
ModelDiff: Leveraging Models for Policy Transfer with Value Lower Bounds

Xiaotian Liu1, Jihwan Jeong1, Ayal Taitler1, Michael Gimelfarb1, Scott Sanner1

1University of Toronto, Toronto, ON, Canada

Abstract

Despite significant recent advances in the field of Deep Re-
inforcement Learning (DRL), such methods typically incur
high cost of training to learn effective policies, thus posing
cost and safety challenges in many practical applications. To
improve the learning efficiency of (D)RL methods, transfer
learning (TL) has emerged as a promising approach to lever-
age prior experience on a source domain to speed learning
on a new, but related, target domain. In this paper, we take
a novel model-informed approach to TL in DRL by assum-
ing that we have knowledge of both the source and target do-
main models (which would be the case in the prevalent set-
ting of DRL with simulators). While directly solving either
the source or target MDP via solution methods like value it-
eration is computationally prohibitive, we exploit the fact that
if the target and source MDPs differ only due to a small struc-
tural change in their rewards, we can apply structured value
iteration methods in a procedure we term ModelDiff to solve
the much smaller target−source “Diff” MDP for a reason-
able horizon. This ModelDiff approach can then be integrated
into extensions of standard DRL algorithms like lower bound
(LB) DQN where it provides enhanced provable LB guid-
ance to DQN that speeds convergence. Experiments show that
our ModelDiff LB-DQN matches or outperforms existing TL
methods and baselines in both positive and negative transfer
settings.

Introduction
Deep Reinforcement Learning (DRL) has emerged as the
go-to approach for solving complex sequential decision-
making problems (Arulkumaran et al. 2017; Silver et al.
2016). Despite recent advances in DRL, a critical limitation
persists: DRL algorithms typically require extensive agent
experience to develop effective policies (Mnih et al. 2015;
Zhu, Lin, and Zhou 2020), thus posing cost and safety chal-
lenges in many practical applications (Gu et al. 2022).

To tackle the efficiency problem inherent in (D)RL, trans-
fer learning has (Taylor and Stone 2009; Zhu, Lin, and Zhou
2020) emerged as a promising approach. TL capitalizes on
the idea that an agent equipped with prior knowledge from a
previously learned task can rapidly adapt and learn on a new,
but similar, task. Thus the agent can significantly reduce the
time and data required for learning a performant policy.

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Existing model-free TL methods leverage multiple source
policies or data as done in Probabilistic Policy Reuse (PPR)
(Fernández and Veloso 2006) and in techniques involving
reward shaping (Brys et al. 2015) or successor features
(Barreto et al. 2018). In model-based transfer learning ap-
proaches, the focus shifts to using learned models of the en-
vironment to inform the transfer process (Song et al. 2016;
Laroche and Barlier 2017). Specifically, these models can
be instrumental in determining which source policy might
be most effective to transfer to a similar task.

However, in real-world applications, it can be impractical
to have access to multiple source policies or datasets (Vet-
toruzzo et al. 2023; Tian et al. 2020). Furthermore, even with
exact or analytic models of the environment at hand, existing
works fall short of leveraging this knowledge for efficient
transfer (Dulac-Arnold et al. 2021). Particularly in scenarios
where the source and target domains are known and dynam-
ically similar but their reward differs in structurally simple
ways (e.g., an additive term), there is a significant opportu-
nity for more targeted and effective transfer learning, which
has been largely overlooked. To better illustrate this, we first
define the difference in models and rewards.
Definition 1 (Difference Model and Reward). Let Ms and
Mt respectively denote the source and target tasks, modeled
as Markov decision processes (MDP).1 The two MDPs only
differ in their reward functions, defined for state s and ac-
tion a (i.e., Rs(s, a) and Rt(s, a), respectively). We define
the Difference MDP as the MDP that shares the transition
dynamics with Ms and Mt but whose reward function fol-
lows:

Rd(s, a) = Rt(s, a)−Rs(s, a). (1)

We call Rd(s, a) the Difference reward of Mt from Ms.
For example, Figure 1 shows the reward functions of Ms,

Mt, and Md in RESERVOIR MANAGEMENT problem intro-
duced in Section . Here, the diff reward Rd is far simpler
than the individual rewards. This simplification is a com-
mon occurrence in practical applications, such as in robotics,
where tasks often include a complex smoothness penalty
alongside a straightforward goal-conditioned reward. For
different tasks with varied goals, the smoothness penalty
would remain consistent, resulting in a diff reward that can

1The formal definition and notation follows in Section .

Water Level Reservoir 1

0
20

40
60

80
100

Wate
r L

ev
el

Re
ser

vo
ir 2

0
20

40
60

80
100

Re
wa

rd
 V

al
ue

2.00
1.75
1.50
1.25
1.00
0.75
0.50
0.25

0.00

(a) Source reward: Rs

Water Level Reservoir 1

0
20

40
60

80
100

Wate
r L

ev
el

Re
ser

vo
ir 2

0
20

40
60

80
100

Re
wa

rd
 V

al
ue

3.0
2.5
2.0
1.5
1.0
0.5

0.0

(b) Target reward: Rt

Water Level Reservoir 1

0
20

40
60

80
100

Wate
r L

ev
el

Re
ser

vo
ir 2

0
20

40
60

80
100

Re
wa

rd
 V

al
ue

1.0
0.8
0.6
0.4

0.2

0.0

(c) “Diff” reward: Rd

Figure 1: Source and target reward in RESERVOIR MANAGEMENT along with the simpler “Diff reward” owing to a minor
structural change.

be expressed in a much simpler analytic form. This scenario
raises a pivotal research question: how can we effectively
leverage the reward difference for efficient transfer learn-
ing?

To address this challenge, we introduce ModelDiff, a
novel TL framework designed to utilize analytically avail-
able models for efficient policy transfer from a single source
to a target domain. Central to ModelDiff is the exploita-
tion of the simpler difference MDP, which allows for the
exact evaluation of the source policy under this MDP, lead-
ing to the derivation of a symbolic value function. Utilizing
this value function, we develop a modified Bellman opera-
tor, which leverages the evaluated value function to expedite
the knowledge transfer process from the source to the target
domain.

The efficacy of ModelDiff is showcased through its in-
tegration with a standard model-free RL algorithm, DQN
(Mnih et al. 2015), across three distinct single-source trans-
fer learning scenarios. A key advantage of ModelDiff lies
in the exactly evaluated value function of the policy, which
serves as a lower bound for the temporal difference (TD)
value targets. This lower bound acts as a robust learning
signal, enhancing efficient exploration in cases of positive
transfer. Importantly, it also ensures that the learning process
is not adversely affected in scenarios of negative transfer.

We summarize three of our main contributions as follows:
1. We derive a novel Bellman-style operator on Q-value

functions that provides a lower bound estimate on the op-
timal Q-value Q∗, and we prove its convergence to Q∗.
We also establish a value iteration-style recurrence for
the difference model that lower bounds Q∗.

2. Based on the above derivation, we introduce ModelDiff
to provide lower bound (LB) guidance for DQN agents
(i.e., LB-DQN). ModelDiff-informed LB-DQN signifi-
cantly boosts learning efficiency in three experimental
TL tasks compared to related work and baselines.

