only (rather than conviction) and it does not prune sub-
trees based on uncertainty.

Finally, we compare to Working Memory Graphs
(WMG), using the unfiltered Boxoban levels as in (Loynd
et al. 2020), instead of our usual 3-box randomized levels.
See Table 5 for results. Due to the lower sample efficiency

of WMG, we must compare our highest number of interac-
tions on the ConvictionPlanner with WMG results at much
higher numbers of interactions. The number of demonstra-
tions required to test at these higher data regimes is pro-
hibitive, which is why we stop at 50K for our algorithm.
It is, after all, intended for lower data regimes.

The evaluation procedure involves training instances of
the compared models on different amounts of interaction
steps. We then assess each of these models on 100 test prob-
lem instances. The test problem instances were generated
after the training phase, with unique random seed values.
These problem instances have never been observed by the
agents during their training phase, but they have the same
grid dimensions. The success rate is the percentage of prob-
lem instances, out of the 100, solved by the given model
(only 1 trial per problem instance). From these results, we
get a portrayal of the sampling efficiency of each method.

Minigrid
Minigrid(Chevalier-Boisvert, Willems, and Pal 2018) is a
simple grid-based world that an agent must navigate, using
a small set of possible actions. The goal is typically to reach
an end-goal cell, although Minigrid contains many types of
levels, some of which have different goals (such as picking
up certain objects). The levels used in this work will all have
the same goal: to reach a specific goal cell (visually repre-
sented as a green cell).

This environment is partially observable. The agent only
ever observes a 7 × 7 window in front of itself. To address
the partial observability, we use an in-memory grid that re-
members the revealed cells. This allows us, during planning,
to determine if trajectories reveal new cells, which is encour-
aged via an intermediate reward. In addition to maintaining a
global state of the grid (with revealed and hidden cells), this
module also remembers its absolute position in that grid, as
well as the direction in which it is facing. This is also neces-
sary for the planning procedure.

We use two different types of levels:

1. MiniGrid-FourRooms-v0: which uses a 19× 19 grid (see
Appendix A). There are three possible actions: forward,
turn right, and turn left.

2. MiniGrid-MultiRoom-N6-v0: which uses a 25 × 25 grid
(see Appendix A). There are four possible actions: for-
ward, turn right, turn left, and toggle door open/closed.

The agent receives a positive reward when the end goal
is reached (the green cell); otherwise, it gets a zero reward.
During planning, an intermediate reward is used to encour-
age exploration: reaching a previously unexplored cell adds
+1 to the cumulative reward, while reaching the end goal cell
adds +25 to the reward. As a result, the planning algorithm
will select and execute the action sequence that maximizes
the number of revealed cells within the K planned steps. If
the goal cell is already revealed, it will tend to favor reaching
this goal cell due to its higher reward.

According to the documentation on Minigrid, the
MiniGrid-MultiRoom-N6-v0 level is difficult to solve using
standard RL techniques. This is mainly due to the sparse re-
ward. A long sequence of optimal actions must be executed

to reach that sparse reward. By the same logic, the MiniGrid-
FourRooms-v0 should also be quite difficult (though, per-
haps, to a lesser extent). Because Iterative Deepening A* is
not appropriate in a partially observable environment (the
end goal is not known unless revealed), our planning algo-
rithm will be Monte-Carlo Tree Search.

Conviction-based MCTS
Here we describe the changes that we made to the regular
Monte-Carlo Tree Search algorithm. For the sake of brevity
we assume that the reader is already familiar with Monte-
Carlo Tree Search.

In the node expansion and simulation functions of MCTS,
a function is usually called in order predict the next state
st+1 as a function of the current st state and a proposed ac-
tion a. This function uses the transition model and the value
models to make state transition and reward predictions. In
our implementation, this function also returns a notion of
uncertainty associated with that prediction.

Furthermore, it includes some logic relating to the ”inter-
mediate reward” that encourages exploration. This change
is specific to Minigrid, not to our conviction-based approach
in general. Whenever the predicted transition lands the agent
on a previously unexplored cell, we set the reward to 1.

In the node expansion function, the uncertainty returned
by the transition prediction function is used to determine
whether we can continue expanding the tree in this direc-
tion or not. If the uncertainty is too high for the proposed
action from the given node, we truncate the entire sub-tree
starting from that edge.

In the simulation function, we use this uncertainty in two
ways. First, we ignore a transition prediction in the simu-
lation roll-out loop if its uncertainty is too high. That is, it
does not count as part of the final value estimate or state
transition sequence. Furthermore, we use it to calculate the
conviction metric. This is the value that is backpropagated
and optimized for, rather than what we usually refer to as
the Q-value.

