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Abstract

Minecraft is a sandbox game that offers a rich and complex
environment for AI research. Its design allows for defining
diverse tasks and challenges for AI agents, such as gather-
ing resources and crafting items. Previous works have applied
both Reinforcement Learning (RL) and Automated Planning
methods to accomplish different tasks in Minecraft. RL meth-
ods usually require a large number of interactions with the
environment, while planning methods require a model of
the domain to be available. Creating planning domain mod-
els for Minecraft tasks is arduous. Algorithms for learn-
ing a planning domain model from observations exist, yet
they have mostly been used on planning benchmarks. In
this work, we explore the use of such algorithms for solv-
ing Minecraft tasks. We propose an agent that learns do-
main models from observations—either generated by an ex-
pert or collected online—and uses them with an off-the-
shelf domain-independent planner. As a case study, we ex-
plore how such an agent can be used for the task of crafting
a wooden pogo stick. Experimental results demonstrate the
benefit of domain model learning and planning over standard
RL-based methods.

Introduction
Minecraft is a widely popular sandbox game that offers a
rich and complex environment for AI research. Its design al-
lows for defining different tasks for Artificial Intelligence
(AI) agents to perform, such as gathering resources and
crafting items. Building AI agents that can play Minecraft
and accomplish such tasks has been acknowledged as a ma-
jor AI challenge and has received significant interest in the
academic community. This includes an annual competition
in NeurIPS (Guss et al. 2019a) and a dedicated game mod
and framework for evaluating AI agents (Goss et al. 2023).

The state-of-the-art approach to building AI agents for
solving Minecraft tasks is by applying RL methods (Tessler
et al. 2017; Frazier and Riedl 2019; Scheller, Schraner,
and Vogel 2020). When using these methods, the AI agent
learns to make decisions by interacting with an environ-
ment and receiving feedback through states and rewards (or
penalties). Utilizing RL methods comes with its drawbacks.
The learning phase demands substantial computational re-
sources, prolonged training periods, and extensive interac-
tions with the environment. The latter downside becomes
particularly pronounced when developing agents for video

games, such as Minecraft, in which environment interaction
is computationally expensive and often intentionally slowed
down to accommodate human gameplay.

Automated planning methods have also been used to build
AI agents for Minecraft (Roberts et al. 2017; Wichlacz,
Torralba, and Hoffmann 2019) and video games in gen-
eral (Duarte et al. 2020; Bartheye and Jacopin 2009). One of
the advantages of using planning is that it does not require
interacting with the environment to decide which actions to
perform to achieve desired goals. Additionally, due to the
symbolic nature of most planning algorithms, the result-
ing plans for the planning tasks are more explainable than
the policies generated by RL agents (Hoffmann and Maga-
zzeni 2019). A significant limitation of automated planning
lies in its dependency on a domain model. Modeling a do-
main can be very difficult, even for human experts. Prior
work proposed automated methods for learning from ob-
servations state representations (Konidaris, Kaelbling, and
Lozano-Perez 2018) and action models (Juba, Le, and Stern
2021; Wang 1994; Aineto, Celorrio, and Onaindia 2019).
While action model learning methods have shown some
promise, their application beyond standard automated plan-
ning benchmarks remains limited.

This work explores how automated planning can be
used to build a Minecraft-playing agent, eliminating the
need for a human modeler to manually provide an ac-
tion model. Specifically, we propose a Minecraft-playing
agent called PDDL-agent, which uses Numeric Safe Ac-
tion Model Learning (N-SAM) (Mordoch, Juba, and Stern
2023), a state-of-the-art action model learning algorithm, to
learn an action model from observations. Our PDDL-agent
passes the learned domain model to an off-the-shelf domain-
independent numeric planner, namely Metric-FF (Hoffmann
2003), to select which actions it should perform. Our PDDL-
agent is designed to work in two settings: offline and on-
line. In the offline setting, it receives observations of an ex-
pert acting in the domain, and then it has to generate a plan
to perform some Minecraft task. In the online setting, the
agent is not given any observations a priori and must de-
termine how to interact with the environment to acquire the
necessary knowledge for solving the desired Minecraft task.
We propose a novel hybrid strategy that integrates RL and
automated planning algorithms. In this hybrid strategy, the
agent first attempts to construct a plan based on its current



