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Abstract

This paper investigates a new approach to model-based rein-
forcement learning using background planning: mixing (ap-
proximate) dynamic programming updates and model-free
updates, similar to the Dyna architecture. Background plan-
ning with learned models is often worse than model-free al-
ternatives, such as Double DQN, even though the former uses
significantly more memory and computation. The fundamen-
tal problem is that learned models can be inaccurate and often
generate invalid states, especially when iterated many steps.
In this paper, we avoid this limitation by constraining back-
ground planning to a set of (abstract) subgoals and learn-
ing only local, subgoal-conditioned models. This goal-space
planning (GSP) approach is more computationally efficient,
naturally incorporates temporal abstraction for faster long-
horizon planning and avoids learning the transition dynam-
ics entirely. We show that our GSP algorithm can propagate
value from an abstract space in a manner that helps a variety
of base learners learn significantly faster in different domains.

1 Introduction
Planning with learned models in reinforcement learning
(RL) is important for sample efficiency. Planning provides
a mechanism for the agent to generate hypothetical experi-
ence, in the background during interaction, to improve value
estimates. This hypothetical experience provides a stand-in
for the real-world; the agent can generate many experiences
(transitions) in its head (using its model) and learn from
those experiences. Dyna (Sutton 1991) is a classic example
of this background planning. On each step, the agent gener-
ates several transitions according to its model, and updates
its policy with those transitions as if they were real experi-
ence.

Background planning can be used to both adapt to the
non-stationarity and exploit aspects of the world that re-
main constant. In many interesting environments, like the
real-world or multi-agent games, the agent will be under-
parameterized and thus cannot learn or even represent a sta-
tionary optimal policy. The agent can overcome this limita-
tion, however, by using a model to rapidly update its policy.
Continually updating the model and replanning allows the
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agent to adapt to the current situation. In addition, many as-
pects of the environment remain stationary (e.g., fire hurts
and objects fall). The model can capture these stationary
facts about how the world works and planning can be used to
reason about how the world works to produce a better policy.

The promise of background planning is to learn and adapt
value estimates efficiently, but many open problems remain
to make it more widely useful. These include that 1) long
rollouts generated by one-step models can diverge or gen-
erate invalid states, 2) learning probabilities over outcome
states can be complex, especially for high-dimensional tasks
and 3) planning itself can be computationally expensive for
large state spaces.

One way to overcome these issues is to construct an ab-
stract model of the environment and plan at a higher level of
abstraction. In this paper, we construct abstract MDPs using
both state abstraction as well as temporal abstraction. State
abstraction is achieved by simply grouping states. Tempo-
ral abstraction is achieved using options—a policy coupled
with a termination condition and initiation set (Sutton, Pre-
cup, and Singh 1999). A temporally-abstract model based
on options allows the agent to jump between abstract states
potentially alleviating the need to generate long rollouts.

An abstract model can be used to directly optimize
a policy in the abstract MDP, but there are issues with
this approach. This idea was explored with an algorithm
called Landmark-based Approximate Value Iteration (LAVI)
(Mann, Mannor, and Precup 2015). Though planning can
be shown to be provably more efficient, the resulting policy
is suboptimal, restricted to going between landmark states.
This suboptimality issue forces a trade-off between increas-
ing the size of the abstract MDP (to increase the policy’s
expressivity) and increasing the computational cost to up-
date the value function. In this paper, we investigate abstract
model-based planning methods that have a small computa-
tional cost, can quickly propagate changes in value over the
entire state space, and do not limit the optimality of learned
policy.

An alternative strategy that we explore in this work is to
use the policy optimized in the abstract MDP to guide the
learning process in the original MDP. More specifically, the
role of the abstract MDP is to propagate value quickly over
an abstract state space and then transfer that information to
a value function estimate in the original MDP. This has two



main benefits: 1) the abstract MDP can quickly propagate
value with a small computational cost, and 2) the learned
policy is not limited to the abstract value function’s approx-
imation. Overall, this approach increases the agent’s ability
to learn and adapt to changes in the environment quickly.

Specifically, we introduce Goal-Space Planning (GSP), a
new background planning formalism for the general online
RL setting. The key novelty is designing the framework to
leverage subgoal-conditioned models: temporally-extended
models that condition on subgoals. These models output
predictions of accumulated rewards and discounts for state-
subgoal pairs, which can be estimated using standard value-
function learning algorithms. The models are designed to
be simple to learn, as they are only learned for states lo-
cal to subgoals and they avoid generating entire next state
vectors. We use background planning on transitions between
subgoals, to quickly propagate (suboptimal) value estimates
for subgoals. We then leverage these quickly computed sub-
goal values, without suffering from suboptimality, by incor-
porating them into any standard value-based algorithm via
potential-based shaping. In fact, we layer GSP algorithm
onto two different algorithms—Sarsa(λ) and Double Deep
Q-Network (DDQN)—and show that improves on both base
learners.

We carefully investigate the components of GSP, particu-
larly showing that 1) it propagates value and learns an opti-
mal policy faster than its base learner, 2) can perform well
with somewhat suboptimal subgoal selection, but can harm
performance if subgoals are very poorly selected.

2 Problem Formulation
We consider the standard reinforcement learning setting,
where an agent learns to make decisions through interaction
with an environment, formulated as a Markov Decision Pro-
cess (MDP) represented by the tuple (S,A,R,P), where
S is the state space and A is the action space. The reward
function R : S × A × S → R and the transition probabil-
ity P : S × A × S → [0, 1] describe the expected reward
and probability of transitioning to a state, for a given state
and action. On each discrete timestep t the agent selects an
action At in state St, the environment transitions to a new
state St+1 and emits a scalar reward Rt+1.

