
Beyond Training: Optimizing Reinforcement Learning Based Job Shop
Scheduling Through Adaptive Action Sampling

Constantin Waubert de Puiseau, Christian Dörpelkus, Jannik Peters, Hasan Tercan, Tobias Meisen
Institute for Technologies and Management of Digital Transformation

Lise-Meitner-Strasse 27-31
42119 Wuppertal

{waubert, christian.doerpelkus, jpeters, tercan, meisen}@uni-wuppertal.de

Abstract

Learned construction heuristics for scheduling problems have
become increasingly competitive with established solvers and
heuristics in recent years. In particular, significant improve-
ments have been observed in solution approaches using deep
reinforcement learning (DRL). While much attention has
been paid to the design of network architectures and training
algorithms to achieve state-of-the-art results, little research
has investigated the optimal use of trained DRL agents dur-
ing inference. Our work is based on the hypothesis that, simi-
lar to search algorithms, the utilization of trained DRL agents
should be dependent on the acceptable computational budget.
We propose a simple yet effective parameterization, called δ-
sampling that manipulates the trained action vector to bias
agent behavior towards exploration or exploitation during
solution construction. By following this approach, we can
achieve a more comprehensive coverage of the search space
while still generating an acceptable number of solutions. In
addition, we propose an algorithm for obtaining the opti-
mal parameterization for such a given number of solutions
and any given trained agent. Experiments extending existing
training protocols for job shop scheduling problems with our
inference method validate our hypothesis and result in the ex-
pected improvements of the generated solutions.

Introduction
Research on self-learning algorithms for scheduling prob-
lems has significantly increased in recent years, driven pri-
marily by advancements in algorithms and the availability
of more affordable and powerful computing units in both in-
dustry and academia. In academia, the standardized job shop
scheduling problem (JSSP) (Pinedo 2016) is the dominant
object of study for its straightforward logical constraints
and comparability thanks to public benchmarks and libraries
(van Hoorn 2018; Waubert de Puiseau et al. 2023). While in
some successful DRL-based solution methods agents steer
existing search algorithms (Zhang et al. 2022; Ni et al. 2021)
and solvers (Tassel, Gebser, and Schekotihin 2023), in a ma-
jority, agents autonomously generate solution schedules im-
itating a construction heuristic (Zhang et al. 2020; Park et al.
2021; van Ekeris, Meyes, and Meisen 2021; Tassel et al.
2022).

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In these DRL-based construction heuristics, agents make
iterative decisions to schedule the next unscheduled oper-
ation until the entire schedule is complete. For each deci-
sion, an action is sampled from the agent’s action vector that
consists of logits representing the current operation priori-
tization. Depending on how actions are sampled from the
vector, different solutions for a JSSP are obtained. For our
purposes, we differentiate between the following sampling
strategies:

• Deterministic sampling: by greedily applying argmax
policy logits we obtain one deterministic solution per
problem instance.

• Stochastic sampling: sampling from the given distribu-
tion, where the likelihood of each action is given by the
corresponding logit.

• Exploitative/Explorative sampling: during exploitative
sampling, the likelihoods of likely actions increase even
more; during explorative sampling, the likelihoods of all
actions are assimilated. We achieve both through the δ-
sampling which we present in this paper.

In their extremes, exploitative sampling converges to-
wards deterministic sampling whereas explorative sam-
pling converges towards sampling from a uniform distribu-
tion. Stochastic sampling falls in between. In the context
of scheduling, it has only very recently been shown that
stochastic sampling can produce better-than-greedy sched-
ules even with a relatively small number of sampled solu-
tions (Iklassov et al. 2022). Motivated by this finding, our
goal is to identify the optimal sampling method for any given
trained agent and the desirable number of samples to be
evaluated. During inference, the objective is to sample in
such a way that among all sampled solutions, the comple-
tion times Cmax, also known as makespans, the shortest is
as short as possible. To avoid confusion with the common
subscript max, and for brevity, we refer to this minimum
value as C∗ throughout this paper. According to the pro-
posed nomenclature, we formulate our working hypothesis
as follows:

1. The expected C∗ is a function of the sampling strategy
and number of sampled solutions, i.e., the sample size.

2. For a fixed (non-deterministic) sampling strategy, C∗ re-
mains equal or decreases with increasing sample size.



3. For a small sample size, strongly exploitative sampling
strategies statistically lead to lower C∗ compared to very
explorative strategies. In other words, it is unlikely to find
a local and better-than-greedy minimum when deviating
more strongly from the greedy solution.