learned action model. If successful, it executes the generated
plan in the environment. If generating a plan proves infeasi-
ble under the current action model, an RL algorithm is em-
ployed to engage with the environment. This combination of
RL and planning yields mutual benefits. Planning leverages
RL as a methodological means to explore the environment
and gather observations, achieving a balance between explo-
ration and goal-oriented exploitation. Simultaneously, RL is
trained using the trajectories executed via the plan, thereby
enhancing its problem-solving capabilities.

We evaluated our PDDL-agent in Polycraft, a symbolic
wrapper to Minecraft, for the task of crafting a wooden
pogo stick. Compare its performance with appropriate RL-
based agents. We considered two symbolic representations
of the domain and evaluated our agents in both the offline
and online settings. In the offline setting, our PDDL-agent
dominates the RL baselines in most cases and demonstrates
impressive zero-shot transfer capabilities. In the online set-
ting, our hybrid strategy successfully harnesses action mod-
els learning and planning even when expert trajectories are
not provided, outperforming PPO, a well-established RL al-
gorithm.

Background and Related Work
Planning problems in domains where action outcomes are
deterministic, states are fully observable, and the states are
described with discrete and continuous state variables, can
be defined using a subset of the Planning Domain Definition
Language (PDDL) (Aeronautiques et al. 1998).1 In PDDL, a
planning domain is defined by a tuple D = ⟨F,X,A⟩ where
F is a finite set of Boolean variables, X is a set of numeric
variables, and A is a set of actions. A state is an assignment
of values to all variables in F ∪ X . Every action a ∈ A is
defined by a tuple ⟨name(a), pre(a), eff(a)⟩ representing the
action’s name, preconditions, and effects, respectively. Pre-
conditions are assignments over the Boolean variables and
conditions over the numeric variables, specifying when the
action can be applied. The effects of action are a set of as-
signments over F and X , representing how the state changes
after applying a. The set of actions with their definitions is
referred to as the action model of the domain. A planning
problem in PDDL is defined by ⟨D, s0, G⟩ where D is a do-
main, s0 is the initial state, and G are the problem goals. The
problem goals G are assignments of values to a subset of the
Boolean variables and a set of conditions over the numeric
variables. A solution to a planning problem is a plan, i.e., a
sequence of actions applicable in s0 and resulting in a state
sG in which G is satisfied.

Algorithms for learning action models from observa-
tions vary in the assumptions they make on the available
observations and the guarantees they provide on the ac-
tion model they return (Cresswell, McCluskey, and West
2013; Amir and Chang 2008; Yang, Wu, and Jiang 2007;
Aineto, Celorrio, and Onaindia 2019; Juba, Le, and Stern
2021). For example, FAMA (Aineto, Celorrio, and Onaindia
2019) can handle missing observations while SAM Learn-

1Since our problem includes discrete and continuous state vari-
ables, we require PDDL2.1 (Fox and Long 2003).

ing (Stern and Juba 2017; Juba, Le, and Stern 2021) cannot.
LOCM (Cresswell, McCluskey, and West 2013) can even
learn an action model only from observed sequences of ac-
tions. On the other hand, FAMA and LOCM only guaran-
tee that the learned action model is consistent with the given
observations, while SAM Learning guarantees any plan gen-
erated with the learned action model is valid w.r.t. the real,
unknown, action model. PlanMiner (Segura-Muros, Pérez,
and Fernández-Olivares 2021) and the Numeric Safe Ac-
tion Model Learning (N-SAM) algorithms (Mordoch, Juba,
and Stern 2023) are, to the best of our knowledge, the only
algorithms capable of learning action models that include
numeric preconditions and effects. N-SAM possesses several
appealing properties. First, it runs in polynomial time w.r.t.
the input data. Second, it guarantees that every plan gener-
ated with it is valid w.r.t. the real, unknown, domain model.
The PDDL agent described in this work relies on N-SAM.2