Sokoban
Sokoban(Schrader 2018) is also based on a grid world. The
goal is to push boxes onto special cells identified as goals.
There is an equal number of boxes and goal cells, and once
all of the former have been pushed onto the latter, the level
is considered complete. The implementation of Sokoban that
we use has four possible actions: up, down, left, and right.
If the agent moves in a certain direction and there is a box
there, it will push the box by one cell. If, however, there is a
wall or another box behind that box, it will not move.

The agent receives a reward of +1 when it pushes a box
onto a goal cell, -1 when it pushes a box that was on a goal
cell to an adjacent non-goal cell, and +10 when it completes
the level. The ConvictionPlanner approach will use our vari-
ant of IDA* as its planning algorithm.

While Minigrid is a good starting point to analyze our pro-
posed algorithm, it is not as planning-intensive as Sokoban,
nor is it as difficult to solve using LfD. This problem do-
main will allow us to truly differentiate the Conviction-based
Planner from its LfD alternatives. Like Minigrid, the rewards

are fairly rare, especially the final reward, and it is very dif-
ficult for random exploration to solve a level. Also, a great
deal of planning has to be done to solve such a level, and po-
tential deadlock situations have to be avoided (see Appendix
B).

Conviction-based IDA*
Here, we describe the changes that we made to the regular
IDA* algorithm. For the sake of brevity we assume that the
reader is already familiar with IDA* (Korf 1985). In the reg-
ular IDA* algorithm, when we expand a node to obtain its
children, a transition model is used to predict the new state
st+1 that will be seen from applying action a to state st. In
our case, this function also returns an uncertainty value. For
each potential child node, we only add it to the expanded tree
if its associated uncertainty is below the provided threshold.
This is the uncertainty-based pruning element of the algo-
rithm. The conviction metric is used to prioritize the order
in which child nodes are explored. Thus, the algorithm pri-
oritizes higher-conviction trajectories.

In our IDA* implementation, instead of predicting the ex-
pected reward associated with a (s, a) transition, the value
model predicts how many steps are left in the demonstration
given s. We then plan with the goal of achieving a prediction
of 0 steps left. To use the conviction formula we simply sub-
tract Vt from an arbitrary large number, to get a value that
increases as we approach the goal.

Results
We find that the ConvictionPlanner algorithm signifi-
cantly outperforms all benchmark algorithms. On the
MiniGrid-FourRooms-v0 environment (see Table 2),
ConvictionPlanner-MCTS outperforms baseline algorithms,
except for ModelBasedRL-MCTS, that it only outperforms
at 30 training interactions. For the MiniGrid-MultiRoom-
N6-v0 environment, it outperforms baselines with the
exception of DQfD-PreTraining, which matches its perfor-
mance at 100% when presented with 6,000 or more training
samples (see see Table 3). On the Sokoban environment
(see Table 4), ConvictionPlanner-IDA* significantly out-
performs reference algorithms at 65% (which was obtained
after 30,000 training iterations). The second best is the
HybridPlanner-IDA*, at a corresponding accuracy of 38%.

Discussion
The importance of demonstrations
DQfD-Model-Free is unable to solve any of the problems.
On all sample sizes tested, random exploration seldom made
it out of the 2nd room in MiniGrid-MultiRoom-N6-v0. It
never reached the end, so it never saw a non-zero reward.
We see the same issue with model-based RL on Sokoban.
The only reason why model-based RL performs so well on
Minigrid is because of the intermediate rewards that encour-
age exploration in the planning algorithm.

The importance of planning
We hypothesize that, on Sokoban, it is tough from a
given frame to predict the next-best action without rea-

soning through the steps. In other words, given two other-
wise identical grids, a single difference in one cell can be
enough to completely change the solution. This is probably
why, on Sokoban, the second-best model is also an algo-
rithm that uses explicit planning: HybridPlanner-IDA*. On
MiniGrid-MultiRoom-N6-v0, however, we hypothesize that
a demonstration-based supervised policy performs relatively
well because all the agent has to learn is that it needs to move
towards the closed door that is visible in its partial view and
then to open it.

In MiniGrid-FourRooms-v0, a lot of the frames will
be “blank frames” that contain no obvious landmark to
move towards. That is because the rooms tend to be much
larger than in MiniGrid-MultiRoom-N6-v0. Therefore, we
believe that this environment requires a bit more planning
than MiniGrid-MultiRoom-N6-v0, though not as much as
Sokoban. This can explain why ModelBasedRL-MCTS takes
over DQfD-PreTraining as the second best approach in
MiniGrid-FourRooms-v0.