3. Lastly, we show that ModelDiff-informed LB-DQN ef-
fectively avoids negative transfer where the source policy
might adversely affect learning in the target domain.

Preliminaries
Reinforcement Learning
In the reinforcement learning (RL) setting, an agent acts in
an environment to optimize its performance based on a given
reward function. We model the environment as a Markov
Decision Process (MDP), defined by a tuple ⟨S,A, T,R, γ⟩.
Here, S is the set of states, A is the set of valid actions, T
is a Markovian transition function that describes the distri-
bution p(s′|s, a) of the next state s′ given the current state
s and action a, and r is the immediate reward function. The
discount factor γ ∈ (0, 1) ensures that rewards received far
into the future receive less weight than immediate rewards.

The objective of an RL agent is to learn a
policy π : S → A that maximizes the expected
(discounted) sum of future rewards Qπ(s, a) =
Est [

∑
t γ

tR(st, π(st)) | s0 = s, a0 = a]. Value-based
RL aims to learn the optimal Q-values Q∗ that are the fixed
point Q∗ = B(Q∗) of the Bellman operator

B(Q) = Es′

[
R(s, a) + γmax

a′
Q(s′, a′)

]
, (2)

which is a γ-contraction over the space of Q-value functions.
Q-learning (Sutton and Barto 2018) is a popular value-

based RL algorithm that learns the Q value function via the
so-called temporal difference (TD) update

Q(s, a)← Q(s, a) + α · [r + γ ·max
a′

Q(s′, a′)−Q(s, a)].

Deep Q-Network (DQN) is a neural net-based version of Q-
learning that learns a neural network function approximator
of the Q function (Mnih et al. 2015; van Hasselt, Guez, and
Silver 2015).

Symbolic Dynamic Programming
Factored MDPs (Boutilier, Dean, and Hanks 1999) share the
same components ⟨S,A, T,R, γ⟩ as MDPs. However, they
assume that the state and dynamics are factorized in terms of
a vector of discrete and continuous state variables. Symbolic
Dynamic Programming (SDP) (Hoey et al. 1999) is a Value

Iteration algorithm designed to compute Bellman backups
in (2) so as to provide compact, structured representations
of the Q-values as Extended Algebraic Decision Diagrams
(XADDs) in both the mixed discrete and continuous state
and action settings (Sanner, Delgado, and de Barros 2011;
Zamani, Sanner, and Fang 2012).

Related Work

Knowledge transfer in RL can take the form of polices, value
functions, state transitions, rewards, or other sources (Zhu,
Lin, and Zhou 2020). One common method is Probabilistic
Policy Reuse (PPR) (Fernández and Veloso 2006), where ex-
ploration is biased by assigning a probability to act accord-
ing to a set of policies learned from similar tasks. Poten-
tial based Reward Shaping (PBRS) (Ng, Harada, and Rus-
sell 1999) is another common technique that biases the re-
ward function on a target domain (Brys et al. 2015; Vecerı́k
et al. 2017). Our work also shares some characteristics with
Successor Features-based transfer (GPI&SF) (Barreto et al.
2017, 2018), which assume all task rewards are linear com-
binations of shared reward components. However, while the
latter work typically works in a restricted reward space (i.e.
linear functions) and in the model-free setting, our work as-
sumes the reward function is known and leverages the struc-
tural reward difference in (arbitrary) source and target re-
wards for transfer.

Now we turn to the use of MDP models for transfer in RL.
(Song et al. 2016) proposed a method to select suitable poli-
cies and value functions for transfer via a distance measure
among MDPs. (Brys et al. 2015) used reward shaping tech-
niques to transfer policies via inter-task state space match-
ing, while (Gimelfarb, Sanner, and Lee 2021) used transi-
tion function similarity. Meanwhile, (Lazaric, Restelli, and
Bonarini 2008) and (Laroche and Barlier 2017) reused pre-
vious source task interactions by utilizing task and reward
similarities. Work in this area often focused on using mod-
els to select the best policies for transfer. However, we focus
on evaluating performance of any given policy in the tar-
get domain and the difference between models. Another key
aspect often ignored by previous work is the high compu-
tational overhead required to reason over large models. Our
work aims to reduce computational overhead required by an-
alyzing model differences.

Methodology

We assume two MDPs Ms = ⟨S,A, T,Rs, γ⟩ and Mt =
⟨S,A, T,Rt, γ⟩, which are designated as source and target
tasks, respectively. We assume that both tasks share iden-
tical S, A, and state transitions, but differ in their reward
functions. A policy πs and its corresponding value and Q-
value functions, V πs

s (s) and Qπs
s (s, a), respectively, are first

estimated in Ms (as a side effect, also producing a data set
of past state observations that we will also use). Our goal
is to use πs , and either V πs

s (s) or Qπs
s (s, a), to accelerate

learning an optimal policy in Mt by leveraging the reward
difference in Definition 1.

A Lower Bound on the Optimal Q-Value and a
Modified Bellman Operator
At a high level, we want to produce a well-informed esti-
mate of Qπt

t that we can leverage to quickly learn the target
task. However, as mentioned previously, we have access to
a source policy πs and Qπs

s , as well as the reward difference
between the two MDPs. To accomplish transfer, we will de-
rive a lower bound Qπt

t using the knowledge of Qπs
s , πs , and

the reward difference Rd .
We begin by defining the difference between rewards,

value functions and Q-function for Ms and Mt for horizon
h evaluated on policy πs :

Rd(s, a) = Rt(s, a)−Rs(s, a) (3)

V πs ,h
d (s) = V πs ,h

t (s)− V πs ,h
s (s) (4)

Qπs ,h
d (s, a) = Qπs ,h

t (s, a)−Qπs ,h
s (s, a) (5)

Rearranging these equations, we have:

V πs ,h
t (s) = V πs ,h

s (s) + V πs ,h
d (s) (6)

Qπs ,h
t (s, a) = Qπs ,h

s (s, a) +Qπs ,h
d (s, a) (7)

Furthermore, since Qπs ,h
t (s, a) is a lower bound on

Qπt ,h
t (s, a) = Q∗

t (s, a), and assuming that Qπs ,h
d can be ac-

curately estimated, then (7) provides a valid lower bound on
the optimal target task Q-value.

Inspired by this observation, we define a modified Bell-
man operator Lf that can take advantage of the lower bound
information to achieve transfer:

Lf (Q)(s, a)

= max (B(Q)(s, a), f(s, a))

= max
(
Es′

[
R(s, a) + γmax

a′
Q(s′, a′)

]
, f(s, a)

)
,

(8)

where f(s, a) is a lower bound on Q∗, i.e. f(s, a) ≤
Q∗(s, a),∀s, a. Intuitively, if f is close to Q∗, then updat-
ing the Q-value using Lf will drive the Q-value estimates
closer to Q∗ than when using B. Thus, we can interpret f as
a source of knowledge transfer.

Fortunately, this operator also converges to Q∗
t .

Theorem 1. Starting with Q0, and f such that f(s, a) ≤
Q∗(s, a),∀s, a, the sequence Qk produced by Qk+1 =
Lf (Qk) converges to the optimal value function Q∗ in the
usual sup-norm ∥ · ∥∞, i.e. the fixed point Q∗ = B(Q∗).

