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Abstract

Markov Decision Processes (MDPs) are a popular model for
probabilistic planning. Actions in MDPs are applied sequen-
tially, and their effects are instantaneous. Yet, real-world sce-
narios often involve actions with duration and parallel action
execution. This paper considers CoMDPs, a model that ex-5

tends MDPs with durative, concurrent actions, and describes
TP-MCTS, an online algorithm for solving CoMDPs that
combines Monte Carlo Tree Search (MCTS) with techniques
used in classical temporal planning. TP-MCTS uses a com-
pilation of durative actions to Start and End actions and en-10

hances each tree node with a Simple Temporal Network to
maintain temporal consistency and schedule the plan’s action.
Our empirical evaluation demonstrates the efficacy of the TP-
MCTS algorithm in tackling CoMDPs.

Introduction15

In many applications, the controlled system has multi-
ple actuators that can perform diverse durative (i.e., non-
instantaneous) actions concurrently. Examples include hu-
manoid robots and other robots with multiple actuators, co-
operative multi-agent systems, and smart homes. Moreover,20

such domains often feature temporal constraints such as
deadlines (the meal should be ready by 5PM) and time win-
dows (solar charging is possible between 10AM-6PM), im-
plying that both relative and absolute timing of actions in a
plan are important for successful behavior. Classical tempo-25

ral planning has developed diverse techniques and planners
that deal with these issues, including (Long and Fox 2003b;
Schoenauer, Savéant, and Vidal 2006; Vidal and Geffner
2006; Coles et al. 2010a; Bit-Monnot et al. 2020; Panjkovic
and Micheli 2023). However, classical temporal planning as-30

sumes that action effects are deterministic. Yet, in many ap-
plications, many actions are stochastic, with various failure
modes and potential side effects. Stochastic actions are mod-
eled using Markov decision processes (MDPs). However,
MDPs assume that actions are applied sequentially, that their35

effects are instantaneous, and typically do not consider tem-
poral constraints. Extensions of PO/MDPs to the multi-agent
case allow concurrency and consider joint-actions (Bern-
stein et al. 2002). However, joint-actions, too, are typically
instantaneous and synchronized.40

In this paper, we seek to model and solve domains that
have durative actions with stochastic effects that can be ap-

plied concurrently in the presence of deadlines. Various vari-
ants of this problem were considered by diverse authors but
only in the offline setting. Of these, the most closely re- 45

lated works include the Prottle planner (Little, Aberdeen,
and Thiébaux 2005), Buffet and Aberdeen’s gradient-based
solver (Buffet and Aberdeen 2009), and Mausam and Weld’s
Concurrent MDP (CoMDP) formalism. In these models, ac-
tions can only be inserted in pivot points – points in time in 50

which some action’s execution terminates. However, some
domains with required concurrency and complex temporal
constraints cannot be solved given these restrictions (e.g.,
see (Mausam and Weld 2008)).

In this paper, we consider a model similar to 55

CoMDPs (Mausam and Weld 2008). We focus on stochastic
actions with deterministic durations that are identical for all
outcomes of an action, although our technique is easily ex-
tendable to the case in which different outcomes have differ-
ent (deterministic) durations. We seek an online algorithm 60

that can schedule actions in arbitrary, non-pivot, time points,
and propose the TP-MCTS (Temporal Planning Monte Carlo
Tree Search) algorithm, which combines the well-known
Monte Carlo Tree Search (MCTS) algorithm (Coulom 2006)
with ideas from classical temporal planning. Specifically, 65

the nodes of the tree developed by TP-MCTS contain both
a state and a Simple Temporal Network (STN) (Dechter,
Meiri, and Pearl 1991), which represents the various tempo-
ral constraints the plan must satisfy and come with efficient
consistency checking and solution generation algorithms. To 70

the best of our knowledge, this is the first online algorithm
to tackle this domain setting, enabling us to solve more com-
plex problems.

To handle concurrency, the original durative actions are
first transformed into instantaneous action pairs (Coles et al. 75

2010b; Benton, Coles, and Coles 2012; Jiménez, Jonsson,
and Palacios 2015) consisting of a Start and End action. This
transformation fits nicely with the STN framework, as it en-
tails a simple temporal constraint between these two new
actions. A classical MCTS algorithm is then employed to 80

solve the transformed problem. The tree search algorithm
is oblivious to the fact that the Start and End actions cor-
respond to the same action or that there might be temporal
constraints between actions. The STN component handles
this part of the problem. It verifies and ensures that the plan 85

generated by the MCTS remains temporally consistent and,



if not, prunes this branch. Thus, MCTS deals with action or-
dering, as in typical MDPs, while the STN coupled with the
transformed domain model takes care of their actual timing.
While MCTS estimates the value of leaf nodes using roll-90

outs, TP-MCTS adapts the temporal relaxed planning-graph
heuristic (TRPG) (Coles et al. 2008) to our stochastic setting
and uses it to assign value to leaf nodes.

We conducted an extensive empirical evaluation of our
algorithm, comparing it with an online version of Mausam’s95

concurrent MDP algorithm (Mausam and Weld 2008) on the
two domains used by Mausam on a novel Stuck-Car domain
and three additional synthetic domains, showing the clear
advantage of our approach. Code and domains can be found
at https://github.com/taliBerman5/TP MCTS.100

Related Work
(Classical) temporal planning is a well-established research
field that focuses on solving classical planning problems in-
volving durative actions and concurrent execution (Fox and
Long 2003). Work in this area focuses on deterministic ac-105

tions with action durations that are deterministic or confined
to some interval duration.