Search tree pruning
The lower performance of HybridPlanner-IDA* relative to
ConvictionPlanner-IDA* further motivates our conviction-
based approach. This difference in performance is explained
by the fact that the conviction-based approaches include sub-
tree pruning based on uncertainty, which greatly reduces the
search space. The hybrid planning approach does not do this,
resulting in a larger search space and a worse performance.
Thus, a functionality that was initially intended to only pre-
vent invalid predictions in an incomplete model also became
a way to avoid exploring sub-trees whose root node transi-
tion is a priori questionable, since it was never seen during
training.

Limitations and assumptions
Our approach is more appropriate for problems where ac-
quiring demonstrations and implementing the appropriate
feature engineering in the encoder module is considered
cheaper than running an indefinite number of exploration in-
teractions. This is almost never the case for simulated envi-
ronments or synthetic data. However, it can often be the case
in robotics (physical environments) and expensive or other-
wise limited datasets. Additionally, in this implementation
we only handle discrete state spaces and actions. However,
we believe that with minor modifications our approach can
be generalized to continuous action spaces and states.

Comparison to WMG
WMG is intended to operate at a higher data regime than
our algorithm. It is approximately 100 times less sample ef-
ficient than ConvictionPlanner-IDA* on Sokoban, as shown
by the fact that the 49% success rate is attained after 5M
interactions for WMG versus 50K for ConvictionPlanner-
IDA* (see Table 5). Much like our approach, WMG re-
quires problem-specific feature engineering. However, it
is possible that in higher data regimes it outperforms
ConvictionPlanner-IDA*, since the feed-forward neural net-
work used in our current implementation of IDA* is not as

Number of training steps
Algorithm 30 750 1.5k 6K 9K 15K 22.5k 30k
DQfD-PreTraining 1% 26% 35% 55% 55% 55% 57% 61%
DQfD-Hybrid 0% 16% 29% 65% 65% 67% 67% 68%
DQfD-Model-Free 0% 0% 0% 0% 0% 0% 0% 0%
ModelBasedRL-MCTS 5% 100% 100% 100% 100% 100% 100% 100%
NaivePlanner-MCTS 17% 20% 30% 32% 32% 34% 34% 34%
ConvictionPlanner-MCTS 60% 99% 99% 99% 100% 100% 100% 100%

Table 2: Success rate on 100 test examples, per training set size, on MiniGrid-FourRooms-v0.

Number of training steps
Algorithm 30 750 1.5k 6K 9K 15K
DQfD-PreTraining 0% 89% 96% 100% 100% 100%
DQfD-Hybrid 0% 35% 72% 95% 87% 94%
DQfD-Model-Free 0% 0% 0% 0% 0% 0%
ModelBasedRL-MCTS 28% 67% 64% 64% 64% 64%
NaivePlanner-MCTS 17% 20% 30% 32% 32% 34%
ConvictionPlanner-MCTS 99% 99% 99% 100% 100% 100%

Table 3: Success rate on 100 test examples, per training set size, on MiniGrid-MultiRoom-N6-v0.

Number of training steps
Algorithm 1K 1.5k 5K 10K 15K 25K 30k
DQfD-PreTraining 0% 0% 0% 0% 0% 0% 0%
DQfD-Hybrid 0% 0% 0% 0% 0% 0% 0%
DQfD-Model-Free 0% 0% 0% 0% 0% 0% 0%
WMG 0% 0% 0% 0% 0% 0% 0%
ModelBasedRL-IDA* 0% 0% 0% 0% 5% 5% 6%
NaivePlanner-IDA* 0% 0% 0% 1% 1% 2% 2%
HybridPlanner-IDA* 1% 7% 26% 28% 31% 34% 38%
ConvictionPlanner-IDA* 9% 12% 40% 58% 61% 64% 65%

Table 4: Success rate on 100 test examples, per training set size, on Sokoban.

Number of training steps
Algorithm 30k 50k 1M 2.5M 4M 5M
WMG 0% <1% 10.4% 33% 43% 49%
ConvictionPlanner-IDA* 43% 49% N/A N/A N/A N/A

Table 5: Success rate on 100 test examples, per training set size, on Boxoban.

powerful as a Transformer. The latter may be capable of
learning search heuristics that are more efficient than the for-
mer.

Conclusion
We proposed a novel strategy to address the problem of
learning inefficiencies caused by sparse rewards in rein-
forcement learning problems. It consists of combining an
uncertainty-aware transition model, trained on demonstra-
tions, with a variant of a search algorithm such as IDA* or
MCTS. This variant uses uncertainty to prune subtrees dur-
ing planning and to optimize trajectory selection based on
the notion of conviction (the ratio of expected value to cu-

mulative uncertainty), which we introduced. We tested it on
deterministic discrete environments, namely Minigrid and
Sokoban, in which it outperformed relevant ML baselines.
In particular, it outperformed Working Memory Graphs on
Sokoban in terms of sample efficiency, by a factor of approx-
imately 100 times.