The agent’s objective is to find a policy π : S×A → [0, 1]
that maximizes expected return, the future discounted re-
ward Gt

.
= Rt+1 + γt+1Gt+1 across all states. The state-

based discount γt+1 ∈ [0, 1] depends on St+1 (Sutton et al.
2011), which allows us to specify termination. If St+1 is a
terminal state, then γt+1 = 0; else, γt+1 = γc for some con-
stant γc ∈ [0, 1]. The policy can be learned using algorithms
like Sarsa(λ) (Sutton and Barto 2018), which approximate
the action-values: the expected return from a given state and
action, q(s, a) .

= E [Gt|St = s,At = a].
Most model-based reinforcement learning systems learn

a state-to-state transition model. The transition dynamics
model can be either an expectation model E[St+1|St, At] or
a probabilistic model P (St+1|St, At). If the state space or
feature space is large, then the expected next state or distri-
bution over it can be difficult to estimate, as has been repeat-
edly shown (Talvitie 2017). Further, these errors can com-
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Figure 1: GSP in the PinBall domain. The agent begins with
a set of subgoals (denoted in teal) and learns a set of subgoal-
conditioned models. (Abstraction) Using these models, the
agent forms an abstract MDP where the states are subgoals
with options to reach each subgoal as actions. (Planning)
The agent plans in this abstract MDP to quickly learn the
values of these subgoals. (Projection) Using learned sub-
goal values, the agent obtains approximate values of states
based on nearby subgoals and their values. These quickly
updated approximate values are then used to speed up learn-
ing.

pound when iterating the model forward or backward (Jaf-
ferjee et al. 2020; van Hasselt, Hessel, and Aslanides 2019).
It is common to use an expectation model, but unless the
environment is deterministic or we are only learning the val-
ues rather than action-values, this model can result in invalid
states and detrimental updates (Wan et al. 2019). The goal in
this work is to develop a model-based approach that avoids
learning the state-to-state transition model, but still obtains
the benefits of model-based learning for faster learning and
adaptation.

3 Goal Space Planning
We consider three desiderata for when a model-based ap-
proach should be effective. (1) The model should be fea-
sible to learn: we can get it to a sufficient level of accu-
racy that makes it beneficial to plan with that model. (2)
Planning should be computationally efficient, so that the
agent’s values can be quickly updated. (3) Finally, the model
should be modular—composed of several local models or
those that model a small part of the space—so that the
model can quickly adapt to small changes in the environ-
ment. These small changes might still result in large changes
in the value function; planning can quickly propagate these
small changes, potentially changing the value function sig-
nificantly.

At a high level, the GSP algorithm focuses on planning
over a given set of abstract subgoals to provide quickly up-
dated, approximate values to speed up learning. In order to
do so, the agent first learns a set of subgoal-conditioned



models: minimal models focused around planning utility.
These models then form a temporally abstract goal-space
semi-MDP, with subgoals as states, and options to reach
each subgoal as actions. Finally, the agent can update its pol-
icy based on these subgoal values to speed up learning.

Figure 1 provides a visual overview of this process. We
visualize this is an environment called PinBall, which we
also use in our experiments. PinBall is a continuous state
domain where the agent must navigate a ball through a set
of obstacles to reach the main goal, with a four-dimensional
state space consisting of (x, y, ẋ, ẏ) positions and velocities.
In this figure, the set of subgoals G are the teal dots, a finite
space of 9 subgoals. The subgoals are abstract states, in that
they correspond to many states: a subgoal is any (x, y) lo-
cation in a small ball, at any velocity. In this example, the
subgoals are randomly distributed across the space. Subgoal
discovery—identifying this set of subgoals G—is an impor-
tant pre-requisite for this algorithm. For this paper, however,
we focus on this planning formalism assuming these sub-
goals are given, already discovered by the agent.

In the planning step (top central image in Figure 1), we
treat G as our finite set of states and do value iteration.
The precise formula for this update is described in Lo et al.
(2024), along with the formal definition of the models that
we learn for goal-space planning. In words, we compute the
subgoal values ṽ : G → R, using r̃γ(g, g

′) = discounted
return when trying to reach g′ from g and Γ̃(g, g′) = dis-
counted probability of reaching g′ from g,

ṽ(g) = max
relevant/nearby

subgoals g′

r̃γ(g, g
′) + Γ̃(g, g′)ṽ(g′). (1)

The projection step involves updating values for states,
using the subgoal values. The most straightforward way to
obtain the value for a state is to find the nearest subgoal s
and reason about rγ(s, g) = discounted return when trying
to reach g from s and Γ(s, g) = discounted probability of
reaching g from s,

vg⋆(s) = max
relevant/nearby

subgoals g

rγ(s, g) + Γ(s, g)ṽ(g). (2)

Relevance here is defined as s being within the initiation set
of the option that reaches that subgoal. We learn an option
policy to reach each subgoal, where the initiation set for the
option is the set of states from which the option can be exe-
cuted. The initiation set is a local region around the subgoal,
which is why we say we have many local models. Again, we
refer the reader to Lo et al. for the formal definitions of these
value functions.