4. Conversely, for a large sample size, strongly explorative
sampling strategies statistically lead to better C∗ com-
pared to exploitative strategies, since a wider solution
space is covered.

Figure 1 summarizes our hypothesis. Moreover, if the hy-
pothesis is valid, there should exist a sampling strategy that
minimizes the expected C∗ for a given agent and sample
size.

Figure 1: Expected minimal makespans C∗ over sampling
size for different sampling strategies

Building upon our hypothesis, we introduce a new sam-
pling method and validate its effectiveness on agents trained
with two different state-of-the-art training protocols, testing
them on JSSP instances of different sizes and with differ-
ent sample sizes. Our study leads to the following valuable
contributions:

1. A new simple but effective tree-search-like solution gen-
eration algorithm for JSSP based on action sampling

2. An algorithm for the identification of the most effective
parameterizations of action sampling methods given a
trained agent and a number of samples

3. A validation of our algorithm on varios JSSP instances
of different sizes as well as on benchmark instances of
Taillard (1993).

The remainder of this paper is structured as follows: Af-
ter discussing related work, we describe our methods and
experiments. We then present and discuss the experimental
results, before drawing conclusions and giving an outlook
on future work.

Related Work
DRL-based construction heuristics. Early successful at-
tempts to solve combinatorial optimization problems with
DRL in 2016 (Bello et al. 2017) were followed by a grow-
ing wave of research tackling the JSSP (Panzer, Bender, and
Gronau 2022). Recent research focuses on effective problem
size agnostic neural network architectures, including graph
embeddings (Zhang et al. 2020; Park et al. 2021) and re-
current networks (Iklassov et al. 2022). Another trend is the
use of curriculum learning (Iklassov et al. 2022; Waubert de

Puiseau, Tercan, and Meisen 2023). Interestingly, only Ik-
lassov et al. (2022) sample multiple solutions stochastically,
although the possibility to obtain better solutions through
sampling in combinatorial problems was already established
by Kool, van Hoof, and Welling (2019). However, to the best
of our knowledge, our study is the first to focus on improv-
ing sampling methods for generating JSSP solutions using
trained agents.

Policy-guided tree search. Stochastic sampling from a
learned policy is a common concept to guide tree search
algorithms (Orseau et al. 2018). The most common search
algorithm for this integration is Monte-Carlo tree search
(MCTS). Famously, this combination was leveraged in Al-
phaGo (Silver et al. 2016) and its successors. Therein, the
expansion of nodes is determined by a linear combination of
learned Q-values or action predictions and the visit count of
states. Lately, the approach has been successfully transferred
to scheduling as well (Oren et al. 2021; Kumar and Dimi-
trakopoulos 2021). However, MCTS comes at a high com-
putational expense that is accepted in many cases because
it provides good expected values even in stochastic environ-
ments that are infeasible to approximate analytically. For the
deterministic JSSP, however, the computational budget may
be used more efficiently by sampling multiple whole trajec-
tories depth-wise from start to finish, as done in this study.

Solution space coverage. The question of how closely
to adhere to a learned policy is captured in the exploration-
exploitation tradeoff. However, this tradeoff is usually exclu-
sively considered during training. Therefore, methods like
epsilon-greedy sampling (Sutton and Barto 2018) or added
loss terms on the action confidence through entropy or cu-
riosity terms (Schulman et al. 2017; Deepak Pathak et al.
2017) do not transfer to inference. A noteworthy technique
to fine-tune exploration during inference in MCTS is to use
an exponent across the action vector (Wang, Hao, and Cao
2021; Shen et al. 2018). The primary rationale is a de- or
increased effect of action priors compared to visit counts,
but a secondary effect is a (dis-)alignment of values in the
action vector itself. Our method is inspired by this idea and
leverages the secondary effect.