Reinforcement Learning Algorithms
RL is a field of AI in which agents learn to make decisions
by interacting with an environment and receiving feedback
in the form of rewards (or penalties). In this work, we focus
on two key RL algorithms, Deep Q-Network (DQN) (Mnih
et al. 2015) and Proximal Policy Optimization (PPO) (Schul-
man et al. 2017) These algorithms hold a prominent sta-
tus within the RL community. DQN is an off-policy RL al-
gorithm implementation of Q-Learning (Watkins 1989) that
uses deep neural networks to solve problems in large state
spaces. PPO is an on-policy RL algorithm that alternates
between sampling data through interaction with the envi-
ronment and optimizing a “surrogate” objective function us-
ing stochastic gradient descent. Notably, PPO often outper-
forms alternative RL algorithms across various domains and
is renowned for its robust performance even in the absence
of extensive hyperparameter tuning. An interesting distinc-
tion lies in the fact that off-policy algorithms, such as DQN,
can learn from a given set of observations (comprising state,
action, next state, and reward), while on-policy algorithms,
like PPO, rely on directly utilizing data collected during in-
teraction with the environment to update their policy.

Imitation Learning (IL) (Pomerleau 1991) is a related AI
field where an AI agent is trained to “mimic human behavior
in a given task” (Hussein et al. 2017). Two IL algorithms we
discuss in this work are Behavioral Cloning (BC) (Bratko,
Urbančič, and Sammut 1995) and Generative Adversarial
Imitation Learning (GAIL) (Ho and Ermon 2016). BC em-
ploys supervised learning to mimic the expert’s policy, while
GAIL takes a unique adversarial approach by simultaneously
training a policy and a discriminator. The discriminator’s
role is to distinguish between expert observations and those
generated by the learned policy. Offline RL (Kumar et al.
2020) is similar to IL except that the given trajectories en-
compass not only the states and actions but also the rewards
associated with each transition. Offline RL algorithms aim
not to mimic these trajectories but to learn from them how
to maximize future rewards. Consequently, off-policy algo-

2Technically speaking, our PDDL agent uses N-SAM∗ (Mor-
doch et al. 2023), a recently proposed advanced version of N-SAM.



rithms, such as DQN, can also serve as an offline RL algo-
rithm.

Minecraft Environments
MineRL (Guss et al. 2019b) serves as an OpenAI-
Gym (Brockman et al. 2016) compatible research environ-
ment, providing a Minecraft-based platform for the devel-
opment, testing, and evaluation of RL algorithms. However,
it is not suitable for our work as we do not consider a vi-
sual, pixel-based representation of the game. Instead, we use
Polycraft (Palucka 2017), an interface to Minecraft that is
part of the Polycraft World AI Lab(PAL) (Goss et al. 2023)3.
PAL allows AI agents to easily interact with Minecraft’s en-
vironment by sending commands to the API and waiting for
a response. Each command has pre-defined preconditions,
effects, and costs. This mechanism enables RL algorithms
to use the API to train their agents and easily solve vari-
ous tasks. Unlike MineRL, PAL supports symbolic observa-
tions, ideal for planning algorithms, which require a sym-
bolic model of the environment to solve problems.

AI Agents for Minecraft
Planning and RL have been used to design AI agents for
Minecraft. Wichlacz et al. (2019) used PDDL modeling to
solve complex construction tasks in Minecraft. They mod-
eled house-construction tasks as classical and as Hierarchi-
cal Task Network (HTN) (Georgievski and Aiello 2015)
planning problems. They observed that even simple tasks
present difficulties to current planners as the size of the
world increases. The HTN planner scaled well when the size
of the world increased but was too coupled with the specific
task. Learning HTN domains from observations is an open
problem.

The most widely adopted method for playing Minecraft
is the Hierarchical Deep Reinforcement Learning Network
(H-DRLN) (Tessler et al. 2017). This approach enables the
agent to continuously learn multiple policies and adapt to
new challenges within the game. The H-DRLN leverages a
deep neural network to model the policy and value functions,
resulting in high effectiveness across a variety of Minecraft
tasks such as navigation, mining, and combat. Despite its
success, this approach requires intensive training time and a
less restrictive environment for it to be successful. Thus, it
is less suitable for our context.