There are several ways we can use this value estimate: in-
side an actor-critic architecture or as a bootstrap target. For
example, for a transition (s, a, r, s′), we could update action-
values q(s, a) using r+γvg⋆(s′). This naive approach, how-
ever, can result in significant bias, as found in Lo et al. In-
stead, we propose an approach to use vg⋆ as a potential func-
tion for potential-based reward shaping (Ng, Harada, and
Russell 1999). For example, in the Sarsa(λ) algorithm, the
update for the weights w of the function q : S×A×Rn → R

would use the TD-error
δt :=Rt+1 + γt+1vg⋆(St+1)− vg⋆(St)+

γt+1q(St+1, At+1;w)− q(St, At;w).
(3)

A key part of this algorithm is learning the subgoal mod-
els, rγ and Γ. These models will be recognizable to many:
they are universal value function approximators (UVFAs)
(Schaul et al. 2015). We can leverage advances in learning
UVFAs to improve our model learning. These models are
quite different from standard models in RL, in that most
models in RL input a state (or abstract state) and action
and output an expected next state (or expected next abstract
state). Essentially, the model inputs the source and outputs
the expected destination, or a distribution over the possible
destinations. Here, the models take as inputs both the source
and destination, and output only scalars (accumulated re-
ward and discounted probability). The design of GSP is built
around using these types of models, that avoids outputting
predictions about entire state vectors.

The algorithm is visualized in Figure 2. The steps of
agent-environment interaction include:
1. take action At in state St, to get St+1, Rt+1 and γt+1

2. query the model for rγ(St+1, g), Γ(St+1, g), ṽ(g) for all
g where d(St+1, g) > 0

3. compute projection vg⋆(St+1), using (2)
4. update the main policy with the transition and vg⋆(St+1),

using (3).
All background computation is used for model learning us-
ing a replay buffer and for planning to obtain ṽ, so that they
can be queried at any time on step 2.

Policy

updateQ
via Eq 3

sample
action

Model

plan
via Eq 1

project
via Eq 2

Environment

update 

Figure 2: Goal-Space Planning.

To be more concrete, Algorithm 5 shows the GSP al-
gorithm, layered on DDQN (van Hasselt, Guez, and Sil-
ver 2016). DDQN is a variant of DQN—and so relies on
replay—that additionally incorporates the idea behind Dou-
ble Q-learning to avoid maximization bias in the Q-learning
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Figure 3: These four plots show the action values after a single episode of updates for Sarsa with and without GSP and eligibility
traces, i.e., λ = 0.9. Each algorithm’s update is simulated from the same data collected from a uniform random policy. Each
state (square) is made up of four triangles representing each of the four available actions. White squares represent states not
visited in the episode.

update (van Hasselt 2010). All new parts relevant to GSP are
colored blue; without the blue components, it is a standard
DDQN algorithm. The primary change is the addition of the
potential to the action-value weights w, with the other blue
lines primarily around learning the model and doing plan-
ning. GSP should improve on replay because it simply aug-
ments replay with a potential difference that more quickly
guides the agent to take promising actions.

Algorithm 1: Goal-Space Planning for Episodic Problems

Assume given subgoals G and relevance function d
Initialize base learner (i.e. w, z = 0,0 for Sarsa(λ)1),
model parameters θ = (θr,θΓ,θπ), θ̃ = (θ̃

r
, θ̃

Γ
)

Sample initial state s0 from the environment
for t ∈ 0, 1, 2, ... do

Take action at using q (e.g., ϵ-greedy), observe
rt+1, st+1, γt+1

Choose a′ from st+1 using q (e.g. ϵ-greedy)
ModelUpdate(st, at, rt+1, st+1, γt+1)
Planning()
MainPolicyUpdate(st, at, st+1, rt+1, γt+1, a

′)
end for

4 Experiments
This section motivates the capabilities of the GSP frame-
work through a series of demonstrative results. We investi-
gate the utility of GSP in propagating value and speeding up
learning. We do so using learners in three domains: Four-
Rooms, PinBall (Konidaris and Barto 2009) and GridBall
(a version of PinBall without velocities). Unless otherwise
stated, all learning curves are averaged over 30 runs, with
shaded regions representing one standard error.

4.1 GSP on Propagating Value
The central hypothesis of this work is that GSP can acceler-
ate value propagation. By using information from local mod-

1Sarsa(λ) has two sets of parameters to initialize: its action-
value function weights w, and its eligibility trace vector z (Rum-
mery 1995).

els in our updates, our belief is that GSP will have a larger
change in value to more states, leading to policy changes
over larger regions of the state space.

In this section, we consider the effect of our background
planning algorithm on value-based RL methods.
Hypothesis 1 GSP changes the value for more states with
the same set of experience.

In order to verify whether GSP helps to quickly prop-
agate value, we first test this hypothesis in a simple grid
world environment: the FourRooms domain. The agent can
choose from one of 4 actions in a discrete action space
A = {up,down,left,right}. All state transitions are
deterministic. The grey squares in Figure 8 indicate walls,
and the state remains unchanged if the agent takes an ac-
tion that leads into a wall. This is an episodic task, where
the base learner has a fixed start state and must navigate to a
fixed goal state where the episode terminates. Episodes can
also terminate by timeout after 1000 timesteps.

In this domain, we test the effect of using GSP with pre-
trained models on a Sarsa(λ) base learner in the tabular set-
ting (i.e. no function approximation for the value function).
Full details on using GSP with this temporal difference (TD)
learner can be found in Algorithm 2. We set the four hallway
states plus the goal state as subgoals, with their initiation sets
being the two rooms they connect. Full details of option pol-
icy learning can be found in the Appendix B.