Possible future avenues of research include relaxing the
assumption of discrete action and state spaces to support
continuous environments. It would also be helpful to gener-
alize the approach to stochastic environments. Finally, more
work is needed to adapt this approach to non-symbolic prob-
lem domains.

References
Abbeel, P.; and Ng, A. Y. 2004. Apprenticeship learning
via inverse reinforcement learning. In Proceedings of the
twenty-first international conference on Machine learning,
1.
Badia, A. P.; Piot, B.; Kapturowski, S.; Sprechmann, P.;
Vitvitskyi, A.; Guo, Z. D.; and Blundell, C. 2020. Agent57:
Outperforming the atari human benchmark. In International
conference on machine learning, 507–517. PMLR.
Berner, C.; Brockman, G.; Chan, B.; Cheung, V.; Debiak,
P.; Dennison, C.; Farhi, D.; Fischer, Q.; Hashme, S.; Hesse,
C.; et al. 2019. Dota 2 with large scale deep reinforcement
learning. arXiv preprint arXiv:1912.06680.
Chevalier-Boisvert, M.; Willems, L.; and Pal, S. 2018. Min-
imalistic Gridworld Environment for OpenAI Gym. https:
//github.com/maximecb/gym-minigrid.
Coulom, R. 2006. Efficient selectivity and backup operators
in Monte-Carlo tree search. In International conference on
computers and games, 72–83. Springer.
Deisenroth, M.; and Rasmussen, C. E. 2011. PILCO: A
model-based and data-efficient approach to policy search.
In Proceedings of the 28th International Conference on ma-
chine learning (ICML-11), 465–472. Citeseer.
Deisenroth, M. P.; Fox, D.; and Rasmussen, C. E. 2013.
Gaussian processes for data-efficient learning in robotics
and control. IEEE transactions on pattern analysis and ma-
chine intelligence, 37(2): 408–423.
Eschmann, J. 2021. Reward function design in reinforce-
ment learning. Reinforcement Learning Algorithms: Analy-
sis and Applications, 25–33.
Gao, Y.; Xu, H.; Lin, J.; Yu, F.; Levine, S.; and Darrell, T.
2018. Reinforcement learning from imperfect demonstra-
tions. arXiv preprint arXiv:1802.05313.
Goecks, V. G.; Gremillion, G. M.; Lawhern, V. J.; Valasek,
J.; and Waytowich, N. R. 2020. Integrating Behavior
Cloning and Reinforcement Learning for Improved Perfor-
mance in Dense and Sparse Reward Environments. In
Proceedings of the 19th International Conference on Au-
tonomous Agents and MultiAgent Systems, 465–473.
Guez, A.; Mirza, M.; Gregor, K.; Kabra, R.; Racanière, S.;
Weber, T.; Raposo, D.; Santoro, A.; Orseau, L.; Eccles, T.;
et al. 2019. An investigation of model-free planning. In In-
ternational Conference on Machine Learning, 2464–2473.
PMLR.
Hester, T.; Vecerik, M.; Pietquin, O.; Lanctot, M.; Schaul,
T.; Piot, B.; Horgan, D.; Quan, J.; Sendonaris, A.; Osband,
I.; et al. 2018. Deep q-learning from demonstrations. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 32.
Hu, Y.; Wang, W.; Jia, H.; Wang, Y.; Chen, Y.; Hao, J.; Wu,
F.; and Fan, C. 2020. Learning to utilize shaping rewards:
A new approach of reward shaping. Advances in Neural
Information Processing Systems, 33: 15931–15941.
Korf, R. E. 1985. Depth-first iterative-deepening: An op-
timal admissible tree search. Artificial intelligence, 27(1):
97–109.