Problem Definition
Minecraft is an open-world game without an explicit goal.
In this work, we take as a case study the Craft Wooden Pogo
task, as defined in the PAL Minecraft environment. (Goss
et al. 2023). In this task, the Minecraft agent, colloquially
called Steve, is located in a field comprising N ×N blocks
and surrounded by unbreakable bedrock walls. The field in-
cludes multiple trees and a crafting table. Steve is tasked
with crafting a pogo stick, which requires performing the
following actions (illustrated in Figure 1):

1. Harvest at least three wood blocks from trees.
3https://github.com/PolycraftWorld/PAL

Figure 1: A plan to accomplish the Craft Wooden Pogo task.

2. Use the wood to craft planks.
3. Use planks to craft sticks.
4. Use some of the sticks and planks to craft a tree tap
5. Place a tree tap near a tree to collect polyisoprene sacks.
6. Use the remaining sticks, planks, and polyisoprene sacks

to craft a wooden Pogo stick.

The original task in PAL was predefined with a fixed map
size and predetermined positions for the trees, the crafting
table, and the agent. Moreover, the agent always starts with
an empty inventory. To introduce variability across problem
instances, we developed a problem generator that generates
initial states in which it randomly assigns: (1) the agent’s
starting position on the map, (2) the quantity and placement
of trees, (3) the items present in the agent’s inventory, and
(4) the crafting table’s position. Thus, different sequences of
actions are needed to solve different problem instances.

We consider the problem of accomplishing the Craft
Wooden Pogo task in two settings: offline with expert
demonstrations and online.

Offline Learning from Expert Demonstrations. In this
setting, our agent is given a set of trajectories created by
observing an expert solve the Craft Wooden Pogo task, i.e.,
successfully craft the wooden pogo stick. The agent objec-
tive in this setting is to use the set of expert trajectories and
output a plan or a policy specifying how to act in order to
accomplish the Craft Wooden Pogo task. Both learning and
planning in this setting are done offline, that is, after pro-
cessing the expert trajectories and outputting a plan or a pol-
icy, the agent executes the actions in the plan or the policy
until either the task is accomplished or not. Thus, this set-
ting corresponds to the Offline RL setting (Sutton and Barto
2018) and IL (Bratko, Urbančič, and Sammut 1995). The
main measure we consider in this setting is success rate for a
given number of expert trajectories, i.e., the number of game
episodes our agent can solve after it is given these expert tra-
jectories.

Online Learning. In this setting, the agent must perform
actions in the environment to explore it, and no expert tra-
jectories are given. Specifically, the agent interacts with the
environment in a sequence of episodes. Every episode starts
from some initial state of the environment and ends either
when the agent successfully crafts the wooden pogo stick
or when the agent executes more actions than a predeter-
mined number of actions. Note that, unlike the offline set-
ting, here planning and learning must be interleaved. In each
episode, the agent undertakes the task of planning which



actions to execute and subsequently engages in the learn-
ing process to enhance performance based on the outcomes
of those actions. This configuration aligns with the conven-
tional RL setting. The primary metric of interest in this con-
text is the cumulative reward, quantified by tallying the num-
ber of episodes in which the agent successfully completes
the task. Additionally, we are interested in gauging the time
to convergence, denoted by the number of steps it takes for
the agent to solve newly presented problem instances.

Solving the Craft Wooden Pogo Task
For each of the problem settings, i.e., offline and online, we
propose two approaches: one based on RL techniques and
the other on domain model learning and planning.

Offline Learning from Expert Observations
For the RL-based approach, this setting can be viewed as ei-
ther an Offline RL (Kumar et al. 2020) or IL (Bratko, Ur-
bančič, and Sammut 1995). Thus, either DQN, BC, or GAIL
may be used as is.