Figure 3 shows the base learner’s action-value function af-
ter a single episode using four different algorithms: Sarsa(0),
Sarsa(λ), Sarsa(0)+GSP, and Sarsa(λ)+GSP. In Figure 3, the
Sarsa(0) learner updates the value of the state-action pair
that immediately preceded the +1 reward at the goal state.
The plot for Sarsa(λ) shows a decaying trail of updates
made at the end of the episode, to assign credit to the state-
action pairs that led to the +1 reward. The plots for the GSP
variants show that all state-action pairs sampled receive in-
stant feedback on the quality of their actions. The updates
with GSP can be both positive or negative based on if the
agent makes progress towards the goal state or not. This
direction of update comes from the potential-based reward
shaping rewards or penalizes transitions based on whether
γt+1vg⋆(St+1) > vg⋆(St). It is clear that projecting subgoal
values from the abstract MDP leads to action-value updates



over more of the visited states, even without memory mech-
anisms such as eligibility traces.

It is evident from these updates over a single episode that
the resulting policy from GSP updates should be more likely
to go to the goal. We would like to quantify how much faster
this propagated value can help our base learner over multiple
episodes of experience. More specifically, we want to test
the following hypothesis.

Hypothesis 2 GSP enables a TD base-learner to learn
faster.

We expect GSP to improve a base learner’s performance
on a task within fewer environment interactions. We shall
test whether the value propagation over the state-action
space as seen in Figure 3 makes this the case over the course
of several episodes (i.e. we are now testing the effect of value
propagation over time). Figure 4 shows the performance of
a Sarsa(λ) base learner with and without GSP in the Four-
Rooms domain with a reward of -1 per step. Full details on
the hyperparameters used can be found in Appendix B. It
is evident that the GSP-augmented Sarsa(λ) learner is able
to reach the optimal policy much faster. The GSP learner
also starts at a much lower steps-to-goal. We believe this first
episode performance improvement is because the feedback
from GSP teaches the agent which actions move towards or
away from the goal during the first episode.

4.2 GSP in Larger State Spaces
Many real world applications of RL involve large and/or
continuous state spaces. Current planning techniques strug-
gle with such state spaces. This motivates an investigation
into how well Hypotheses 1 and 2 hold up when GSP is
used in such environments (e.g. the PinBall domain). To bet-
ter analyse GSP and its value propagation across state-space,
we also created an intermediate environment between Four-
Rooms and PinBall called GridBall.

In all our PinBall experiments, the agent is initialised with
zero velocity at a fixed start position at the beginning of ev-
ery episode. It should be noted that, unlike in the FourRooms

Figure 4: This plot shows the average number of steps to
goal smoothed over five episodes in the FourRooms domain.
Shaded region represents 1 standard error across 100 runs.

environment, there exists states which are not in the initia-
tion set of any subgoal - a common occurence when deploy-
ing GSP in the state spaces of real-world applications.

GridBall is like PinBall, but change to be more like a grid-
world to facilitate visualization. The velocity components
of the state are removed, meaning the state only consists
of (x, y) locations, and the action space is changed to dis-
place the ball by a fixed amount in each cardinal dimension.
We keep the same obstacle collision mechanics and calcula-
tions from PinBall. Since GridBall does not have any veloc-
ity components, we can plot heatmaps of value propagation
without having to consider the velocity at which the agent
arrived at a given position.

For Hypothesis 1, we repeat the experiments on GridBall
with base learners that use tile-coded value features (Sutton
and Barto 2018), and linear value function approximation.
Full details on the option policies and subgoal models used
for this are outlined in shown in Appendices B and C. Like
in the FourRooms experiment, we set the reward to be 0 at
all states and +1 once the agent reaches any state in the main
goal to show value propagation. We collect a single episode
of experience from the Sarsa(0)+GSP learner and use its tra-
jectory to perform a batch update on all learners. This con-
trols for any variability in trajectories between learners, so
we can isolate and study the change in value propagation.

Figure 5 compares the state value function (averaged
over the action value estimates) of Sarsa(0), Sarsa(λ),
Sarsa(0)+GSP and Sarsa(λ)+GSP learners after a single
episode of interaction with the environment. The results are
similar to those on FourRooms. The Sarsa(0) algorithm only
updates the value of the tiles activated by the state preceding
the goal. Sarsa(λ) has a decaying trail of updates to the tiles
activated preceeding the goal, and the GSP learners updates
values at all states in the initiation set of a subgoal.

To examine how GSP translates to faster learning (Hy-
pothesis 2), we measure the performance (steps to goal) over
time for each algorithm in both GridBall and PinBall do-
mains. Figure 6 shows that GSP significantly improves the
rate of learning in these larger domains too, with the base
learner able to reach near its top performance within 75 and
100 epsiodes in GridBall and PinBall respectively. All runs
are able to find a similar length path to the goal. As the size
of the state space increases, the benefit of using local models
in the GSP updates still holds.

Similar to the previous domains, the Sarsa(λ) learner us-
ing GSP is able to reach a good policy much faster than the
base learner without GSP. In both domains, the GSP and
non-GSP Sarsa(λ) learners plateau at the same average steps
to goal. Even though the obstacles remain unchanged from
GridBall, it takes roughly 50 episodes longer for even the
GSP variant to reach a good policy in PinBall. This is likely
due to the continuous 4-dimensional state space making the
task harder.

4.3 GSP with Deep Reinforcement Learning
The previous results shed light on the dynamics of value
propagation with GSP when a learner is given a represen-
tation of it’s environment (a look-up table or a tile coding).
A natural next step is to look at the whether the reward and
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Figure 5: The tile-coded value function after one episode in GridBall. Like Figure 3, the gray regions show the visited states
which were not updated. The red circle is the main goal.