More recently, (Carreno, Petillot, and Petrick 2022) in-
troduced TraCE, a temporal planner for contingent domains
with concurrent actions and partial observability. TraCE110

assumes state-changing actions are deterministic and only
sensing actions are non-deterministic. It selects a possible
initial state and identifies the longest (in terms of actions
count) deterministic plan from it. This plan contains the or-
dering and execution time of actions according to the tem-115

poral constraints. The planner constructs a tree by traversing
the discovered plan, branching on the value of sensing ac-
tions encountered. TP-MCTS does not deal with partial ob-
servability, but models stochastic action effects rather than
deterministic effects and uses a different search technique120

that maintains temporal information within each tree node.
Unlike classical methods, Markov decision processes

(MDPs) (Puterman 2005) model stochastic actions. Semi-
Markov decision processes (SMDPs) extend them to model
stochastic actions with stochastic durations. Action duration125

is modeled as a continuous random variable. This variable’s
distribution may depend on the original state and the action.
However, action execution in SMPDs is sequential, while
we seek to model concurrent execution and handle deadlines
and other temporal constraints.130

Constrained MDPs(CMDPs) (Altman 1999) and
SMDPs (Beutler and Ross 1986) extend MDPs and SMDPs
with constraints on the system’s behavior and the agent’s
actions. The objective in CMDPs is maximizing the ex-
pected cumulative reward while satisfying the constraints.135

The constraints are defined as a function g : S×A×S → R
where S are the system states, and A are the actions. The
function g denotes the cost of the transition (s, a, s′) where
s, s′ ∈ S, and a ∈ A. Durative actions could be defined by
setting transition costs to the transition durations. However,140

this model, too, would capture sequential execution only.
Furthermore, temporal constraints have specific features
that one can exploit using techniques such as STNs. Our

work exploits such temporal planning techniques to handle
these constraints, and models concurrent execution. 145

Few works tackle concurrent probabilistic durative do-
mains. Little, Aberdeen, and Thiebaux introduced The Prot-
tle planner (Little, Aberdeen, and Thiébaux 2005), which
formalizes the search space as an AND/OR graph. The AND
nodes represent a chance associated with the probabilistic 150

events, and the OR nodes represent a choice associated with
action selection. There are two options to use each node, as
a selection or advancement. The selection choice selects ac-
tions and the advancement chance advance time to the next
event. Their action description is more expressive than ours 155

– they allow for effects at arbitrary time points and outcomes
with different durations – their formulation restricts the de-
cision epochs to pivot points. As discussed in (Mausam and
Weld 2008), this restriction implies incompleteness in the
general case. In contrast, our algorithm extends beyond the 160

confines of pivot points, providing a more versatile and com-
prehensive solution. Buffet and Aberdeen (Buffet and Ab-
erdeen 2009) introduced a factored policy gradient approach
that also allows actions only in pivot points. Foss and On-
der (Foss and Onder 2005) employ STN to capture tem- 165

poral constraints, as in our approach but their uncertainty
is not probabilistic and only over time. Beaudry, Kabanza
and Michaud (Beaudry, Kabanza, and Michaud 2010a) con-
struct a Bayesian Network, which is more general than an
STN but uncertainty is over durations, not effects. Further- 170

more, their adaptation of the RPG heuristic is geared to
this property, whereas our adaptation is for uncertain ef-
fects. Beaudry, Kabanza, and Michaud extended their work
(Beaudry, Kabanza, and Michaud 2010b) to encompass re-
source uncertainty, a focus shared with Colas’s work (Coles 175

2012), contrasting with our work, which centers on proba-
bilistic effects.

The approach that addresses a problem setting most
similar to ours is Mausam and Weld’s Hybridized Plan-
ner (Mausam and Weld 2008) for solving concurrent 180

Markov decision processes (CoMDPs). CoMDPs extend
MDPs by modeling actions as durative and by allowing the
execution of multiple non-interacting durative actions si-
multaneously. Since we use them as our baseline, we dis-
cuss them in more depth in the next section. Their main 185

weakness is that they reduce CoMDPs to an MDP with po-
tentially exponentially larger action space and much larger
state space, do not support temporal constraints, and cannot
model and solve problems with required concurrency and
other domains that require scheduling actions to non-pivot 190

points.

Background
Markov Decision Process
In this paper, we focus on goal-oriented, factored MDPs.
Factored MDPs assume that states are assignments to vari- 195

ables. Goal-oriented MDPs, closely related to stochastic-
shortest path problems, assume a set of terminal goal states.
We model them as a three-tuple: ⟨P,A,G⟩ where

• P is a set of propositional variables that induce a state
space S consisting of all possible truth assignments to P . 200



• G is a set of literals over P .
• A is a set of actions, where each action a ∈ A is a pair

(Pre, Eff) such that:

– Pre are a’s precondition: a list of literals over P .
– Eff are a’s effects, consisting of a set of triples205

(C,E, p), where C and E is a conjunction of literals
representing a context (condition) and an effect, and
p ∈ (0, 1] is its probability. The set of contexts associ-
ated with an action’s effects is mutually exclusive and
exhaustive, and the sum of probabilities of effects with210

the same context is 1.