For combinatorial optimization problems, depth-wise
search with DRL is mostly done by stochastic policy sam-
pling (Iklassov et al. 2022; Kool, van Hoof, and Welling
2019; Orseau et al. 2018). One exception is beam-search,
which ensures a fixed tree width k during search (Vinyals,
Fortunato, and Jaitly 2015). Known extensions make use of
problem symmetries (Kwon et al. 2020) and entropy in the
action vector for the solution space expansion (Tassel et al.
2022). Iklassov et al. (2022) compared stochastic sampling
and beam-search variations, finding that stochastic sampling
outperforms the other methods. However, they only reported
results on a single sample size. We expand this study with a
new sampling method which fine-tunes sampling for each
combination of trained agent and desired sample size.



Method and Experiments
δ-Sampling
Our proposed sampling strategy offers the possibility to ad-
just the balance between exploitative and explorative sam-
pling. To this end, we manipulate the action vector a pre-
dicted by a trained agent to obtain asample by exponentiat-
ing the predicted logits with the discrimination exponent δ
and then re-scale the vector as in equation 1.

asample =
1∑
i a

δ
i

· aδ (1)

The effect is that for δ > 1, relative differences be-
tween logits are emphasized favoring exploitation, whereas
for δ < 1 differences are decreased favoring exploration.
For δ = 1, logits remain unchanged, defaulting to stochastic
sampling. We call this procedure δ-sampling. It easily scales
to any problem size and allows to precisely adjust the sam-
pling behavior.

Given a base model and sample size, we are looking for δ∗
that minimizes C∗. We expect the functions of C∗(δ∗) to be
smooth and have a single minimum based on our hypothesis.
Hence, our algorithm starts with a grid search that iteratively
decreases the distance between the two most promising can-
didate values for δ to neighboring candidates by 50%. An ex-
ample is illustrated in Figure 2. In the first iteration (i=0), we
sample with each candidate δ from a list of candidates and
the desired sample size on validation JSSP instances iδ . The
initial list of candidates is a hyperparameter that has to be
set. Sampling returns the average of C∗ across all iδ per can-
didate. Then, additional candidates are added between the
two most promising and their adjacent candidates, round-
ing to two decimal places. If the most promising candidates
lie at minimum or maximum δ values, the initial interval is
extended by half of the largest distance between adjacent
candidates. The function repeats until a specified number of
iterations or minimal distance between adjacent candidates
is reached.

Figure 2: Three iterations of searching the optimal δ value

Experimental Setup
JSSP formalization This work deals with the common JSSP
formalization in which J jobs, consisting of O operations
are processed on M machines. Each job visits each machine
exactly once in a predefined order, such that O = M . Addi-
tionally, each operation has a specified processing time and
may not be interrupted once started (no preemption). Ma-
chines can only process one job at once (no overlap) and

setup-times are ignored. The notation of problem sizes fol-
lows the structure JxM , e.g., a 20x15 instance consists of
20 jobs á 15 operations on 15 machines.

Base Models. We perform experiments on two base
model designs that are adapted from Zhang et al. (2020) and
Iklassov et al. (2022), two competitive and often-referenced
representatives of DRL-based construction heuristics. We
refer to the base models as L2D (Zhang et al. 2020) and
L2G (Iklassov et al. 2022) in reference to their publica-
tion titles. From L2D, we can extract the openly accessible
pre-trained graph neural network weights for each respec-
tive problem size 6x6, 15x15 and 20x20, except for 100x20,
where we resort to the 30x20 model as done in the original
publication. The second base model, L2G, features a neu-
ral network architecture that uses a set2set recurrent layer
(Vinyals, Bengio, and Kudlur 2016) to be problem size ag-
nostic. Since no trained models are publicly available, we
retrain our base models according to the reported protocol,
one for each problem size, with the following curricula: for
the 15x15 and 6x6 JSSP models, we choose adaptive cur-
riculum learning and train on 6x6 and 15x15 JSSP instances.
For the 20x20 and 100x20 base model, we use the RASCL
method (Iklassov et al. 2022) and train on 6x6, 15x15, and
20x20 JSSP instances.