GridBall PinBall

Figure 6: Five episode moving average of return in the Grid-
Ball over 200 episodes (left) and PinBall over 500 episodes
(right). All learners used linear value function approxima-
tion on their tile coded features.

transition dynamics learnt in GSP can still propagate value
(Hypothesis 2) in the deep RL setting, where the learner
must also learn a representation of its environment. We test
this by running a DDQN base learner (van Hasselt, Guez,
and Silver 2016) in the PinBall domain, with GSP layered
on DDQN as in Algorithm 5.

Unlike the previous experiments, using GSP out of the
box resulted in the base learner converging to a sub-optimal
policy. This is despite the fact that we used the same vg⋆ as
the previous PinBall experiments. We investigated the dis-
tribution of shaping terms added to the environment reward
and observed that they were occasionally an order of mag-
nitude greater than the environment reward. Though the lin-
ear and tabular methods handled these spikes in potential
difference gracefully, these large displacements seemed to
causes issues when using neural networks and a DDQN base
learner.

We tested two variants of GSP that better control the
magnitudes of the raw potential differences (γvg⋆(St+1) −
vg⋆(St)). We adjusted for this by either clipping or down-
scaling the potential difference added to the reward. The
scaled reward multiplies the potential difference by 0.1.
Clipped GSP clips the potential difference into the [−1, 1]
interval. With these basic magnitude controls, GSP again
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Figure 7: Investigating the behavior of GSP in the deep rein-
forcement learning setting in PinBall. Following the format
of Figure 6, we show the 20 episode moving average of steps
to the main goal in PinBall.

learns significantly faster than its base learner, as shown in
Figure 7.

5 Related Work
A variety of approaches have been developed to handle is-
sues with learning and iterating one-step models. Several pa-
pers have shown that using forward model simulations can
produce simulated states that result in catastrophically mis-
leading values (Jafferjee et al. 2020; van Hasselt, Hessel,
and Aslanides 2019; Lambert, Pister, and Calandra 2022).
This problem has been tackled by using reverse models (Pan
et al. 2018; Jafferjee et al. 2020; van Hasselt, Hessel, and
Aslanides 2019); primarily using the model for decision-
time planning (van Hasselt, Hessel, and Aslanides 2019;
Silver, Sutton, and Müller 2008; Chelu, Precup, and van
Hasselt 2020); and improving training strategies to account
for accumulated errors in rollouts (Talvitie 2014; Venkatra-
man, Hebert, and Bagnell 2015; Talvitie 2017). An emerg-



ing trend is to avoid approximating the true transition dy-
namics, and instead learn dynamics tailored to predicting
values on the next step correctly (Farahmand, Barreto, and
Nikovski 2017; Farahmand 2018; Ayoub et al. 2020). This
trend is also implicit in the variety of techniques that en-
code the planning procedure into neural network architec-
tures that can then be trained end-to-end (Tamar et al. 2016;
Silver et al. 2017; Oh, Singh, and Lee 2017; Weber et al.
2017; Farquhar et al. 2018; Schrittwieser et al. 2020). We
similarly attempt to avoid issues with iterating models, but
do so by considering a different type of model.

Current deep model-based RL techniques plan in a lower-
dimensional abstract space where the relevant features from
the original high-dimensional experience are preserved, of-
ten refered to as a latent space. MuZero (Schrittwieser et al.
2020), for example, embeds the history of observations to
then use predictive models of values, policies and one-step
rewards. Using these three predictive models in the latent
space guides MuZero’s Monte Carlo Tree Search without
the need for a perfect simulator of the environment. Most
recently, DreamerV3 demonstrated the capabilities of a dis-
crete latent world model in a range of pixel-based environ-
ments (Hafner et al. 2023). There is growing evidence that it
is easier to learn accurate models in a latent space.

Temporal abstraction has also been considered to make
planning more efficient, through the use of hierarchical RL
and/or options. MAXQ (Dietterich 2000) introduced the
idea of learning hierarchical policies with multiple levels,
breaking up the problem into multiple subgoals. A large lit-
erature followed, focused on efficient planning with hierar-
chical policies (Diuk, Strehl, and Littman 2006) and using a
hierarchy of MDPs with state abstraction and macro-actions
(Bakker, Zivkovic, and Krose 2005; Konidaris, Kaelbling,
and Lozano-Perez 2014; Konidaris 2016; Gopalan et al.
2017). See Gopalan et al. (2017) for an excellent summary.

Rather than using a hierarchy and planning only in ab-
stract MDPs, another strategy is simply to add options as
additional (macro) actions in planning, still also including
primitive actions. Similar ideas were explored before the in-
troduction of options (Singh 1992; Dayan and Hinton 1992).
There has been some theoretical characterization of the util-
ity of options for improving convergence rates of value itera-
tion (Mann and Mannor 2014) and sample efficiency (Brun-
skill and Li 2014), though also hardness results reflecting
that the augmented MDP is not necessarily more efficient to
solve (Zahavy et al. 2020) and hardness results around dis-
covering options efficient for planning (Jinnai et al. 2019).
Empirically, incorporating options into planning has largely
only been tested in tabular settings (Sutton, Precup, and
Singh 1999; Singh, Barto, and Chentanez 2004; Wan, Naik,
and Sutton 2021). Recent work has considered mechanism
for identifying and learning option policies for planning un-
der function approximation (Sutton et al. 2022), but as yet
did not consider issues with learning the models.