Action a =(Pre, Eff) is applicable in a non-terminal state
s only if s |=Pre. Let (C1, E1, p1), . . . (Ck, Ek, pk) be all
triples in Eff such that s |= Ci. If a is applied in state s
then effect Ei will occur with probability pi, and the result-215

ing state s′ will be identical to s on every proposition p ∈ P
such that p does not appear (possibly negated) in Ei, and ev-
ery other proposition will be assigned its value in Ei. It is
also possible to associate a cost with each action. States sat-
isfying G are terminal and are considered goal states. There220

are various ways this can be modeled as a reward function.
For example, one can associate a positive reward with ev-
ery goal state and use a discount factor γ < 1, or one can
associate a strictly negative reward with actions.

Monte-Carlo Tree Search225

Monte-Carlo Tree Search (MCTS) (Coulom 2006; Kocsis
and Szepesvári 2006; Keller and Helmert 2013) is a class
of sampling-based search algorithms for sequential decision
problems that attempt to balance exploration and exploita-
tion. Each iteration in MCTS consists of four stages:230

• Selection: The algorithm traverses from the root down
the tree until it reaches a leaf node or a terminal state
using the tree policy.

• Expansion: Once a leaf node is reached, a new child node
is added to the tree.235

• Simulation: From the newly expanded node, the algo-
rithm follows a default policy until a terminal state is
reached. This is called a rollout. The rewards obtained
during this rollout provide an estimate of the node’s
value. We will replace this simulation phase with an al-240

ternative method for estimating the leaf node’s value.
• Back-propagation: starting from the added node, values

are propagated up the tree, updating nodes on the path
from the root to the newly added node.

MCTS is an anytime online planning algorithm: the num-245

ber of iterations executed depends on the time allocated for
decision-making, and at each point in time, a single decision
is made: what should be the next action? This action is exe-
cuted and the algorithm continues to select the next action.

Simple Temporal Networks250

Simple Temporal Networks (STNs) (Dechter, Meiri, and
Pearl 1991) provide a convenient framework for analyzing
temporal aspects in scheduling problems. Formally, an STN
is a pair S = (T , C) where T is a set of temporal variables

(events); and C is a finite set of binary constraints on T , each 255

of the form:
Y −X ≤ δ (1)

where X,Y ∈ T and δ ∈ R.
A solution to a given problem instance S is referred to as

a schedule. A schedule is a function σ : T → R, assigning
a real value to each event in T such that all constraints in C 260

are satisfied. If such a schedule for an instance S exists then
the STN is called consistent.

The Original CoMDPs
CoMDPs (Mausam and Weld 2008) extend MDPs to allow
for concurrent execution of non-interacting actions by pre- 265

processing the domain and generating new actions that are
combinations of existing actions. A combination can con-
tain any set of actions, no pair of which is mutually exclu-
sive. Two actions are considered mutex if one of the follow-
ing holds: (1) Their preconditions are inconsistent. (2) Their 270

effects are contradictory. (3) One action’s precondition con-
flicts with the possible effects of another action. (4) One ac-
tion’s effect possibly modifies a proposition that influences
another action’s transition probabilities. CoMDPs extend the
state space to include the active actions and the remaining 275

execution time for each of the active actions. This compila-
tion step is quite costly. It can lead to an exponential blow-up
in the set of actions and adds numerous real-valued variables
to the state space. This greatly increases the branching factor
of their search tree, but also leads to shorter solutions. 280

CoMDPs restrict transitions to specific time points.
Mausam and Weld (MW) consider two schemes: In the In-
terwoven Epoch approach, transitions occur when an action
within the current actions combination terminates. Time is
progressed to this time point, the state is updated with the 285

action’s effects, and the remaining actions’ remaining-time
variables are updated. In the Aligned Epoch approach, a
new action can be applied only when all actions in the cur-
rent combination terminate. In both cases, the result is an
MDP over an extended state-space, which they solve using 290

the RTDP algorithm (Barto, Bradtke, and Singh 1995). In
comparison, TP-MCTS allows for flexible action schedul-
ing handled by the STN, and the model it uses increases the
number of actions by a factor of two, only.

MW’s model considers only durative actions with a pre- 295

condition that must hold when the action starts and an effect
that holds at the end. The preconditions and the effects of a
parallel action combination is simply the union of the pre-
conditions and effects (suitably timed) of its component ac-
tions. This, combined with the restrictions on action timing, 300

implies that their formalism cannot model scenarios such
as the well-known match cellar problem (Coles et al. 2009)
where you must fix a fuse using light provided by a match
for which more flexible concurrent scheduling is required to
solve the problem. 305

The Models
Our decision model is a concurrent MDP similar to MW’s
model, except that we allow a richer class of durative actions
as used in deterministic temporal planning: actions can have



both start and end conditions and effects, as well as concur-310

rency, or overall conditions – i.e., conditions that must hold
throughout the action execution. This allows modeling more
complex domains such as the classical match cellar in which
the solution requires careful scheduling of concurrent ac-
tions. There, the action light-match must overlap the action315

fix-fuse which has an overall condition light, which is a start
effect of light-match and is negated by the end effect of light-
match. Hence, light-match must start before fix-fuse and end
after it ends. We also support deadlines and time windows
through the use of timed-initial-literals (TILs) (Edelkamp320

and Hoffmann 2004). We will (re)use the term CoMDP to
refer to this model class.

Formally, a Goal-oriented CoMDP is a tuple
⟨P,A, T r,G, s0,TILs⟩ where:

• P is the set of propositions, defining a state space S con-325

sisting of all possible truth assignments to P .

• A is a set of durative actions: a = (P,E, dI) where:

– P = (PS , PO, PE) defines the conditions of a, con-
sisting of three sets of propositions determining the
applicability of action a, referred to as start condition,330

overall condition, and end condition.
– E = (ES , EE), where ES and EE are the start effects

and end effects of a, respectively. ES and EE are de-
fined as in factored MDPs, via sets of triples (c, e, p).