For the planning-based approach, we propose providing
the expert observations as input trajectories to N-SAM, which
outputs a PDDL domain model of the environment. This
PDDL domain is used as input to an off-the-shelf domain-
independent numeric planner, that solves the resulting plan-
ning problem and outputs a plan for crafting the wooden
pogo task. If the planner cannot solve the resulting problem,
failure is declared. While any domain-independent numeric
planner can be used to solve the resulting planning prob-
lem, we used Metric-FF (Hoffmann 2003), a state-of-the-art
numeric planner. The agent derived from this approach is
henceforth referred to as the PDDL-agent. We consider two
types of PDDL-agents. The first does not know which vari-
ables are relevant to each action. The second is given this
additional information, i.e., it knows which variables are in-
volved in each action’s preconditions and effects. We refer to
this agent as PDDL-agent with Relevant Variables (PDDL-
agent RV). Note that PDDL-agent RV does not know the ac-
tions’ preconditions and effects; it only knows the variables
they refer to.

Online Learning
This setting adheres to the classical RL setting: an agent en-
gages in actions within the environment, receives observa-
tions, and adapts its behavior over time. Thus, we used stan-
dard RL techniques, namely DQN and PPO. To leverage the
deterministic nature of the domain, we used PPO with action
masking (Tang et al. 2020) instead of regular PPO. This ver-
sion of PPO prevents executing actions that were previously
attempted in the current state and deemed inapplicable.

Our planning-based approach tailored for the offline case
lacks direct applicability to the online setting due to the ab-
sence of a mechanism for collecting trajectories, essential
in this context. To address this, we introduce a novel hybrid
strategy that integrates planning and RL, as follows. At the
beginning of each episode, we deploy N-SAM to construct an
action model based on all previously gathered trajectories.
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Figure 2: Modeling environment interaction.

Then, we use a planner (we used Metric-FF) with the gener-
ated action model to try to find a plan for the current episode.
If successful, the agent executes the plan. Otherwise, an RL
algorithm (we used PPO) is used to choose actions through-
out the episode. This integration establishes a symbiotic re-
lationship between RL and planning, fostering dynamic in-
teraction and mutual benefits. RL acts as a methodological
tool to solve problems and gather information when plan-
ning fails, leveraging its inherent ability to balance explo-
ration and exploitation. This balance serves two purposes:
attempting to directly solve the problem and collecting goal-
oriented observations for action model learning, enhancing
problem-solving efficiency.

Simultaneously, RL benefits from this partnership by us-
ing plan-executed trajectories as a training ground. These
trajectories guarantee problem-solving success, providing
higher-quality data that improves sample efficiency and sta-
bilizes the learning process (Sutton and Barto 2018). This
holistic approach allows for efficient adaptation of auto-
mated planning to online learning, potentially surpassing
standard RL techniques.

It is worth noting that in the online setting, the agent may
execute actions in states where they are not applicable. For
instance, the agent might try to break a tree when it is not in
proximity to a tree block. N-SAM is geared towards learning
only from successfully executed actions and ignores such
transitions. Future work can extend N-SAM to exploit this
information as well.

Modeling the Craft Wooden Pogo Task
Efficient modeling and knowledge representation are key to
solving hard learning and planning tasks. This work explores
two alternative approaches to model the Craft Wooden Pogo
task. Each model incorporates translation mechanisms that
convert Minecraft states and actions into both PDDL 2.1,
utilized by the planner, and an AI gym environment (Brock-
man et al. 2016), employed by the RL agents. The interac-



tion between the agent and the environment is depicted in
Figure 2.

Item Counts Model
We first propose a modeling of the Craft Wooden Pogo that
ignores the locations of items on the grid map, i.e., the agent
observes the number of trees available as well as the quanti-
ties of the other ingredients in the inventory. We refer to this
modeling approach as Item Counts. Item Counts is a simpli-
fication of the original task since the agent is not required to
explore the map and locate the trees. This allows us to define
higher level macro actions for the agent to choose from and
correspondingly define a more compact state representation.
Macro actions allow agents to optimize their gameplay and
reduce the amount of time spent on repetitive tasks. It al-
lows the agent to make more strategic decisions and react
quickly to changing circumstances. OpenAI’s use of macro
actions in Starcraft (2019) is an excellent example of how
this approach can lead to more competitive and engaging
gameplay.