There has been some work using options for planning that
is more similar to GSP, using only one-level of abstraction
and restricting planning to the abstract MDP. Hauskrecht
et al. (2013) proposed to plan only in the abstract MDP with
macro-actions (options) and abstract states corresponding to

the boundaries of the regions spanned by the options, which
is like restricting abstract states to subgoals. The most sim-
ilar to our work is LAVI, which restricts value iteration to a
small subset of landmark states (Mann, Mannor, and Precup
2015).2 These methods also have similar flavors to using a
hierarchy of MDPs, in that they focus planning in a smaller
space and (mostly) avoid planning at the lowest level, ob-
taining significant computational speed-ups. The key dis-
tinction to GSP is that we are not in the traditional plan-
ning setting where a model is given; in our online setting,
the agent needs to learn the model from interaction.

The use of landmark states has also been explored in goal-
conditioned RL, where the agent is given a desired goal state
or states. This is a problem setting where the aim is to learn
a policy π(a|s, g) that can be conditioned on different pos-
sible goals. The agent learns for a given set of goals, with
the assumption that at the start of each episode the goal state
is explicitly given to the agent. After this training phase, the
policy should generalize to previously unseen goals. Natu-
rally, this idea has particularly been applied to navigation,
having the agent learn to navigate to different states (goals)
in the environment. The first work to exploit the idea of land-
mark states in GCRL was for learning and using universal
value function approximators (UVFAs) (Huang, Liu, and Su
2019). The UVFA conditions action-values on both state-
action pairs as well as landmark states. The agent can reach
new goals by searching on a learned graph between land-
mark states, to identify which landmark to moves towards.
A flurry of work followed, still in the goal-conditioned set-
ting (Nasiriany et al. 2019; Emmons et al. 2020; Zhang et al.
2020; Zhang, Yang, and Stadie 2021; Aubret, Matignon, and
Hassas 2021; Hoang et al. 2021; Gieselmann and Pokorny
2021; Kim, Seo, and Shin 2021; Dubey et al. 2021).

Some of this work focused on exploiting landmark states
for planning in GCRL. Huang, Liu, and Su (2019) used land-
mark states as interim subgoals, with a graph-based search
to plan between these subgoals (Huang, Liu, and Su 2019).
The policy is set to reach the nearest goal (using action-
values with cost-to-goal rewards of -1 per step) and learned
distance functions between states and goals and between
goals. These models are like our reward and discount mod-
els, but tailored to navigation and distances. Nasiriany et al.
(2019) built on this idea, introducing an algorithm called La-
tent Embeddings for Abstracted Planning (LEAP), that us-
ing gradient descent to search for a sequence of subgoals in
a latent space.

The idea of learning models that immediately apply to
new subtasks using successor features is like GCRL, but
does not explicitly use landmark states. The option key-
board involves encoding options (or policies) as vectors that
describe the corresponding (pseudo) reward (Barreto et al.
2019). This work has been expanded more recently, using

2A similar idea to landmark states has been considered in more
classical AI approaches, under the term bi-level planning (Wolfe,
Marthi, and Russell 2010; Hogg, Kuter, and Muñoz-Avila 2010;
Chitnis et al. 2022). These techniques are quite different from
Dyna-style planning—updating values with (stochastic) dynamic
programming updates—and so we do not consider them further
here.



successor features (Barreto et al. 2020). New policies can
then be easily obtained for new reward functions, by lin-
early combining the (basis) vectors for the already learned
options. However no planning is involved in that work, be-
yond a one-step decision-time choice amongst options.

6 Conclusion
In this paper we analysed a new planning framework, called
Goal-Space Planning (GSP). GSP provides a new approach
to use background planning to improve value propagation,
with minimalist, local models and computationally efficient
planning. We showed that these subgoal-conditioned mod-
els can be accurately learned using standard value estima-
tion algorithms, and can be used to quickly propagate value
through state spaces of varying sizes. We find a consequent
learning speed-up on base learners with different types of
value function approximation.

This work studies a new formalism, and many new tech-
nical questions along with it. We have tested GSP with pre-
trained models and assumed a given set of subgoals. A crit-
ical open question is subgoal discovery. For this work, we
relied on hand-chosen subgoals, but in general the agent
should discover its own subgoals. In general, though, option
and subgoal discovery remain open questions. One utility of
this work is that it could help narrow the scope of the discov-
ery question, to that of finding abstract subgoals that help a
learner plan more efficiently.
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A Environments
PinBall is a continuous state domain where the
agent navigates a ball through a set of obstacles to
reach the main goal. The environment uses a four-
dimensional state representation of positions and velocities,
(x, y, ẋ, ẏ) ∈ [0, 1] × [0, 1] × [−2, 2] × [−2, 2]. The
agent chooses from one of five actions at each timestep.
A = {up,down,left,right,nothing}, where the
nothing action adds no change to the ball’s velocity, and
the other actions each add an impulse force in one of the
four cardinal directions. All collisions are elastic and we
use a drag coefficient of 0.995. This is an episodic task with
a fixed starting state and main goal. An episode ends when
the agent reaches the main goal or after 1,000 time steps.

Figure 8: The FourRooms domain. The blue square is the
initial state, green square the goal state, and red boxes the
subgoals. A subgoal’s initiation set contains the states in any
room connected to that subgoal.

Figure 9: Obstacles and subgoals for GridBall and PinBall.
The larger circles show the initiation set boundaries. Sub-
goals are defined in position space.

B Learning the Option Policies
In the simplest case, it is enough to learn πg that
makes rγ(s, g) maximal for every relevant s (i.e., ∀ s ∈
S s.t. d(s, g) > 0). For each subgoal g, we learn its cor-
responding option model πg by initialising the base learner
in the initiation set of g, and terminating the episode once
the learner is in a state that is a member of g. We used a re-
ward of -1 per step and save the option policy once we reach
a 90% success rate, and the last 100 episodes are within
some domain-dependent cut off. This cut off was 10 steps
for FourRooms, and 50 steps for GridBall and PinBall.