Ladosz, P.; Weng, L.; Kim, M.; and Oh, H. 2022. Explo-
ration in deep reinforcement learning: A survey. Information
Fusion, 85: 1–22.
Lakshminarayanan, B.; Pritzel, A.; and Blundell, C. 2017.
Simple and scalable predictive uncertainty estimation using
deep ensembles. Advances in neural information processing
systems, 30.
Loynd, R.; Fernandez, R.; Celikyilmaz, A.; Swaminathan,
A.; and Hausknecht, M. 2020. Working memory graphs. In
International conference on machine learning, 6404–6414.
PMLR.
Moerland, T. M.; Broekens, J.; and Jonker, C. M. 2020.
Model-based reinforcement learning: A survey. arXiv
preprint arXiv:2006.16712.
Pathak, D.; Agrawal, P.; Efros, A. A.; and Darrell, T. 2017.
Curiosity-driven Exploration by Self-supervised Prediction.
In Precup, D.; and Teh, Y. W., eds., Proceedings of the 34th
International Conference on Machine Learning, volume 70
of Proceedings of Machine Learning Research, 2778–2787.
PMLR.
Pignat, E.; and Calinon, S. 2019. Bayesian Gaussian mix-
ture model for robotic policy imitation. IEEE Robotics and
Automation Letters, 4(4): 4452–4458.
Racanière, S.; Weber, T.; Reichert, D.; Buesing, L.; Guez,
A.; Jimenez Rezende, D.; Puigdomènech Badia, A.; Vinyals,
O.; Heess, N.; Li, Y.; et al. 2017. Imagination-augmented
agents for deep reinforcement learning. Advances in neural
information processing systems, 30.
Reddy, S.; Dragan, A. D.; and Levine, S. 2019. SQIL: Imita-
tion Learning via Reinforcement Learning with Sparse Re-
wards. In International Conference on Learning Represen-
tations.
Schaul, T.; Quan, J.; Antonoglou, I.; and Silver, D.
2015. Prioritized experience replay. arXiv preprint
arXiv:1511.05952.
Schrader, M.-P. B. 2018. gym-sokoban. https://github.com/
mpSchrader/gym-sokoban.
Schrittwieser, J.; Antonoglou, I.; Hubert, T.; Simonyan, K.;
Sifre, L.; Schmitt, S.; Guez, A.; Lockhart, E.; Hassabis, D.;
Graepel, T.; et al. 2020a. Mastering atari, go, chess and shogi
by planning with a learned model. Nature, 588(7839): 604–
609.
Schrittwieser, J.; Antonoglou, I.; Hubert, T.; Simonyan, K.;
Sifre, L.; Schmitt, S.; Guez, A.; Lockhart, E.; Hassabis, D.;
Graepel, T.; et al. 2020b. Mastering atari, go, chess and
shogi by planning with a learned model. Nature, 588(7839):
604–609.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
Trott, A.; Zheng, S.; Xiong, C.; and Socher, R. 2019. Keep-
ing your distance: Solving sparse reward tasks using self-
balancing shaped rewards. Advances in Neural Information
Processing Systems, 32.
Vecerik, M.; Hester, T.; Scholz, J.; Wang, F.; Pietquin, O.;
Piot, B.; Heess, N.; Rothörl, T.; Lampe, T.; and Riedmiller,
M. 2017. Leveraging demonstrations for deep reinforcement

learning on robotics problems with sparse rewards. arXiv
preprint arXiv:1707.08817.
Vinyals, O.; Babuschkin, I.; Czarnecki, W. M.; Mathieu, M.;
Dudzik, A.; Chung, J.; Choi, D. H.; Powell, R.; Ewalds,
T.; Georgiev, P.; et al. 2019. Grandmaster level in Star-
Craft II using multi-agent reinforcement learning. Nature,
575(7782): 350–354.
Wilcox, A.; Balakrishna, A.; Dedieu, J.; Benslimane, W.;
Brown, D.; and Goldberg, K. 2022. Monte carlo augmented
actor-critic for sparse reward deep reinforcement learning
from suboptimal demonstrations. Advances in Neural Infor-
mation Processing Systems, 35: 2254–2267.

Appendix A. Minigrid examples

Figure 2: Example of a grid for MiniGrid-FourRooms-v0. The agent is indicated by the red pointer.

Figure 3: Example of a grid for MiniGrid-MultiRoom-N6-v0. The agent is indicated by the red pointer.

Appendix B. Sokoban and deadlocks
A deadlock occurs when a box is not on a goal cell and it can no longer be moved. Because there is no “pull” action, this can
happen when it is in a corner. It then becomes impossible for the agent to move to the other side (which is occupied by a wall
or another box) to push it in the desired direction. There is also a concept of “soft deadlock” where a block can be pushed
alongside a wall, but the goal cell is not along that wall. In that case, it can be impossible for the agent to push the block away
from the wall and onto the desired goal cell. See Fig. 4 for examples of deadlocks.

Figure 4: Sokoban grid examples. The green creature is the agent, yellow squares with an ’X’ are boxes, red squares with a dot
are goals. Left: deadlock due to a box stuck in a corner. Right: soft deadlock on the bottom wall, with a box that can never
reach the remaining unoccupied goal cell.