In our context, we define the following macro actions that
encapsulate multiple lower-level PAL actions:

1. GET LOG - executes teleportation to a tree, breaking it,
collecting the logs, and adding them to the inventory.

2. CRAFT PLANK - craft planks from the logs in the in-
ventory.

3. CRAFT STICK - craft sticks from the planks in the in-
ventory.

4. CRAFT TREE TAP - teleport to the crafting table,
craft one tree tap, and add it to the inventory.

5. PLACE TREE TAP - teleport to a tree, move left, place
the tree tap on it, collect the sack of polyisoprene, and
add it to the inventory.

6. CRAFT WOODEN POGO - teleport to the crafting ta-
ble, craft a wooden Pogo stick and add it to the inventory.

In this model, none of the actions require any parameters.
Thus, the overall branching factor is 6. A state in this model
includes the number of trees in the map, as well as the num-
ber of items of each type in the agent’s inventory, a total of 7
state variables. Within the gym environment framework, the
agent is rewarded with a score of 1 upon successful comple-
tion of the task, and it receives a reward of 0 otherwise.

All Blocks Model
In the second modeling approach, the agent receives the map
data as input, as well as the number of items it is currently
holding in the inventory.

The actions the agent can perform in the All Blocks mod-
eling approach:

1. TP TO - teleport from the current location to another cell
on the map.

2. BREAK- breaks a tree to extract and add the logs to the
inventory.

3. CRAFT PLANK - craft planks from the logs in the in-
ventory.

4. CRAFT STICK - craft sticks from the planks in the in-
ventory.

5. CRAFT TREE TAP - teleport to the crafting table,
craft one tree tap, and add it to the inventory.

6. PLACE TREE TAP - when in front of a tree, move left,
place the tree tap on it, collect the polyisoprene sack, and
add it to the inventory.

7. CRAFT WOODEN POGO - teleport to the crafting ta-
ble, craft a wooden pogo stick, and add it to the inventory.

These settings present a difficulty for the agents since the
action spaces can be very large. In PDDL, the TP action
involves two parameters: the current position of the agent
and its target position. Similarly, actions such as break, place
tree tap, craft tree tap, and craft pogo, also require the cur-
rent position of the agent. Consequently, the total number of
grounded actions in PDDL is N4 + 4N2 + 2, where N rep-
resents the width and height of the map. On the other hand,
in the gym environment, the current location of the agent is
not a requisite parameter, resulting in a total number of ac-
tions equal to N2 + 6. The state in each model, illustrated
in Figure 3, encompasses the entire map, detailing the cell
type at each location, along with the agent’s inventory and
position. Additionally, in the gym environment, there’s an
explicit specification of the cell type directly in front of the
agent. This inclusion is designed to assist the RL algorithms.
Finally, similar to the Item Counts model, the agent receives
a reward of 1 if and only if it successfully completes the task.

Figure 3: State representation of the All Blocks model:
PDDL (left), RL (right).

Experimental Results
In this section, we describe an experimental evaluation of
our approach. For each experiment, we created 1000 tasks.
We configured the number of items in the inventory to range
from zero to eight for all items except for the polyisoprene
sack and the Pogo stick, which were always zero. We set the
number of trees on each map to range from zero to (map
size)/3.



(a) Item Counts model (b) All Blocks model with 6× 6 maps

(c) All Blocks model with 10× 10 maps (d) All Blocks model with 15× 15 maps

Figure 4: Results of offline learning from expert observations.

Offline Experiments
We conducted experiments to compare our PDDL-agents
with DQN, representing offline RL algorithms, and the imita-
tion learning algorithms BC and GAIL. The algorithms were
trained on trajectories generated by an expert agent capable
of solving the tasks. This expert agent was constructed by
manually modeling the task as a planning problem and sub-
sequently employing a planner to find solutions. Each plan
generated was validated within the environment.