Hyperparameters In FourRooms, we use Sarsa(0) and
Sarsa(0.9) base learners with learning rate α = 0.01, dis-
count factor γc = 0.99 and an ϵ = 0.02 for its ϵ-greedy
policy. In GridBall, we used Sarsa(0) and Sarsa(0.9) base
learners with α = 0.05, γc = 0.99 and ϵ = 0.1. ϵ is decayed
by 0.5% each timestep. In the linear function approxima-
tion setting, these learners use a tilecoder with 16 tiles and
4 tilings across each of the both the GridBall dimensions.
In PinBall, the Sarsa(0.9) learner was tuned to α = 0.1,
γc = 0.99, ϵ = 0.1, decayed in the same manner as in Grid-
Ball. The same tile coder was used on on the 4-dimensional
state space of PinBall. For the DDQN base learner, we use
α = 0.004, γc = 0.99, ϵ = 0.1, a buffer that holds up to
10, 000 transitions a batch size of 32, and a target refresh
rate of every 100 steps. The Q-Network weights used Kaim-
ing initialisation (He et al. 2015).

We could have also learned the action-value vari-



Figure 10: Evaluation of PinBall option policies by average trajectory length. Policies were saved once they were able to reach
their respective subgoal in under 50 steps, averaged across 100 trajectories. Subgoal 2 was the hardest to learn an option policy
for, due to its proximity to obstacles.

ant rγ(s, a, g) using a Sarsa update, and set πg(s) =
argmaxa∈A rγ(s, a, g), where we overloaded the definition
of rγ . We can then extract rγ(s, g) = maxa∈A rγ(s, a, g),
to use in all the above updates and in planning. In our exper-
iments, this strategy is sufficient for learning πg .

C Learning the Subgoal Models
In our experiments, the data is generated offline according
to each πg . We then use this episode dataset from each πg

to learn the subgoal models for that subgoal g. This is done
by ordinary least squares regression to fit a linear model in
four-room, and by stochastic gradient descent with neural
network models in GridBall and PinBall.

We first collect a dataset of n episodes leading to a
subgoal g, Dg = {⟨Si,1, Ai,1, Ri,1, Si,1, . . . , Si,Ti

⟩}ni=1.
Si,t, Ai,t, Ri,t represent the state, action and reward at
timestep t of episode i. Ti is the length of episode i. Si,0 is
a randomised starting state within the initiation set of g, and
Si,Ti is a state that is a member of subgoal g. For each g, we
useDg to generate a matrix of all visited states, X ∈ Rl×|S|,
and a vector of all reward model returns, gr ∈ Rl, and tran-
sition model returns gγ ∈ Rl,

X =


Si,1

Si,2

...
Sn,Tn

 ,gr =


Ri,2 + γrγ(Si,3, g)
Ri,3 + γrγ(Si,4, g)

...
Rn,Tn

 ,

gγ =


γT1−0

γT1−1

...
γTn−Tn

 ,

where l =
∑n

i=1 Ti is the total number of visited states in
Dg .

This creates a system of linear equations, whose weights
we can solve for numerically in the four-room domain,

Xθr = gr =⇒ θr = X+gr,

XθΓ = gγ =⇒ θΓ = X+gγ ,

where θr,θΓ ∈ R|S| and X+ is the Moore-Penrose pseu-
doinverse of X (Penrose 1955).

For GridBall and PinBall, we used fully connected artifi-
cial neural networks for rγ and Γ, and performed mini-batch
stochastic gradient descent to solve θr and θΓ for that sub-
goal g. We use each mini-batch of m states, reward model
returns and transition model returns to perform the update:

θr ← θr − ηr

m∑
j=1

∇θr (θr⊤Xj,: − gr,j)
2,

θΓ ← θΓ − ηΓ

m∑
j=1

∇θΓ(θΓ⊤
Xj,: − gγ,j)

2,

where ηr and ηΓ are the learning rates for the reward and dis-
count models respectively. Xj,: is the jth row of X. gr,j and
gγ,j are the jth entry of gr and gγ respectively. In our ex-
periments, we had a fully connected artificial neural network
with two hidden layers of 128 units and ReLU activation for
each subgoal. The network took a state s = (x, y, ẋ, ẏ) as
input and outputted both rγ(s, g) and Γ(s, g). All weights
were initialised using Kaiming initialisation (He et al. 2015).
We use the Adam optimizer with η = 0.001 and the other
parameters set to the default (b1 = 0.9, b2 = 0.999, ϵ =
10−8), mini-batches of 1024 transitions and 100 epochs.



rγ(s, g1) and Γ(s, g1)

rγ(s, g2) and Γ(s, g2)

rγ(s, g3) and Γ(s, g3)

rγ(s, g4) and Γ(s, g4)

Figure 11: State-to-Subgoal models learnt by neural models
after 100 epochs.