Proof. First, observe that for any k, we have

|max(B(Qk)(s, a), f(s, a))−Q∗(s, a)|
≤ |B(Qk)(s, a)−Q∗(s, a)|.

To prove this, observe that if f(s, a) ≥ B(Qk)(s, a), then

0 ≤ Q∗(s, a)−max(B(Qk)(s, a), f(s, a))

≤ Q∗(s, a)− B(Qk)(s, a).

On the other hand, if f(s, a) < B(Qk)(s, a), then

Q∗(s, a)−max(B(Qk)(s, a), f(s, a))

= Q∗(s, a)− B(Qk)(s, a).

Using this result, we continue as follows:

|Qk+1(s, a)−Q∗(s, a)|
= |Lf (Qk)(s, a)−Q∗(s, a)|
= |max (B(Qk)(s, a), f(s, a))−Q∗(s, a)|
≤ |B(Qk)(s, a)−Q∗(s, a)|
= |B(Qk)(s, a)− B(Q∗)(s, a)|
≤ γ∥Qk −Q∗∥∞,

where in the last step we have used the fact that the Bellman
operator B is a γ-contraction. Thus, taking sup of both sides
over s, a, we conclude that

∥Qk+1 −Q∗∥∞ ≤ γ∥Qk −Q∗∥∞,

and thus that Qk → Q∗ as k →∞, as claimed.

Thus, setting f = Qπs
t , we have derived a modified Bell-

man operator LQπs
t

that makes use of the lower bound in-
formation for updating the target task Q-values, while still
achieving convergence to Q∗

t . As an added bonus, the last
argument in the proof, namely the inequality |Qk+1(s, a)−
Q∗(s, a)| ≤ |B(Qk)(s, a)−Q∗(s, a)|, can be used to show
(by induction) that value iteration using Lf converges to Q∗

at least as fast as B. However, to apply this operator to learn
the target Q-value function, we still need to know Qπs

d .

Symbolic Dynamic Programming for Value
Difference Estimation
In order to estimate V πs

d or Qπs

d , we first establish that they
can be computed using the ordinary policy evaluation equa-
tion:

V πs ,h
d (s) = V πs ,h

t (s)− V πs ,h
s (s)

= Rt(s, πs(s)) + γ
∑
s′

P (s′|s, πs(s))V
πs ,h−1
t (s′)

− (Rs(s, πs(s)) + γ
∑
s′

P (s′|s, πs(s))V
πs ,h−1
s (s′))

= Rd(s, πs(s)) + γ
∑
s′

P (s′|s, πs(s))V
πs ,h−1
d (s′). (9)

An identical relation also holds for the Q-value functions:

Qπs ,h
d (s, a) = Qπs ,h

t (s, a)−Qπs ,h
s (s, a)

= Rd(s, a) + γ
∑
s′

P (s′|s, a)Qπs ,h−1
d (s′, πs(s

′)). (10)

Therefore, Qπs

d can be derived by performing a Bellman
backup using knowledge of Rd ! However, recall that Rd de-
fines an MDP with a much simpler reward function than Rs

and Rt (cf. Figure 1), thus enabling efficient symbolic com-
putation of the value function.

Based on this observation and the recursion (10), we can
apply symbolic dynamic programming (SDP) leveraging an
extended algebraic decision diagram (XADD) representa-
tion of the source and target models (Sanner, Delgado, and
de Barros 2011; Zamani, Sanner, and Fang 2012) to evalu-
ate policy πs in the difference MDP, which would allow us
to efficiently compute Qπs

d . However, to accomplish this, the

Algorithm 1: Lower Bound DQN (LB-DQN)

1: Initialize replay memory D with capacity N
2: Initialize Q-network with weights θ
3: Initialize target network with weights θ− = θ
4: for episode = 1, . . . , M do
5: Initialize state s
6: for t = 1, . . . , H do
7: With probability ϵ, select a random action a
8: Otherwise select a = argmaxa′ Q(s, a′; θ)
9: Execute action a, observe reward r and next state

s′

10: Store transition (s, a, r, s′) in D
11: Sample a batch {(sj , aj , rj , s′j)}Jj=1 from D
12: Compute target for all j ∈ {1, . . . , J}

yj ← max
(
rj + γmax

a′
Q(s′j , a

′; θ−), Qπs
t (sj , aj)

)
13: Update θ ← θ − η

J∇θ

∑
j(yj −Q(sj , aj ; θ))

2

14: Update target network θ− ← τθ + (1− τ)θ−

15: Set s← s′

16: end for
17: end for

source policy πs must be in a symbolic XADD form com-
patible with SDP computations.

For scenarios where the source policy is manually spec-
ified, we can directly convert such a policy into a sym-
bolic representation like an XADD. Policies deployed in
real-world are often specified by domain experts due to the
need for safety and variability. Additionally, learning a suf-
ficiently good policy is often computationally costly. How-
ever, in cases where the source policy is implicitly repre-
sented in a function approximator like a DQN, we can ob-
tain a sufficiently good approximation of the source policy
by sampling state-action pairs from the neural network. To
do this, we construct a dataset D = {(si, πs(si))}i from
past states si observed while learning the source policy πs

in the source MDP, and use it to recover a decision tree (DT)
policy π̂s ≈ πs . This last step can be accomplished by train-
ing a standard off-the-shelf decision tree tool to do super-
vised classification on D. (the details of this procedure are
discussed in the Appendix A). Fortunately, decision trees
are decision diagrams so the learned DT policy π̂s can be
converted directly into XADD form and used to recover the
value Qπs

d via SDP, which in turn provides a lower bound on
Qπt

t , i.e. Qπt
t (s, a) ≥ Qπs

t (s, a) = Qπs
s (s, a) + Qπs

d (s, a).
We found that, given enough tree depth and a small sampling
interval, we can extract a policy that sufficiently mimics the
exact behavior in the reachable states of the agent.

Incorporating the Lower Bound into RL
Finally, we incorporate the derived lower bound Qπs

t into
Q-learning by replacing the greedy Bellman backup B with
the modified backup LQπs

t
.

Specifically, during the TD update step, we take the maxi-
mum between the bootstrap target value for each (s, a, r, s′),
and our established lower bound, Qπs

t (s, a). For each state-

action pair, the target update is represented as:

Q(s, a)← Q(s, a) + α · [ytarget −Q(s, a)]

ytarget = max
(
r(s, a) + γmax

a′
Q(s′, a′), Qπs

t (s, a)
)
.

(11)
Thus, intuitively, the lower-bound forces the agent to act ac-
cording to Q

π∗
s

t in the initial steps of training, thus providing
a “model-informed” warm-start. In the later stages of train-
ing, when it is anticipated that the target agent’s Q-function
is a good approximation of Q∗

t , the target value above be-
comes the usual Q-learning target.