To assess the algorithms, we divided our 1000 tasks into
training and test sets with an 8:2 ratio, respectively. The
agents were then trained using the examples from the train-
ing set, and the learning process was evaluated by deploying
the trained agent on the test set. To ensure robustness and
generalization, we repeated this process in a 5-fold cross-
validation framework, calculating the average and standard
deviation over the five folds.

RL Training Configuration. We implemented our RL al-
gorithms using open-source code. Specifically, we used the
implementation of BC and GAIL available in the imitation
library4 and the implementation of DQN available in the sta-

4https://imitation.readthedocs.io

ble baselines3 library 5. For the neural network architecture,
we configured all models as fully connected neural networks
with sizes 512×256×256, consisting of three layers. The
first layer has 512 units, while the second and third layers
have 256 units each. The hyperbolic tangent activation func-
tion was chosen for each layer.

Results. In Figure 4, the average success rates are depicted
as a function of the number of trajectories. Each subfigure
corresponds to a different model and/or map size. The av-
erage across the 5 folds is represented by a line, while the
corresponding standard deviation is visualized as a shaded
area with low opacity around each line. Despite exhaustive
efforts in hyperparameter tuning and experimentation with
various network architectures, both DQN and GAIL consis-
tently failed to solve the Pogo crafting task across all ex-
periments. As a result, their performance is omitted from
the presented plots. In the Item Counts model (Figure 4a),
we observe that BC consistently solves the problem after a
minimal number of trajectories, demonstrating performance
comparable to that of PDDL-agent RV. On the contrary, the
PDDL-agent without the RV assumption requires more tra-
jectories to effectively learn the action model. However, in

5https://stable-baselines3.readthedocs.io



(a) Zero-shot transfer: All Blocks from a 6× 6 map to 10× 10. (b) Zero-shot transfer: All Blocks from a 6× 6 map to 15× 15.

Figure 5: Results of offline transfer learning from expert observations.

the All Blocks model, the efficacy of BC diminishes, achiev-
ing lower success rates as the map size increases (refer to
Figures 4b, 4c, and 4d). In contrast, the PDDL-agent, both
with and without the RV assumption, consistently solves the
problem with only a few hundred given trajectories.

Zero-shot Transfer. A key advantage of planning lies in
its capacity to generalize across varying numbers of objects.
In contrast, reinforcement learning algorithms do not inher-
ently possess the same capability.6

To assess the generalizability of the PDDL-agents, we
conducted a zero-shot transfer evaluation. The agents were
trained on the All Blocks model with a 6 × 6 map and sub-
sequently evaluated on larger map sizes (10 × 10 in Fig-
ure 5a and 15 × 15 in Figure 5b). The results demonstrate
that both PDDL-agents achieved performance comparable
to agents directly trained on the corresponding maps, effec-
tively demonstrating perfect zero-shot generalization.

Online Experiments

In the online experiments, we conducted a comparative anal-
ysis between our hybrid agent—formed by combining the
PDDL-agent and PPO —and the standalone PPO with action
masking. The training phase encompassed 25 tasks. For the
Item Counts model, each task had a budget of 400 steps, with
a maximum episode length of 100. However, the All Blocks
model with a 6 × 6 map, featuring a larger action and state
space, required additional exploration. Consequently, each
task in the All Blocks model was allocated a budget of 2000
steps, with a maximum episode length of 500. This resulted
in each task being repeated at least four times both the Item
Counts model and the All Blocks model, ensuring thorough
learning and exploration.

6Although architectures such as Graph Neural Networks offer
a limited form of generalization, achieving this requires non-trivial
engineering efforts and often results in degraded performance when
the number of objects changes (Munikoti et al. 2023).

Reinforcement Learning Configurations
We used the standard models from the python library
stable baselines35. The PPO network architecture is
a fully connected neural network of size 64×64, i.e., two
layers with 64 units, and the selected activation function for
each layer is tanh. This network was trained with the fol-
lowing configuration: an entropy coefficient of 0.01, a dis-
count factor of 0.999, a value function coefficient of 0.65,
and a maximum gradient clipping of 1.0.