– dI is the (controllable) duration interval(s). The deci-335

sion maker can select any duration within dI . To sim-
plify notation, we will assume henceforth that dI =
[d, d] is a point interval.

• G is a set of literals denoting the goal condition.

• TILs = {(li, ti)|i ∈ I} are called timed initial literals.340

li is some literal over the propositions in P and ti ≥ 0
denotes a time in which this literal becomes true. TILs
allow us to model deadlines and time windows.

• s0 is the initial state.

The application of a at time t causes two instantaneous345

changes of the system’s state: at time t, when a is applied,
the state changes according to ES . At time t + d, the state
changes according to EE . The semantics of the changes are
identical to our description for factored MDPs.

These changes are well-defined only when a is applica-350

ble. To be applicable, the various preconditions of a must
hold at the appropriate time, and all concurrently executing
actions must not conflict with a. Below, we define a strict
mutex concept: a and a′ are mutex if some effect of one is
inconsistent with a condition of the other.355

Definition 1. Mutex: Actions a = (P,E, d) and a′ =
(P ′, E′, d′) are mutex if ES and P ′

O are inconsistent or E′
S

and PO are inconsistent or ES ∪ EE and E′
S ∪ E′

E are in-
consistent. That is, a has a start effect that contradicts one
of the overall preconditions of action a′ or vice-versa. Or,360

some potential effect of a and some potential effect of a′ at
some state s are inconsistent.1

1Weaker condition using state-dependent mutex can be defined.

Definition 2. Soft Mutex: Actions a = (P,E, d) is consid-
ered soft mutex with action a′ = (P ′, E′, d′) if PO is in-
consistent with E′

E . That is, an end effect of a′ violates the 365

overall condition of a.
From a decision-theoretic perspective, one could allow a

and a′ to occur concurrently if the probability that an incon-
sistency will arise is sufficiently low. However, as long as
the impact of this event is not clear (e.g., it could be catas- 370

trophic), it is difficult to weigh it properly. The latter requires
defining outcomes for joint actions given all their possible
relative timings. This is highly complex and not likely to be
realistic.

We say that a = (P,E, d) is applicable at time t if the 375

system’s state is s, PS is satisfied in s, PO is satisfied in
every time point t′ such that t < t′ < t + d, PE is satisfied
at t+ d, no action a′ that is mutex with a is executed within
the interval [t, t + d], and every action a′ = (P ′, E′, d′)
that is soft-mutex with a that is executed within an interval 380

[t, t+d′], satisfies t+d′ < t+d (i.e., a′ ends before a ends).
Our ultimate optimization criterion is maximizing the

sum of (possibly discounted) rewards. However, in our ex-
periments, we consider goal achievement under deadlines,
and so our focus will be on maximizing expected goal 385

achievement while satisfying deadlines and other temporal
constraints.

The Transformed Model
In the CoMDP model time is continuous but state changes
are discrete events occurring at the start and end of an ac- 390

tion. For this reason, it is possible and convenient to com-
pile durative actions into instantaneous actions (e.g., (Coles
et al. 2010b; Benton, Coles, and Coles 2012; Jiménez, Jons-
son, and Palacios 2015) and others), obtaining what we refer
to as the transformed model. A durative action a is split into 395

two instantaneous actions astart and aend, where astart cap-
tures the start preconditions and effects and aend captures
the end preconditions and effects. With this compilation, we
can represent concurrent execution of actions a, a′ by per-
forming astart, a

′
start, a

′
end, aend, for example. 400

However, this compilation does not address two issues:
the overall conditions of an action, and the duration of the
action. To ensure that the overall conditions are satisfied, we
add one new fluent for each action that is true while the ac-
tion is executing. We make its negation a precondition of 405

the start (respectively, end) action that is mutex (resp. soft-
mutex) with this action. To ensure that aend occurs d time
units after astart, we use an STN to keep track of such con-
straints. We now formally define the transformation from
a CoMDP to a regular MDP with temporal constraints by 410

specifying the new MDP and the temporal constraints asso-
ciated with each state.

Given a CoMDP ⟨P,A, T r,G, s0⟩ (we are ignoring the
TILs, whose treatment is straightforward), the transformed
model is a factored MDP M = ⟨P ′,A′,G, s0⟩ with a set of 415

constraints C, such that:
• P ′ = P ∪ {InExecution(a)|a ∈ A}
• A′ = {astart = (Pastart

, Eastart
)|a ∈ A} ∪

{aend = (Paend
, Eaend

)|a ∈ A} where, assuming a =



Action PushSofa  - 
Precondition: 
AtStart: 
overAll: free(hands)
AtEnd:
Start effect: tired
Effect: next_to_wall(sofa),
Duration: [2,2]

Action End_PushSofa  - 
Precondition: InExecution(PushSofa)
Effect: next_to_wall(sofa),

  ⌐InExecution(PushSofa)

Action Start_PushSofa  - 
Precondition:⌐InExecution(PushSofa)

                free(hands)
Effect: tired,
   InExecution(PushSofa)
End Action: End_PushSofa

Figure 1: Spliting the durative action PushSofa. To push the
sofa against the wall, the robot’s hands must be free. While
it pushes the sofa, its hands are in use. After two seconds the
robot finishes pushing, and the sofa is aligned with the wall.