To make the algorithm scale well in large state or ac-
tion spaces, we parameterize the Q-function as a Deep
Q-Network (DQN) (Mnih et al. 2015). Let Q(s, a; θ) ≈
Q(s, a) be a neural network with weights θ. The modified
DQN loss for a transition (s, a, s′), derived from LQπs

t
, is:

L(θ) =
1

2
(ytarget −Q(s, a; θ))

2
,

ytarget = max
(
r(s, a) + γmax

a′
Q(s′, a′; θ−), Qπs

t (s, a)
)

(12)
where θ− indicates that the gradient ∇θ does not propagate
through Q(s′, a′; θ−). The LB-DQN implementation using
the ModelDiff lower bound can be found in Algorithm 1.

Empirical Evaluation
We evaluated LB-DQN with the ModelDiff derived lower
bound on three different domains in a transfer learning set-
ting with source and target tasks in each. All the domains
and tasks have been implemented and trained in pyRDDL-
Gym (Taitler et al. 2022). The experiments are designed to
answer two research questions:

1. RQ 1: Can ModelDiff with LB-DQN accelerate learn-
ing on a target task based on the model and a policy of a
source task, compared to baselines that ignore the pres-
ence of an explicit model?

2. RQ 2: Can ModelDiff with LB-DQN effectively prevent
negative transfer, ensuring that the policy learned on the
source task does not adversely impact performance on
the target task, potentially leading to outcomes worse
than learning from scratch?

Experimental Setup
We evaluate our ModelDiff-informed LB-DQN (from here
out, shortened to just LB-DQN) on three benchmark do-
mains: POWERGEN, PICK-AND-PLACE, and RESERVOIR.
For each domain, we know the analytic forms of Ms and
Mt, and a source policy to be transferred is given. Specifi-
cally, we use a pre-trained neural policy derived by a DQN
agent on Ms and leverage it in the ModelDiff framework of
Section to derive the lower bound for Mt.

For each domain, we define two target tasks that share
the same states, actions, and transition function as in Ms

but have different reward functions. The first target task is
designed to test positive transfer; therefore, the difference
in the reward functions is small, and the source policy can

achieve high rewards in all but a small subset of states in the
target task. The second target task is used to test negative
transfer. In this scenario, the source policy behaves adver-
sarially in the target task. We aim to assess if LB-DQN can
effectively disregard the adversarial behavior of this subop-
timal policy. The detailed transition and rewards of the do-
mains can be bound in Appendix B.

All the experiments are compared to baseline methods
that are appropriate for our experimental setting:

• DQN – the vanilla model-free DQN, that learns from
scratch on the target domain.

• Probabilistic Policy Reuse (PPR) (Fernández and
Veloso 2006) – a DQN-based method that assigns a prob-
ability of using the given policy and thus collects also
transitions related to that policy.

• Warm Start (WS) – DQN with the value function being
directly initialized with the source value function.

In the positive transfer experiments, all methods are ex-
pected to learn more efficiently than vanilla DQN. In the
negative transfer experiments, success is measured by the
method’s ability to be at least as good as DQN that intrinsi-
cally ignores transfer, which in this case is negative transfer.

Benchmark Domains
RESERVOIR Drawing from the water reservoir manage-
ment problem (Yeh 1985), we set up a 2-reservoir system
with one upstream reservoir t1 and one downstream reser-
voir t2. The water released from t1 flows to t2, and the water
released from t2 is directly released to the ocean and leaves
the system. The objective is to maintain the water levels of
both reservoirs within a maximum and minimum threshold.
We give a negative reward if the water level goes outside
the given thresholds. At each time step, there is a chance for
rainfall, modeled by a stochastic Bernoulli random variable
(RV). When it rains, a fixed amount of water is added to the
reservoirs. The RV of the first reservoir is independent of the
variable of the other reservoir. We have a Boolean decision
for each reservoir, dictating whether to release water.

• For the positive transfer case, we reduce the penalty for
being below the minimal threshold by half for the up-
stream reservoir t1, which should only slightly alter op-
timal actions in the new task.

• For the negative transfer case, we move both the max-
imum and the minimum threshold. For the majority of
states in the target task, optimal decisions differ from
those in the source task.

PICK-AND-PLACE In this domain, an agent needs to dis-
cover an object of interest, pick it up, and place it in an-
other location. The problem is inspired by a 2D navigation
problem specified in (Taitler et al. 2022). We added a dis-
crete state variable has-object in this domain to indicate if
the agent holds the object. The agent can pick-up an object
if it is in the vicinity of the agent. A reward of 1 is given if
the agent is holding the object in one of the two goal regions,
and 0 otherwise. The agent can move in the x or y direction
with a fixed step size.

0 1000 2000 3000 4000 5000
Episode x 10^2

100

0

100

200

300

400

500

600
Av

er
ge

 D
isc

ou
nt

ed
 R

ew
ar

d
Powergen

DQN
WS
LB-DQN
PPR

0 1000 2000 3000 4000 5000
Episode x 10^2

27.5

25.0

22.5

20.0

17.5

15.0

12.5

10.0

Av
er

ge
 D

isc
ou

nt
ed

 R
ew

ar
d

Reservoir

DQN
WS
LB-DQN
PPR

0 5000 10000 15000 20000 25000 30000
Episode x 10^2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Av
er

ge
 D

isc
ou

nt
ed

 R
ew

ar
d

Pick-and-place
DQN
WS
LB-DQN
PPR

Figure 2: Average cumulative discounted rewards in Positive Transfer tasks

0 1000 2000 3000 4000 5000 6000
Episode x 10^2

500

0

500

1000

1500

2000

Av
er

ge
 D

isc
ou

nt
ed

 R
ew

ar
d

Powergen

DQN
WS
LB-DQN
PPR

0 1000 2000 3000 4000 5000
Episode x 10^2

24

22

20

18

16

14
Av

er
ge

 D
isc

ou
nt

ed
 R

ew
ar

d

Reservoir

DQN
WS
LB-DQN
PPR

0 2500 5000 7500 10000 12500 15000 17500
Episode x 10^2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ge
 D

isc
ou

nt
ed

 R
ew

ar
d

Pick-and-place
DQN
WS
LB-DQN
PPR

Figure 3: Average cumulative discounted rewards in Negative Transfer tasks

• For positive transfer case, we increase the reward of one
of the goal locations.

• For negative transfer case, we reverse the reward of the
two goal locations.

POWERGEN We use a modified version of the Power Unit
Commitment problem (Padhy 2004) as the third benchmark
domain. Here, it models 3 power producers that act cooper-
atively to meet daily demand. The demand for each timestep
is a Bernoullli RV. The agent receives a reward for each de-
mand successfully met. If the demand is not met, then a large
penalty occurs to deter overproduction.

• For the positive transfer case, we increase the production
cost of a single power producer.

• For the negative transfer case, we increase the production
cost of all power producers.

Table 1: Hyper-parameters for DQN and LB-DQN Training

Hyperparameter PowerGen Reservoir Pick-and-Place
Learning Rate 0.001 0.001 0.001

Batch Size 64 64 128
Discount Factor γ 0.9 0.9 0.9

Soft Update τ 0.001 0.001 0.001
Optimizer Adam Adam Adam

Replay Buffer 500000 500000 1000000
Exploration Rate 0.1 0.1 0.1

Network [64, 64] [64, 64] [64, 128, 64]
SDP Steps 20 20 20

Training Details
We conducted a hyper-parameter search for a vanilla DQN
agent across each of the three domains, utilizing the source
tasks. The selected hyper-parameters are given in Table 1.
These hyper-parameter values are consistently used by all
methods during the learning phase on the target tasks includ-
ing LB-DQN . Each task is set with a horizon of 20, and the
discount factor γ is fixed at 0.9. To evaluate and record the
agent’s performance, we freeze network weights after every
10 training episodes.