D Pseudocode

Algorithm 2: MainPolicyUpdate(s, a, r, s′, γ, a′)

// For a Sarsa(λ) base learner
vg⋆ ← maxg∈Ḡ:d(s,g)>0 rγ(s, g;θ) + Γ(s, g;θ)ṽ(g)

δ ← r + γvg⋆(s′)− vg⋆(s) + γq(s′, a′;w)− q(s, a;w)
w← w + αδz∇wq(s, a;w)
z← γλz+∇wq(s, a;w)

Algorithm 3: Planning()

for n iterations, for each g ∈ G do
ṽ(g)← max

g′∈Ḡ:d(g,g′)>0
r̃γ(g, g

′; θ̃
r
) + Γ̃(g, g′; θ̃

Γ
)ṽ(g′)

end for

Algorithm 4: ModelUpdate(s, a, r, s′, γ)

Add new transition (s, a, s′, r, γ) to buffer B
for g′ ∈ Ḡ, for multiple transitions (s, a, r, s′, γ) sampled
from B do
γg′ ← γ(1−m(s′, g′))
// Update option policy - e.g. by Sarsa
a′ ← πg′(s′;θπ)
δπ ← 1

2 (r − 1) + γg′ q̃(s′, a′, g′;θπ)− q̃(s, a, g′;θπ)
θπ ← θπ + απδπ∇θπq(s, a, g′;θπ)
// Update reward model and discount model
δr ← r + γg′rγ(s

′, a′, g′;θr)− rγ(s, a, g
′;θr)

δΓ ← m(s′, g)γ + γg′Γ(s′, a′, g′;θΓ)−Γ(s, a, g′;θΓ)
θr ← θr + αrδr∇θrrγ(s, a, g

′;θr)

θΓ ← θΓ + αΓδΓ∇θΓΓ(s, a, g′;θΓ)
// Update goal-to-goal models using state-to-goal mod-
els
for each g such that m(s, g) > 0 do
θ̃
r

← θ̃
r

+ α̃r(rγ(s, g
′;θ) −

r̃γ(g, g
′; θ̃

r
))∇θr r̃γ(g, g

′; θ̃
r
)

θ̃
Γ

← θ̃
Γ

+ α̃Γ(Γ(s, g′;θ) −
Γ̃(g, g′; θ̃

r
))∇θΓ Γ̃(g, g′; θ̃

Γ
)

end for
end for

It is simple to extend the above pseudocode for the main
policy update and the option policy update to use Double
DQN (van Hasselt, Guez, and Silver 2016) updates with
neural networks. The changes from the above pseudocode
are 1) the use of a target network to stabilize learning with
neural networks, 2) changing the one-step bootstrap target
to the DDQN equivalent, 3) adding a replay buffer for learn-
ing the main policy, and 4) changing the update from using
a single sample to using a batch update. Because the number
of subgoals is discrete, the equations for learning θ̃

r
and θ̃

Γ

does not change. We previously summarized these changes
for learning the main policy in Algorithm 5 and now detail
the subgoal model learning in Algorithm 6.



Algorithm 5: GSP (built on DDQN)

Initialize base learner parameters w,wtarg = w0, set of
subgoals G, relevance function d
Sample initial state s0 from the environment
for t ∈ 0, 1, 2, ... do

Take action at using q (e.g., ϵ-greedy),
Observe st+1, rt+1, γt+1

Add (st, at, st+1, rt+1, γt+1) to replay buffer D
DDQNModelUpdate() (see Algorithm 6)
Planning() (see Algorithm 3)
for n mini-batches do

Sample batch B = {(s, a, r, s′, γ)} from D
if d(s, ·), d(s′, ·) > 0 then
vg⋆(s) = max

g∈Ḡ:d(s,g)>0
rγ(s, g) + Γ(s, g)ṽ(g)

vg⋆(s′) = max
g∈Ḡ:d(s′,g)>0

rγ(s
′, g) + Γ(s′, g)ṽ(g)

r̃ = r + γvg⋆(s′)− vg⋆(s)
else

r̃ = r
end if
Y = r̃ + γq(s′, argmaxa′ q(s′, a′;w);wtarg)
L = 1

|B|
∑

(s,a,r,s′,γ)∈B

(Y (s, a, r, s′, γ)− q(s, a;w))2

w← w − α∇wL
if nupdates%τ == 0 then

wtarg ← w
end if
nupdates = nupdates + 1

end for
end for

Algorithm 6: DDQNModelUpdate(s, a, r, s′, γ)

Add new transition (s, a, s′, r, γ) to buffer Dmodel

for g′ ∈ Ḡ do
for nmodel mini-batches do

Sample batch Bmodel = {(s, a, r, s′, γ)} from
Dmodel

γg′ ← γ(1−m(s′, g′))
// Update option policy
a′ ← argmaxa′∈A q̃(s′, a′, g′;θπ)
δπ(s, a, s′, r, γ)← 1

2 (r−1)+γg′ q̃(s′, a′, g′;θπ
targ)−

q(s, a, g′;θπ)
θπ ← θπ−απ∇θπ

1
|Bmodel|

∑
(s,a,r,s′,γ)∈Bmodel

(δπ)2

θπ
targ ← ρmodelθ

π + (1− ρmodel)θ
π
targ

// Update reward model and discount model
δr ← r + γg′(γ, s′)rγ(s

′, a′, g′;θr
targ) −

rγ(s, a, g
′;θr)

δΓ ← m(s′, g)γ + γg′(γ, s′)Γ(s′, a′, g′;θΓ
targ) −

Γ(s, a, g′;θΓ)
θr ← θr − αr∇θr

1
|Bmodel|

∑
(s,a,r,s′,γ)∈B

(δr)2

θΓ ← θΓ − αΓ∇θΓ
1

|Bmodel|
∑

(s,a,r,s′,γ)∈B

(δΓ)2

if nupdates%τ == 0 then
θr

targ ← θr

θΓ
targ ← θΓ

end if
nupdates = nupdates + 1

end for
// Update goal-to-goal models using state-to-goal mod-
els
. . . same as in prior pseudocode.

end for