(P,E, d), P = (PS , PO, PE) and E = (ES , EE):420

– Pastart = PS ∪ (PO \ ES) ∪ ¬InExecution(a)

– Eastart
= ES ∪ InExecution(a)

– Paend
= PE ∪ InExecution(a)

– Eaend
= EE ∪ ¬InExecution(a)

Above we assume no self-overlapping actions, i.e., two425

copies of the same ground action cannot overlap.2 No-
tice that if the original effects are stochastic, then so are
those of astart and/or aend, with the added effect on the
InExecution proposition. Because of the latter, the state
at each point reflects the set of currently executing actions.430

Figure 1 illustrates the logic of splitting a durative action.
Additional preconditions and effects ensure that mutex

and soft-mutex actions are not applied incorrectly:

• If a is mutex with a′, add ¬InExecution(a) to the pre-
condition of a′start.435

• If a is soft-mutex with a′, add ¬InExecution(a) to the
precondition of a′end.

In addition, the correspondence between every pair astart
and aend corresponding to an original action a must be
maintained so that the algorithm can add the relevant con-440

straint to the STN.

The TP-MCTS Algorithm
It is possible to solve a CoMDP offline optimally by devel-
oping the full And-Or search tree described next, and for-
mulating the problem as a Mixed Integer Linear Program.445

A similar encoding could be used online for a partially de-
veloped tree with heuristic values at leaf nodes. Boolean in-
dicator variables would be associated with tree edges, and
continuous variables would be associated with each node.
Boolean constraints would encode the structure of a legal450

policy, i.e., one edge indicator true for Or nodes, and all
outcome edges indicators below a true action indicator are

2If self-overlapping actions are allowed, planning complexity
becomes undecidable already with deterministic action.

true). The needed temporal constraints will be added be-
tween actions. The indicator variables turn on/off the asso-
ciated constraints using a standard technique (Belotti et al. 455

2016). Yet, as observed there, this method does not work
well in practice. Hence, we present below a heuristic ap-
proach that comes with no guarantees, yet, as our empirical
evaluation shows, it is better than previous methods.

The TP-MCTS algorithm solves problems modeled as a 460

CoMDP. It applies MCTS to the transformed domain con-
structing a search tree in which each tree node contains
the state reached and an STN representing the temporal
constraint associated with the branch ending at this node.
Roughly speaking, if the STN is consistent, then a legal 465

schedule representing this branch exists.
The proposed algorithm makes three assumptions:

Assumption 1. The goal is considered achieved once all of
the propositions p ∈ G (where G represents the set of goal
propositions) are satisfied, even if it occurs in the middle of 470

action execution.
Assumption 2. Once the execution of an action starts, it
cannot be stopped.
Assumption 3. The algorithm does not take into account the
passage of time during the search, i.e., the time is considered 475

stopped during the search phase and resumes once an action
is chosen.

We now describe TP-MCTS. Its pseudo-code is shown in
Algorithm 1. It is intentionally simplified for clarity by ig-
noring two issues: (1) A search-depth parameter is used to 480

constrain the depth of the search tree. Nodes deeper than this
parameter are not considered. (2) The tree contains inter-
leaved action nodes and state nodes. The pseudo-code treats
them as a single node, although each action node may have
multiple state-node children. 485

TP-MCTS starts by constructing a transformed problem
and then repeats the following steps: Search to find the next
action, Schedule the action, Step – apply the action, and Up-
date the STN. Search is the main step, which modifies clas-
sic MCTS and consists of four stages: Selection, Expansion, 490

Evaluation, and Backpropagation.
In the Select function, the tree is traversed starting from

the root until reaching a new node. The UCB criterion (Auer,
Cesa-Bianchi, and Fischer 2002) is used to select among ac-
tions (l.30), and sampling from T r is used to select the next 495

state (l.31). Select’s recursive invocation ends once we reach
a new node – either by sampling a new state for an existing
action or by sampling a new action and the following state.
Notice that UCB entails that whenever we reach an existing
node, we will sample a new action, if not all actions have 500

been sampled, so far.
Expand properly generates and adds the new node, which

contains the state reached, and an updated STN, obtained by
updating the parent STN with events and constraints related
to the relevant action, as described below. 505

The original MCTS algorithm now uses a simulation (roll-
out) step to evaluate the node’s value. Instead, TP-MCTS
uses the function Evaluate to estimate the node’s value us-
ing a variant of temporal relaxed planning graph heuris-
tic (TRPG) (Coles et al. 2008). Moreover, to reduce the 510



Algorithm 1: TP-MCTS

1: procedure TP-MCTS(CoMDP ⟨P,A, T r,G, s0⟩)
2: ⟨P ′,A′,G, s0⟩ = Transform(⟨P,A, T r,G, s0⟩)
3: root = s0
4: STNroot ← initSTN()
5: repeat
6: a← SEARCH(node(root, STNroot))
7: t← SCHEDULE(a, STNroot)
8: root← step(root, a)
9: STNroot ← updateSTN(a, t, STNroot)

10: until Terminal(root)
11: end procedure
12: procedure SEARCH(node n)
13: while within computational budget do
14: (snew, anew, STNpar.)← SELECT(n)
15: nnew ← EXPAND(snew, anew, STNpar.)
16: v ← EVALUATE(nnew)
17: BACKPROP(nnew, v)
18: end while
19: return bestAction(n)
20: end procedure
21: procedure EVALUATE(node n)
22: a1, ..., ak ← draw k actions applicable in n
23: for i in 1, ..., k do
24: si ← step(n.State, ai)
25: vi ← PTRPG(si)
26: end for
27: return maxi vi
28: end procedure