Empirical Results
For all the experiments conducted in this work, 10 runs were
executed, and both the average and standard deviation were
calculated. In the provided plots, the bold colored lines rep-
resent the average, while the grayed-out envelopes indicate
the standard deviation across the 10 runs.

Positive Transfer Results The results for the positive
transfer experiments for all three domains are given in Fig-
ure 2. These scenarios are designed such that a large portion
of the policy of the source task can be used on the target
task. Consequently, all three transfer methods outperform
the vanilla DQN on all three domains. We observe that LB-
DQN outperforms all other transfer baselines, i.e., the re-
ward is maximized faster in LB-DQN , while ultimately all
the methods converge to the same maximum rewards, illus-
trating the sample complexity of each method. The benefit
of using the explicit model directly, is showcased especially

0 1000 2000 3000 4000 5000
Episode x 10^2

0

100

200

300

400

500

Av
er

ge
 D

isc
ou

nt
ed

 R
ew

ar
d

Powergen
sdp_10
sdp_20
sdp_30

0 1000 2000 3000 4000 5000
Episode x 10^2

24

22

20

18

16

14

12

Av
er

ge
 D

isc
ou

nt
ed

 R
ew

ar
d

Reservoir

sdp_10
sdp_20
sdp_30

0 5000 10000 15000 20000 25000 30000
Episode x 10^2

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

Av
er

ge
 D

isc
ou

nt
ed

 R
ew

ar
d

Pick-and-place
sdp_10
sdp_20
sdp_30

Figure 4: Number of SDP Steps Ablation

0 1000 2000 3000 4000 5000
Episode x 10^2

100

0

100

200

300

400

500

Av
er

ge
 D

isc
ou

nt
ed

 R
ew

ar
d

Powergen

converge_1.0
converge_0.3
converge_0.5

0 1000 2000 3000 4000 5000
Episode x 10^2

26

24

22

20

18

16

14

12
Av

er
ge

 D
isc

ou
nt

ed
 R

ew
ar

d
Reservoir

converge_1.0
converge_0.3
converge_0.5

0 5000 10000 15000 20000 25000 30000
Episode x 10^2

0.05

0.10

0.15

0.20

0.25

Av
er

ge
 D

isc
ou

nt
ed

 R
ew

ar
d

Pick-and-place
converge_1.0
converge_0.3
converge_0.5

Figure 5: Value Convergence Ablation

in the pick-and-place domain where the initial reward at the
beginning of learning is higher than all the others by a sig-
nificant gap.

Negative Transfer Results In situations where the target
task and the source task are different in such a way that a pol-
icy suited for the source task might be a hindrance for the
target task, these cases are referred to as negative transfer.
We desire for a transfer approach to ignore such transfer as it
might lead to slow learning or failure to learn altogether. The
negative transfer results are shown in Figure 3. We observe
in all three domains that all methods learn slowly initially.
We also critically observe that using an adversarial policy
might not just delay performance, but prevent the algorithm
from finding a good policy altogether as in the pick-and-
place experiment where WS clearly gets stuck. This case
shows that warm-starting from an adversarially initialized
policy value might be even worse than starting from a ran-
domly initialized value (i.e., network weights) and learning
from scratch. We note that across all three domains LB-DQN
is on par with DQN, suggesting it does not do better but is
also able to ignore the negative transfer. PPR and WS on the
other hand all suffer across all three domains from negative
transfer effects.

Ablations
As ModelDiff-informed LB-DQN is comprised of several
components and parameters, such as the source trained pol-
icy and Q-network for Ms and the ModelDiff SDP eval-
uation horizon, we conduct two experiments designed at

assessing the sensitivity of these components. Both exper-
iments are conducted on the positive transfer scenario to
isolate the desired effects without the influence of negative
transfer.

SDP Horizon The lower bound Qπs
t , derived from the

ModelDiff is computed via SDP as described in Section .
Computationally, running this algorithm to convergence is
expensive and thus as the SDP horizon parameter H in-
creases, time increases and the lower bound tightness im-
proves.

We examine how LB-DQN performs vs. H ∈
{10, 20, 30} as shown in Figure 4. We note that increasing
the horizon to 30 does not yield significantly better results.
Also, while the performance of LB-DQN under 10 SDP
steps is inferior to the other runs, we note that the difference
is not significant, suggesting that the number of SDP steps
required for the lower bound calculation does not need to be
large. However, the value of H that optimally trades off per-
formance and evaluation quality can vary between between
domains.

Source Policy Quality Key components required for
transfer include the reward diff Rd, a source policy πs for
Ms and its corresponding Q-value function. In principle,
any πs can be used since it would provide a lower bound
value for M t (tight, if serendipitously optimal). Nonethe-
less, policy quality is expected to impact the performance of
LB-DQN. In this ablation, we aim to assess how sensitive
the performance of LB-DQN is in relation to the quality of

the provided policy and Q-values. We achieve this in a con-
trolled setting by training three Q-functions and policies on
the source task with varying quality, simply by varying the
training time. Namely, we train DQN in three regimes: (1) to
optimality, (2) training for half the time required to achieve
optimality, and (3) training for 30% of the time required to
achieve optimality.

The results for this study are given in Figure 5. LB-DQN
is able to effectively transfer from all three policies and Q-
functions, although we note that the best performance is ob-
tained by using the optimal source task policy, as expected
in this setting of positive transfer. The benefits of transfer
learning are most notable on the pick-and-place domain,
where the optimal source task policy resulted in immediate
(warm-start) improvement on the target task. Nonetheless,
LB-DQN converges towards the optimal target task policy
even when provided with the highly sub-optimal source task
policy.

Conclusion
In this paper, we asked how we could leverage model knowl-
edge of a source and target MDP with matching dynam-
ics but differing reward functions to facilitate transfer learn-
ing in a deep reinforcement learning (DRL) setting. We ex-
ploited the structural differences between the reward func-
tions to symbolically derive a so-called ModelDiff lower
bound on the target MDP. This ModelDiff lower bound was
integrated into an LB-DQN extension of the standard DQN
algorithm, where it sped convergence of DQN on the target
MDP.

Our experimental results demonstrate that our ModelDiff-
informed LB-DQN learns faster than other transfer learn-
ing techniques in the positive transfer setting and is criti-
cally able to ignore negative transfer in contrast to compet-
ing methods. Ablation studies further show that increasing
the ModelDiff horizon has positive, but diminishing returns,
while source MDP policy quality has a significant impact on
transfer efficiency. Overall, this work opens a novel and ef-
fective direction for model-informed transfer to help address
longstanding sample complexity issues in DRL and inspire
novel model-informed transfer extensions beyond LB-DQN.