Results. Figure 6a illustrates the mean episodic reward
achieved in each map on the Item Counts model, while Fig-
ure 6c presents the results for the All Blocks model with
a 6 × 6 map. The results suggest that the hybrid approach
is capable of solving the task more consistently compared
to PPO, showcasing an enhanced and progressively improv-
ing performance over time. Figures 6b and 6d display the
mean episode length for both algorithms on the two models.
It is evident that the hybrid approach leads to significantly
shorter episodes when the planner successfully finds a plan.
In fact, the typical plan discovered is an order of magnitude
shorter than a solution generated by PPO.

Conclusions and Future Work
In this work, we proposed a planning-based agent called
PDDL-agent for solving Minecraft tasks in two settings: of-
fline learning with expert observations and online learning.
PDDL-agent uses N-SAM (Mordoch, Juba, and Stern 2023)
to learn an action model of the environment, and uses a state-
of-the-art planning algorithm to solve the Minecraft task at
hand. For the online setting, PDDL-agent employs a novel
hybrid action-selection strategy that uses both planning and
RL. As a case study, we considered the Craft Wooden Pogo
task and proposed two ways to represent states and actions
in this domain, namely Item Counts and All Blocks. We
compared our PDDL-agent to several RL-based agents ex-
perimentally when using Item Counts and when using All
Blocks, under the offline setting and the online setting.

Experimental evaluation showed the benefit of our PDDL-
agent outperforming all RL-based approaches in most cases.



(a) Avg. success rate, Item Counts model, higher is better (b) Avg. episode length, Item Counts, lower is better

(c) Avg. success rate, All Blocks, 6× 6 maps, higher is better (d) Avg. episode length, All Blocks, 6× 6 maps, lower is better

Figure 6: Results of online learning.

These results highlight the potential benefit of using action
model learning and planning over purely RL-based methods.
Also, it shows the benefit of the proposed hybrid strategy
for interleaving action model learning with goal-oriented RL.
In future work, we aim to enhance the action selection pro-
cess for online learning. Our approach involves exposing
PPO to diverse plans for solving each task, offering a variety
of high-quality samples, rather than relying on a single plan.
Additionally, we plan to pioneer a novel online approach that
prioritizes selecting actions aimed at improving the learned
action model. This marks a departure from the goal-oriented
approach employed in this research.
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Segura-Muros, J. Á.; Pérez, R.; and Fernández-Olivares, J.
2021. Discovering relational and numerical expressions
from plan traces for learning action models. Applied Intelli-
gence, 1–17.
Stern, R.; and Juba, B. 2017. Efficient, Safe, and Probably
Approximately Complete Learning of Action Models. In
the International Joint Conference on Artificial Intelligence
(IJCAI), 4405–4411.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
Tang, C.; Liu, C.; Chen, W.; and You, S. D. 2020. Imple-
menting action mask in proximal policy optimization (PPO)
algorithm. ICT Express, 6(3): 200–203.
Tessler, C.; Givony, S.; Zahavy, T.; Mankowitz, D.; and
Mannor, S. 2017. A deep hierarchical approach to lifelong
learning in minecraft. In Proceedings of the AAAI confer-
ence on artificial intelligence, volume 31.
Vinyals, O.; Babuschkin, I.; Czarnecki, W. M.; Mathieu, M.;
Dudzik, A.; Chung, J.; Choi, D. H.; Powell, R.; Ewalds,
T.; Georgiev, P.; et al. 2019. Grandmaster level in Star-
Craft II using multi-agent reinforcement learning. Nature,
575(7782): 350–354.
Wang, X. 1994. Learning planning operators by observation
and practice. In Second International Conference on Artifi-
cial Intelligence Planning Systems (AIPS), 335–340.
Watkins, C. J. C. H. 1989. Learning from delayed rewards.
Ph.D. thesis, Oxford: King’s College.
Wichlacz, J.; Torralba, A.; and Hoffmann, J. 2019.
Construction-planning models in minecraft. In Proceedings
of the ICAPS Workshop on Hierarchical Planning, 1–5.
Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning action mod-
els from plan examples using weighted MAX-SAT. Artificial
Intelligence, 171(2-3): 107–143.