29: procedure SELECT(node n)

30: a = argmaxa′ a child of n V (na′) + c
√

logN(n)
N(na)

31: s = step(n.State, a)
32: if n has a child n′ corresponding to a and s in the tree

then
33: Select(n′)
34: end if
35: return s, a, n.STN
36: end procedure
37: procedure EXPAND(state s, action a, STN STN )
38: if a = aend /*a is an end action*/ then
39: STNnew = STN ∪ tanew

− endP lan ≤ 0
40: STNnew = STNnew ∪ tanew ≥ tpa(anew)
41: else
42: STNnew = STN∪constraints (1)-(6)
43: end if
44: return node(s, STNnew)
45: end procedure
46: procedure BACKPROP(node n,real v)
47: Backpropagate v to the parent until reaching the root.

Average over states and maximize over actions.
48: end procedure
49: procedure SCHEDULE(action a, STN S)
50: t ← The earliest time the action can be executed ac-

cording to S
51: return t
52: end procedure

chance of under-estimating its value, Evaluate performs k
estimates: It randomly selects k applicable actions, samples
an effect for each action, and applies PTRPG (explained be-
low) to this state. The node’s value is the maximal value
among the k estimates. These k samples are maintained in515

memory for later estimates of the node’s value. The Back-
Prop function backpropagates this value up the tree to the
action applied at the root. Averaging is used between differ-
ent action outcomes and max between different actions.

Once an action is returned from the Search function, the520

Schedule function determines the execution time of the ac-
tion. The execution time is set to the earliest time the action
can be scheduled according to its STN. Then, the Step func-
tion is called which applies the action online and generates
a new STN that is updated to include the action constraints525

and its execution time. The root of the search tree uses this
STN to select the next action.

To ensure time constraints regarding the duration of ac-
tions are met, if astart was inserted into the tree at time t,
a corresponding aend must occur at t + d. We now spec-530

ify these constraints and the ordering constraints. The STN
starts with two events: startP lan and endP lan. When we
add astart to the tree, we add two temporal variables/events
to the STN: starta and enda as well as the following con-
straints:535

1. startP lan− starta ≤ 0

2. starta − endP lan ≤ 0

3. startpa(a) − starta ≤ 0, where pa(a) is the action at
parent node of a.

4. d ≤ enda − starta ≤ d, where enda is the end time of 540

a.
5. startP lan− enda ≤ 0

6. starta − endb ≤ 0 if bstart is an ancestor of astart but
bend is not

The last constraint ensures that if astart was inserted be- 545

fore some action b was completed, i.e., bstart appears before
astart but bend does not, then a must start no later than b
ends. The constraint starta + d − endP lan ≤ 0 is not in-
cluded in the STN to remain consistent with Assumption 1,
which allows the goal to be achieved even if not all actions 550

have concluded. By slightly modifying these constraints, we
can support more general controllable durations.

The PTRPG Heuristic
We estimate the value of a leaf node using TRPG – a well-
known modification of the relaxed planning graph (RPG) 555

heuristic for temporal domains. TRPG attempts to estimate
the solution’s execution time. It respects the relationship be-
tween start and end actions, i.e., an action Aend can be ap-
plied only if Astart has already been applied and a time cor-
responding to the action’s duration has passed. Only then 560

the end effects can be realized. Following the RPG, TRPG
uses delete relaxation, where a literal remains true once it is



achieved. Consequently, the TRPG heuristic does not con-
sider the issue of mutex actions.

However, TRPG assumes actions are deterministic, and565

for TP-MCTS, we must adapt it to the case of stochastic ac-
tions. Once a deterministic action is applied, there is no need
to reapply it since all its effects are already present follow-
ing its first application. One could use a similar strategy with
stochastic actions by assuming that all their possible effects570

hold. However, this is too strong a relaxation to be useful
in interesting stochastic domains. When applying an action,
our probabilistic TRPG (PTRPG) variant samples effects ac-
cording to their probability. It continues to repeat sampling
the effect once the action terminates to achieve all possible575

outcomes of the action. Effect samples are independent. For
example, consider action a with a 2-second duration and a
probabilistic end-effect. If a is first considered applicable at
time 4, then at time 6 we sample a’s end-effect for the first
time. Then, from that point on, every 2 seconds, we resample580

a’s end-effects.

Experiments
We compare TP-MCTS with the closest relevant algorithm –
the Interwoven approach proposed by Mausam and Weld in
their work (Mausam and Weld 2008). Since it uses RTDP, it585

can be adapted to the online setting. We also tested a variant
of MW that uses MCTS instead of RTDP, since MCTS is
often better suited for online planning. As with TP-MCTS,
MW-MCTS uses PTRPG to estimate nodes, Assumption 3
is maintained in both versions. The same domain represen-590

tation is used for both MW-MCTS and MW-RTDP.
The evaluation was performed on six domains. Three do-

mains are structured domains that model real-world prob-
lems: NASA Rover, Machine Shop Simple adapted from
MW’s work and a new Stuck-Car domain that exhibits more595

interesting stochastic effects. The other three domains are
synthetic domains that we use to examine basic properties
of the algorithms. We conducted experiments with two pos-
sible decision-time budgets: 1,10 seconds.

Both algorithms were implemented in Python. The exper-600

iments were run on a computer with AMD EPYC 7702P 64-
Core Processor. Each experiment was repeated 100 times.
The results are the success rate and the average makespan
of the realized trajectory over each successful run and its
standard deviation. The TP-MCTS algorithm implementa-605

tion supports domain representations written in the Unified
Planning Framework3.