References
Arulkumaran, K.; Deisenroth, M. P.; Brundage, M.; and
Bharath, A. A. 2017. A Brief Survey of Deep Reinforce-
ment Learning. CoRR, abs/1708.05866.
Barreto, A.; Borsa, D.; Quan, J.; Schaul, T.; Silver, D.; Hes-
sel, M.; Mankowitz, D. J.; Zı́dek, A.; and Munos, R. 2018.
Transfer in Deep Reinforcement Learning Using Successor
Features and Generalised Policy Improvement. In ICML,
volume 80 of Proceedings of Machine Learning Research,
510–519. PMLR.
Barreto, A.; Dabney, W.; Munos, R.; Hunt, J. J.; Schaul, T.;
van Hasselt, H. P.; and Silver, D. 2017. Successor features
for transfer in reinforcement learning. NeurIPS, 30.
Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-
Theoretic Planning: Structural Assumptions and Computa-

tional Leverage. Journal of Artificial Intelligence Research,
11: 1–94.
Breiman, L.; Friedman, J. H.; Olshen, R. A.; and Stone, C. J.
1984. Classification and Regression Trees. Wadsworth.
Brys, T.; Harutyunyan, A.; Taylor, M. E.; and Nowé, A.
2015. Policy Transfer using Reward Shaping. In AAMAS,
181–188. ACM.
Dulac-Arnold, G.; Levine, N.; Mankowitz, D. J.; Li, J.;
Paduraru, C.; Gowal, S.; and Hester, T. 2021. Challenges of
real-world reinforcement learning: definitions, benchmarks
and analysis. Mach. Learn., 110(9): 2419–2468.
Fernández, F.; and Veloso, M. M. 2006. Probabilistic policy
reuse in a reinforcement learning agent. In AAMAS, 720–
727. ACM.
Gimelfarb, M.; Sanner, S.; and Lee, C.-G. 2021. Contextual
policy transfer in reinforcement learning domains via deep
mixtures-of-experts. In UAI, 1787–1797. PMLR.
Gu, S.; Yang, L.; Du, Y.; Chen, G.; Walter, F.; Wang, J.;
Yang, Y.; and Knoll, A. 2022. A Review of Safe Reinforce-
ment Learning: Methods, Theory and Applications. arXiv
preprint arXiv:2205.10330.
Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999.
SPUDD: Stochastic Planning using Decision Diagrams. In
UAI, 279–288. Stockholm.
Laroche, R.; and Barlier, M. 2017. Transfer Reinforce-
ment Learning with Shared Dynamics. In AAAI, 2147–2153.
AAAI Press.
Lazaric, A.; Restelli, M.; and Bonarini, A. 2008. Transfer
of samples in batch reinforcement learning. In ICML, vol-
ume 307 of ACM International Conference Proceeding Se-
ries, 544–551. ACM.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M. A.;
Fidjeland, A. K.; Ostrovski, G.; Petersen, S.; Beattie, C.;
Sadik, A.; Antonoglou, I.; King, H.; Kumaran, D.; Wierstra,
D.; Legg, S.; and Hassabis, D. 2015. Human-level control
through deep reinforcement learning. Nature, 518: 529–533.
Ng, A. Y.; Harada, D.; and Russell, S. 1999. Policy Invari-
ance Under Reward Transformations: Theory and Applica-
tion to Reward Shaping. In ICML, 278–287. Morgan Kauf-
mann.
Padhy, N. P. 2004. Unit commitment-a bibliographical sur-
vey. IEEE Transactions on power systems, 19(2): 1196–
1205.
Sanner, S.; Delgado, K. V.; and de Barros, L. N. 2011. Sym-
bolic Dynamic Programming for Discrete and Continuous
State MDPs. In UAI, 643–652. AUAI Press.
Sanner, S.; Delgado, K. V.; and de Barros, L. N. 2011. Sym-
bolic Dynamic Programming for Discrete and Continuous
State MDPs. In UAI. Barcelona.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre,
L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe, D.;
Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T. P.;
Leach, M.; Kavukcuoglu, K.; Graepel, T.; and Hassabis, D.

2016. Mastering the game of Go with deep neural networks
and tree search. Nat., 529(7587): 484–489.
Song, J.; Gao, Y.; Wang, H.; and An, B. 2016. Measuring
the Distance Between Finite Markov Decision Processes. In
Jonker, C. M.; Marsella, S.; Thangarajah, J.; and Tuyls, K.,
eds., Proceedings of the 2016 International Conference on
Autonomous Agents & Multiagent Systems, Singapore, May
9-13, 2016, 468–476. ACM.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction.
Taitler, A.; Gimelfarb, M.; Gopalakrishnan, S.; Liu, X.; and
Sanner, S. 2022. pyRDDLGym: From RDDL to Gym Envi-
ronments. CoRR, abs/2211.05939.
Taylor, M. E.; and Stone, P. 2009. Transfer Learning for Re-
inforcement Learning Domains: A Survey. Journal of Ma-
chine Learning Research, 10(56): 1633–1685.
Tian, Y.; Wang, Y.; Krishnan, D.; Tenenbaum, J. B.; and
Isola, P. 2020. Rethinking Few-Shot Image Classification:
A Good Embedding is All You Need? In ECCV (14), vol-
ume 12359 of Lecture Notes in Computer Science, 266–282.
Springer.
van Hasselt, H.; Guez, A.; and Silver, D. 2015. Deep
Reinforcement Learning with Double Q-learning. CoRR,
abs/1509.06461.
Vecerı́k, M.; Hester, T.; Scholz, J.; Wang, F.; Pietquin, O.;
Piot, B.; Heess, N.; Rothörl, T.; Lampe, T.; and Riedmiller,
M. A. 2017. Leveraging Demonstrations for Deep Rein-
forcement Learning on Robotics Problems with Sparse Re-
wards. CoRR, abs/1707.08817.
Vettoruzzo, A.; Bouguelia, M.; Vanschoren, J.;
Rögnvaldsson, T. S.; and Santosh, K. 2023. Advances
and Challenges in Meta-Learning: A Technical Review.
CoRR, abs/2307.04722.
Yeh, W. W.-G. 1985. Reservoir management and operations
models: A state-of-the-art review. Water resources research,
21(12): 1797–1818.
Zamani, Z.; Sanner, S.; and Fang, C. 2012. Symbolic
Dynamic Programming for Continuous State and Action
MDPs. In AAAI. Toronto, Canada.
Zhu, Z.; Lin, K.; and Zhou, J. 2020. Transfer Learn-
ing in Deep Reinforcement Learning: A Survey. CoRR,
abs/2009.07888.

has_mineral___a1

pos_y___a1 - 7.5 <= 0 pos_y___a1 - 7.5 <= 0

pos_x___a1 - 2.5 <= 0

([move_north___a1])

pos_x___a1 - 2.5 <= 0 pos_x___a1 - 2.5 <= 0

pos_x___a1 - 7.5 <= 0

([move_west___a1])([move_east___a1])

pos_x___a1 - 1.5 <= 0 pos_x___a1 - 8.5 <= 0

([move_south___a1])

Figure 6: Example learned Decision Tree policy for Pick-and-Place converted to an XADD for use with Symbolic Dynamic
Programming.