Domains
Stuck Car(C). C cars are stuck in the mud. C agents must
get them out of the mud before a deadline is reached. An610

agent can push a car, the car’s gas pedal, or execute both ac-
tions simultaneously. Pushing the car has a higher success
probability than pushing the gas, but the agent can get tired,
forcing it to rest. Executing both actions simultaneously
yields a better success probability than performing each ac-615

tion independently. However, execution time is longer and
there is a probability the agent will get tired. Additionally,

3https://github.com/aiplan4eu/unified-planning

the agents can search for a rock that could potentially be
placed beneath the car to aid in its release. The quality of the
rock found by the agent influences the probability of getting 620

the car out. If the found rock has poor quality, perhaps it is
best not to invest time in placing the rock under the car.
Nasa Rover(R) A probabilistic variant of the well-known
NASA Rover domain from the 2002 AIPS Planning Compe-
tition (Long and Fox 2003a) with R different rovers. Some 625

rover actions’ execution may fail. Each rover has two hands,
good and bad hands which can execute actions simultane-
ously. However, these hands take different times to execute
the same action and have different failure probabilities.
Machine Shop(O) This domain captures a manufacturing 630

environment comprising various subtasks, including shap-
ing, painting, polishing, and more. Each subtask needs to be
performed on different pieces using specific machines. Ma-
chines can perform in parallel, but not all are capable of ev-
ery task. Pieces may need to be relocated to the appropriate 635

machine capable of executing the required subtask. Execu-
tion of a subtask can end in failure. The goal of the domain is
to successfully complete all subtasks and release all the ma-
chines. The ‘O‘ parameter indicates the amount of different
machines and pieces in the domain. 640

Simple-x In this simple domain, there are x distinct actions,
each of which accomplishes a unique goal upon comple-
tion. The duration of each action is four seconds. Impor-
tantly, there are no conflicting requirements or dependencies
among the actions. The most efficient solution is to execute 645

all actions simultaneously, resulting in a total execution time
of four seconds. As x grows, MW’s representation grows ex-
ponentially. However, the solution depth remains 1. With the
transformed model, the action space grows linearly with x,
as does the number of propositions (due to InExecution 650

propositions), while solution depth grows linearly.
Conc This domain was designed to challenge the planners’
abilities to handle problems requiring maximal concurrency
to meet a deadline. There are four actions that take 1 time
unit, two that take 2 time units, one that takes 4, and one 655

that takes 9 time units. To meet the deadline of 9 seconds,
we must always execute four actions concurrently, one from
each class, except between times 4 and 5. Each of the four
1-unit actions requires the effects of the preceding one, sim-
ilarly for the 2-unit actions. Then, an action that requires the 660

effects of the last 1,2,4 actions can be applied. It adds a new
effect and deletes all previous effects. The same 1,2,4 actions
must now re-establish these effects to achieve the goal.
Prob Conc+G A probabilistic variant of Conc. with four ac-
tions: A deterministic action with duration 8 and three prob- 665

abilistic actions with durations 4,2,1. All must succeed to
achieve the goal. Failed execution does not change the state.
Longer actions have a higher success probability. Denote the
success probability for the i-unit action, pi, i ∈ 1, 2, 4. With
a deadline of eight seconds, an i-second action can be exe- 670

cuted 8/i times, and the probability of failing to achieve the
desired effect of each probabilistic action is (1− pi)

8/i.
To evaluate the planners’ ability to handle a growing

amount of actions and their ability to distinguish between
relevant and irrelevant actions within a state effectively, we 675

introduce the G parameter, which is the number of irrele-



Table 1: Exp. Results: 1 sec. per search step. ”-”: Didn’t compile within 8h. Bold: Best.|A|, |P| – # of actions and propositions.

Success Rate (%) Average Makespan (std) Compilation Time
Problem (|A|, |P|) TP-MCTS MW RTDP MW MCTS TP-MCTS MW RTDP MW MCTS TP-MCTS MW
Stuck Car(1) (7,9) 87 33 95 10.1 (0.38) 8.9 (0.82) 10 (0.29) 0.003s 0.004s
Stuck Car(2) (24,18) 78 14 31 13.8 (0.46) 13.1 (1.01) 11.7 (0.96) 0.002s 0.039s
Nasa Rover(1) (33,27) 97 77 88 21.9 (0.59) 23.3 (0.57) 23.9 (0.6) 0.037s 0.04s
Nasa Rover(2) (66,80) 77 0 0 27.2 (0.62) - - 0.105s 74.65m
Nasa Rover(3) (99,159) 59 - - 28.9 (0.5) - - 0.194 -
Machine Shop(2) (30,26) 94 21 52 19.2 (0.33) 21.7 (0.85) 21.5 (0.55) 0.0224s 0.5s
Machine Shop(3) (75,45) 79 0 0 21.8 (0.39) - - 0.0991s 28.9m
Machine Shop(4) (148,68) 18 - - 23.3 (0.65) - - 0.355s -
Simple-10 (10,10) 100 100 45 4 (0) 4.04 (0.04) 14.1 (0.39) 0.003s 0.014s
Simple-11 (11,11) 100 51 39 4 (0) 13.8 (0.34) 13.6 (0.48) 0.003s 0.042s
Simple-12 (12,12) 100 0 29 4 (0) - 10 (0.43) 0.003s 0.148s
Simple-13 (13,13) 100 0 22 4 (0) - 11.3 (0.34) 0.003s 0.586s
Simple-15 (15,15) 100 0 28 5.4 (0.19) - 11.4 (0.27) 0.004s 8.6s
Conc (9,9) 100 0 0 10.7 (0.05) - - 0.003s 0.005s
Prob Conc+7 (11,5) 96 82 93 9.3 (0.9) 11.7 (0.19) 10 (0.24) 0.003s 0.046s
Prob Conc+8 (12,5) 93 47 92 9.25 (0.19) 13.6 (0.28) 10 (0.21) 0.003s 0.16s
Prob Conc+9 (13,5) 89 32 95 9.5 (0.22) 13.5 (0.28) 9.6 (0.22) 0.003s 0.61s
Prob Conc+10 (14,5) 90 28 90 9.3 (0.22) 13.1 (0.35) 9.5 (0.22) 0.003s 2.28s

Table 2: Results for 10 sec. per step. Names abbreviated.

Success Rate (%) Average Makespan (std)
Problem TP MW R. MW M. TP MW R. MW M.
S. Car(1) 98 40 96 9 (0.29) 7.9 (0.73) 8.3 (0.26)
S. Car(2) 76 18 26 11.9 (0.43) 12.5 (1.23) 13.5 (0.66)
Rover(1) 98 75 93 21.5 (0.53) 23.4 (0.69) 21.1 (0.48)
Rover(2) 84 0 0 24.7 (0.45) - -
Rover(3) 75 - - 27.5 (0.49) - -
Shop(2) 97 71 95 19.3 (0.34) 21.5 (0.37) 21.2 (0.28)
Shop(3) 92 0 0 21.2 (0.28) - -
Shop(4) 56 - - 21.5 (0.38) - -
Sim-10 100 100 56 4 (0) 4 (0) 13.4 (0.45)
Sim-11 100 100 36 4 (0) 4 (0) 12.8 (0.52)
Sim-12 100 100 10 4 (0) 4 (0) 10.4 (0.65)
Sim-13 100 60 26 4 (0) 13.9 (0.26) 10.2 (0.4)
Sim-15 100 0 18 4 (0) - 10.9 (0.43)
Conc 100 89 0 11 (0) 13.8 (0.09) -
P.Co+7 92 85 88 9.2 (0.18) 8.7 (0.18) 10 (0.21)
P.Co+8 95 98 91 9.2 (0.19) 9.2 (0.19) 10.1 (0.24)
P.Co+9 91 96 87 9 (0.17) 10.4 (0.17) 10.2 (0.22)
P.Co+10 92 66 92 9.3 (0.2) 11.9 (0.22) 9.5 (0.17)

vant actions added to the action set. Each garbage action
achieves a proposition that holds no relevance to the goal.
Importantly, these garbage actions are not mutually exclu-
sive (mutex) with other actions in the domain.680

Tables 1 and 2 present the experimental results for a
decision-time budget of one and ten seconds, respectively.
The average makespan is computed only over successful
runs. Hence, the primary statistic is the success rate.

A number of general results emerge: (1) MW MCTS al-685

most always dominates MW RTDP. We introduced MW
MCTS for a fairer comparison in the online setting. RTDP
is better only in the smaller Simple domain, where, due
to action non-interaction, it can update the value function
quickly. (2) TP-MCTS dominates in almost all domains.690

There are two exceptions: In Stuck Car(1), MW benefits
from its shorter solution depth. This advantage no longer
holds in the larger Stuck Car(2). MW MCTS has a higher
success rate in Prob-Conc+9. Given the performance on
other Prob-Conc variants, perhaps this is due to the vari-695

ance in the success estimates. Overall, the average solution
makespans are similar, except for the Simple-X domains.

The impact of domain size on TP-MCTS (and the other al-
gorithms) is clearly visible in the three structured domains.
(3) As expected, MW compilation time is larger than TP- 700

MCTS. There are many instances where 8 hours were not
enough to generate the domain and others where minutes
were required compared with fractions of a second. (4) As
expected, additional search time leads to increased success
rates for all algorithms. Sometimes slightly but, in a few 705

cases, significantly. Occasionally, the average makespan im-
proves, too, but only slightly. Yet, the general trends (1)-(3)
hold in both tables.

The results in Simple-x highlight the difficulty MW’s al-
gorithm has scaling up as the number of non-mutex actions 710

increases due to the exponential growth in the number of le-
gal action combinations, which implies a very large branch-
ing factor. Although the solution depth is smaller, the algo-
rithm does not have sufficient time to explore all actions and
has a low chance of detecting the solution. Given more time, 715

it is able to scale up slightly. TP-MCTS requires deeper so-
lutions, but here, MCTS combined with PTRPG is appar-
ently able to focus its exploration on more promising paths.
This difficulty is observed in other domains such as Nasa
Rover(2), Machine Shop(2), and Machine Shop(3). 720

Conclusion
We presented the TP-MCTS algorithm for planning in
MDPs with durative, concurrent actions. TP-MCTS com-
bines the idea of Monte-Carlo tree search with techniques
for temporal planning: Start and End actions, STNs, and the 725

TRPG heuristic. Using these ideas, we are able to search
as if actions are instantaneous, employing classical MDP
search techniques and focusing on their order only, while the
temporal aspects are handled by the STN. This results in a
richer yet more economical representation and a more scal- 730

able planning algorithm. There is much potential for future
work improving the heuristic or possibly considering sam-
pling action times using MCTS algorithms for continuous
action spaces (Couëtoux et al. 2011).
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