Appendix A: Symbolic Policy Extraction
Symbolic Dynamic Programming (SDP) operations require an explicit symbolic extended algebraic decision diagram (XADD)
representation of the source policy (Sanner, Delgado, and de Barros 2011). In this section, we show how to distill a symbolic
policy from the source DQN agent. The process takes three steps: (1) We generate a dataset D = {(sk, πs(sk))}k using a source
policy πs . (2) We use the resulting dataset to train an off-the-shelf Decision Tree (DT) classifier π̂s that is an approximation of
the source policy π̂s ≈ πs . (3) We convert the resulting DT to the XADD format that can be used for SDP.

Data Generation
The first step is to generate a set of input-output pairs D using the source policy πs . For a continuous state variable ci, we set
maxci , minci and an interval value ai to construct a set Ci = {minci + n · ai | 0 ≤ n ≤ maxci

−minci

a }. We assign the
set Bj = {1, 0} for each Boolean variable bj . We then independently and uniformly sample from Ci and Bi for each input
state sk = (c1, . . . , ci, b1, . . . , bj). The input dataset is then constructed as D = {(sk, πs(sk))}k using the source policy. The
number of samples is set to be |D| =

∏i
m=1 |Cm| ·

∏j
n=1 |Bn| to ensure sufficient coverage of the relevant state space.

Decision Tree (DT) Policy Construction
DT classifiers are non-parametric supervised learning methods that are commonly used for classification tasks. Nodes of a DT
classifier are discrete variable assignment tests or arithmetic comparisons and leaves are output classes. We use an off-the-shelf
DT classifier (SKLEARN.TREE.DECISIONTREECLASSIFIER in the Scikit-learn Python package) that takes the dataset D as
input-output pairs to train. We use the Gini index (Breiman et al. 1984) to split decision nodes with a maximum tree depth of
20 and the default setting for remaining parameters. The trained DT classifier π̂s is a policy function that mimics behaviour of
the source policy π̂s ≈ πs .

XADD Conversion
Our DT classifier policy representation is already in the form of a decision diagram without reconvergent branches and is thus
easily reduced to XADD form (Sanner, Delgado, and de Barros 2011) with a few syntactic translation steps. Since most off-
the-shelf DT classifiers do not handle mixed discrete and continuous variables, we convert values for a Boolean variable bj
from {True, False} to {1.0, 0.0} during the training process. A DT comparison node for Boolean variable bj is in the form of
bj ≤ 0.5. For decision tests on Boolean bj , we convert the comparison operator back to a Boolean test for False if bj ≤ 0.5,

else True. A DT comparison node for continuous variable ci is represented by an inequality with learned threshold ti in the
form of ci ≤ ti. Since XADDs directly support arithmetic inequalities, these DT nodes are mapped one-to-one to XADD
decision nodes. An example XADD policy for the Pick-and-Place domain is shown in Figure 6 with DT max depth set to 4 for
illustrative purposes.

Appendix B: Domain Formulation
Reservoir
We examine a two reservoir system with one upstream reservoir t1 and one downstream reservoir t2. The water released from
t1 flows to t2, and the water released from t2 is directly released to the ocean. Each reservoir has a continuous state variable
(l1, l2) that indicates water level. We set ranges for both variables as l1 ∈ [0, 100] and l2 ∈ [0, 100]; values outside of the
range are clipped (below). We call each threshold T1 = (l1min, l1max) and T2 = (l2min, l2max). At each time step, there
is a chance for rainfall for each reservoir, modeled by stochastic Bernoulli random variables b1 and b2. When it rains, a fixed
amount of water is added to the reservoirs. There are two Boolean actions A = {r1, r2} which release a fixed amount of water
downstream. The agent can only take one action at a time. The objective is to maintain the water levels of both reservoirs within
a maximum and minimum threshold. For each time step, we give a negative reward if the water level underflows or overflows
the respective thresholds. The transition and reward function are shown as follows:

P (b1) ∼ Bernoulli(0.5)

P (b2) ∼ Bernoulli(0.5)

l1′ =

{
r1 : min(max(0, l1 + b1 · 8− 5), 100)

¬r1 : min(max(0, l1 + b1 · 8), 100)
, l2′ =

r1 ∧ r2 : min(max(0, l2 + b2 · 8− 5 + min(l1, 5)), 100)

¬r1 ∧ r2 : min(max(0, l2 + b2 · 8− 5), 100)

r1 ∧ ¬r2 : min(max(0, l2 + b2 · 8 + min(l1, 5)), 100)

¬r1 ∧ ¬r2 : min(max(0, l2 + b2 · 8), 100)

,

R(l1, l2) =

((l1 ≥ l1max) ∨ (l1 ≤ l1min)) ∧ ((l2 ≥ l2max) ∨ (l2 ≤ l2min)) : −2

¬” ∧ ((l1 ≥ l1max) ∨ (l1 ≤ l1min)) ∧ ¬((l2 ≥ l2max) ∨ (l2 ≤ l2min)) : −1

¬” ∧ ¬((l1 ≥ l1max) ∨ (l1 ≤ l1min)) ∧ ((l2 ≥ l2max) ∨ (l2 ≤ l2min)) : −1

otherwise : 0

,

For the positive transfer case, we set T1 = (35, 55), T2 = (35, 55), and halve the penalty for going below the minimum
threshold for t1. The reward functions are:

Rs(l1, l2) =

((l1 ≥ 55) ∨ (l1 ≤ 35)) ∧ ((l2 ≥ 55) ∨ (l2 ≤ 35)) : −2

¬” ∧ ((l1 ≥ 55) ∨ (l1 ≤ 35)) ∧ ¬((l2 ≥ 55) ∨ (l2 ≤ 35)) : −1

¬” ∧ ¬((l1 ≥ 55) ∨ (l1 ≤ 35)) ∧ ((l2 ≥ 55) ∨ (l2 ≤ 35)) : −1

otherwise : 0

,

Rt(l1, l2) =

(l1 ≥ 55) ∧ ((l2 ≥ 55) ∨ (l2 ≤ 35)) : −2

¬” ∧ (l1 ≤ 35) ∧ ((l2 ≥ 55) ∨ (l2 ≤ 35)) : −1.5

¬” ∧ (l1 ≥ 55) ∧ ¬((l2 ≥ 55) ∨ (l2 ≤ 35)) : −1

¬” ∧ (l1 ≤ 35) ∧ ¬((l2 ≥ 55) ∨ (l2 ≤ 35)) : −0.5

¬” ∧ ¬((l1 ≥ 55) ∨ (l1 ≤ 35)) ∧ ((l2 ≥ 55) ∨ (l2 ≤ 35)) : −1

otherwise : 0

,

For the negative transfer case, we set T1 = (55, 75), T2 = (55, 75) The reward functions are:

Rs(l1, l2) =

((l1 ≥ 55) ∨ (l1 ≤ 35)) ∧ ((l2 ≥ 55) ∨ (l2 ≤ 35)) : −2

¬” ∧ ((l1 ≥ 55) ∨ (l1 ≤ 35)) ∧ ¬((l2 ≥ 55) ∨ (l2 ≤ 35)) : −1

¬” ∧ ¬((l1 ≥ 55) ∨ (l1 ≤ 35)) ∧ ((l2 ≥ 55) ∨ (l2 ≤ 35)) : −1

otherwise : 0

,

Rt(l1, l2) =

((l1 ≥ 75) ∨ (l1 ≤ 55)) ∧ ((l2 ≥ 75) ∨ (l2 ≤ 55)) : −2

¬” ∧ ((l1 ≥ 75) ∨ (l1 ≤ 55)) ∧ ¬((l2 ≥ 75) ∨ (l2 ≤ 55)) : −1

¬” ∧ ¬((l1 ≥ 75) ∨ (l1 ≤ 55)) ∧ ((l2 ≥ 75) ∨ (l2 ≤ 55)) : −1

otherwise : 0

,

Pick-and-Place
The Pick-and-Place domain consists of two continuous position variables x and y. We set ranges for both variables as x ∈ [0, 10]
and y ∈ [0, 10]. Values outside of the range are clipped to the range. We use a Boolean variable b ∈ {True, False} to
indicate if the agent is holding an item. The agent automatically picks up an item if it is within an item region. We bound
the item region via a boundary tuple I = (Iminx

, Imaxx
, Iminy

, Imaxy
). Similarly, we define boundaries for two goal regions

via G1 = (G1minx
, G1maxx

, G1miny
, G1maxy

) and G2 = (G2minx
, G2maxx

, G2miny
, G2maxy

). A reward of 1 will be
given to the agent if it is holding an item and is within one of the goal region. The agent has four discrete actions A =
{meast,mwest,mnorth,msouth} that can move along the x and y axis with an increment of 1. The agent can only take one
action at a time. The transition and reward functions are shown below:

P (b′|b, x, y) =

x ≥ Iminx ∧ x ≤ Imaxx ∧ y ≥ Iminy ∧ y ≤ Imaxy : 1.0

¬” ∧ x ≥ G1minx ∧ x ≤ G1maxx ∧ y ≥ G1miny ∧ y ≤ G1maxy : 0.0

¬” ∧ x ≥ G2minx ∧ x ≤ G2maxx ∧ y ≥ G2miny ∧ y ≤ G2maxy : 0.0

¬” ∧ b = True : 1.0

otherwise : 0.0

,

x′ =

meast : min(max(0, x+ 1), 10)

mwest : min(max(0, x− 1), 10)

otherwise : x

, y′ =

mnorth : min(max(0, y + 1), 10)

msouth : min(max(0, y − 1), 10)

otherwise : y

,

R(b, x, y) =

b ∧ (x ≥ G1minx ∧ x ≤ G1maxx ∧ y ≥ G1miny ∧ y ≤ G1maxy) : 1

¬” ∧ b ∧ (x ≥ G2minx ∧ x ≤ G2maxx ∧ y ≥ G2miny ∧ y ≤ G2maxy) : 1

otherwise : 0

,

For the positive transfer case, we set G1 = (0, 2, 8, 10), G2 = (0, 2, 0, 2) we set increase the reward for dropping off an item
to G2 to 2. The reward functions are:

Rs(b, x, y) =

b ∧ (x ≥ 0 ∧ x ≤ 2 ∧ y ≥ 8 ∧ y ≤ 10) : 1

¬” ∧ b ∧ (x ≥ 0 ∧ x ≤ 2 ∧ y ≥ 0 ∧ y ≤ 2) : 1

otherwise : 0

,

Rt(b, x, y) =

b ∧ (x ≥ 0 ∧ x ≤ 2 ∧ y ≥ 8 ∧ y ≤ 10) : 1

¬” ∧ b ∧ (x ≥ 0 ∧ x ≤ 2 ∧ y ≥ 0 ∧ y ≤ 2) : 2

otherwise : 0

,

For the negative transfer case, we set G1 = (0, 2, 8, 10), G2 = (8, 10, 0, 2) and invert the reward values:

Rs(b, x, y) =

b ∧ (x ≥ 0 ∧ x ≤ 2 ∧ x ≥ 8 ∧ x ≤ 10) : 1

¬” ∧ b ∧ (x ≥ 8 ∧ x ≤ 10 ∧ x ≥ 0 ∧ x ≤ 2) : −1

otherwise : 0

,

Rt(b, x, y) =

b ∧ (x ≥ 0 ∧ x ≤ 2 ∧ x ≥ 8 ∧ x ≤ 10) : −1

¬” ∧ b ∧ (x ≥ 8 ∧ x ≤ 10 ∧ x ≥ 0 ∧ x ≤ 2) : 1

otherwise : 0

,

Power Generation
We model 3 power producers (p1, p2, p3) that act cooperatively to meet a daily demand d. The demand d depends on a Bernoulli
random variable b that adds additional demands on top of a base demand amount. We model the respective product costs for the
3 producers as C = (c1, c2, c3). The income per unit is a constant value for all producers. There is a large penalty for unfulfilled
demand. For each power producer, the agent can increase or decrease production level via action A = {d1, d2, d3, i1, i2, i3}
by an increment of 1. The agent can only take one action at a time. The goal of the agent is to find the optimal production level
l1, l2, l3 for each power producer, bounded by the range [0, 10]. The transition and reward functions are shown below:

P (b) ∼ Bernoulli(0.5)

d = 25 + b ∗ 5

l1′ =

i1 : min(max(0, l1 + 1), 10)

d1 : min(max(0, l1− 1), 10)

otherwise : l1

l2′ =

i2 : min(max(0, l2 + 1), 10)

d2 : min(max(0, l2− 1), 10)

otherwise : l2

l3′ =

i3 : min(max(0, l3 + 1), 10)

d3 : min(max(0, l3− 1), 10)

otherwise : l3

,

R(l1, l2, l3) =

{
(l1 + l2 + l3) ≥ d : d · 8− (l1 · 1 + l2 · 2 + l3 · 3)
otherwise : −50 + (l1 + l2 + l3) · 8− (l1 · 1 + l2 · 2 + l3 · 3)

,

For the positive transfer case, we set cost values Cs = (5, 5, 5) for the source domain and Ct = (7, 5, 5) for the target
domain.

Rs(l1, l2, l3) =

{
(l1 + l2 + l3) ≥ d : d · 8− (l1 · 5 + l2 · 5 + l3 · 5)
otherwise : −50 + (l1 + l2 + l3) · 8− (l1 · 5 + l2 · 5 + l3 · 5)

,

Rt(l1, l2, l3) =

{
(l1 + l2 + l3) ≥ d : d · 8− (l1 · 7 + l2 · 5 + l3 · 5)
otherwise : −50 + (l1 + l2 + l3) · 8− (l1 · 7 + l2 · 5 + l3 · 5)

,

For the negative transfer case, we set cost values Cs = (5, 5, 5) for the source domain and Ct = (7, 7, 7) for the target
domain.

Rs(l1, l2, l3) =

{
(l1 + l2 + l3) ≥ d : d · 8− (l1 · 5 + l2 · 5 + l3 · 5)
otherwise : −50 + (l1 + l2 + l3) · 8− (l1 · 5 + l2 · 5 + l3 · 5)

,

Rt(l1, l2, l3) =

{
(l1 + l2 + l3) ≥ d : d · 8− (l1 · 7 + l2 · 7 + l3 · 7)
otherwise : −50 + (l1 + l2 + l3) · 8− (l1 · 7 + l2 · 7 + l3 · 7)

,