JSSP Instances. We test our sampling method on four
problem sizes. 15x15, 20x20, and 100x20 are common
benchmark sizes in the operations research domain. 6x6 is
also common in the literature since it is useful for the vi-
sual interpretations of results in Gantt charts. To avoid over-
fitting on test data, we create separate JSSP instances for
training and for the search of suitable sampling parameter-
izations. These Taillard-like instances are created with sep-
arate random seeds, assigning random perturbations of ma-
chine sequences to each job and sampling processing times
uniformly from the interval [1, 99].

Results
Hypothesis Validation
To empirically test our hypotheses illustrated in Figure 1,
we create 10,000 solutions (C∗

10k) on ten 6x6 JSSP instances
with our L2G base model and choose four sampling param-
eterizations:

1. random sampling, which draws actions from a uniform
distribution;

2. δ = 1 as baseline of how sampling is usually performed;
3. δ = 0.05 as extreme example of explorative sampling;
4. δ = 10 as extreme example of exploitative sampling.

Figure 3 displays the averaged minimal makespan achieved
over different sample sizes (logarithmic scale). To make up
for statistical outliers in small sample sizes, we average the
minimal makespans achieved over multiple sampling runs.
Using Python array slicing notation, this can be formulated
as in Equation 2,

1

10, 000/s

10,000/s∑
i=0

min (C∗
10k[i : s(i+ 1)]) , (2)



Figure 3: Minimal makespans over sampling size for differ-
ent sampling strategies

base problem size sample size

32 128 512

L2G

6x6 0.30 0.10 0.11
15x15 0.70 0.86 0.43
20x20 1.25 1.46 0.80
100x20 0.58 0.43 n.a.

L2D

6x6 2.06 1.37 0.93
15x15 12.25 6.02 3.32
20x20 10.35 10.38 10.05
100x20 14.0 10.88 n.a.

Table 1: Best found delta values for different base models,
problem sizes and sample sizes

where s is the sample size.
In Figure 3, we divide the plot into four zones at interest-

ing line intersections. In zone A, which in this example only
includes a sample size of one, strongly exploitative sampling
yields the best solutions. In zones B and C, stochastic sam-
pling with δ = 1 yields better makespans than strongly ex-
ploitative or explorative sampling. For sampling sizes < 50,
strongly explorative sampling with δ = 0.05 performs better
than stochastic sampling. The switch from zone B to C indi-
cates, where explorative sampling outperforms exploitative
sampling. The results in Figure 3 thereby verify our hypoth-
esis.

Optimal δ-Values
In the following we present the results of finding and us-
ing the optimal parameterizations of our action sampling ap-
proach, adhering to the sample size of 128 used in (Iklassov
et al. 2022) for comparison and adding 32 and 512 as signif-
icantly smaller and larger examplary sample sizes. We omit-
ted experiments on 100x20 JSSP with 512 samples, since we
expect little additional insights compared to the considerable
required computational times for solving large instances. Ta-
ble 1 shows the results obtained from our parameter search
algorithm per base model, problem size, and sample size.

The results show two general trends. Firstly, in accor-
dance with the above hypothesis, larger δ-values are fa-
vorable for smaller sample sizes. Secondly, more exploita-
tive sampling seems favorable with increasing problem size.

However, we also observe exceptions to these general trends.
For L2G and problem sizes 15x15 and 20x20, there is a small
increase of found δ-values from sample size 32 to 128, be-
fore they decrease again for 512. Also for L2G, the trend of
increasing δ-values with increasing problem sizes discontin-
ues for problem size 100x20. Overall, the found δ-values of
L2G are smaller in comparison to L2D. These discontinu-
ing trends, exceptions, and differences between base mod-
els lead us to believe that analytical approaches to finding
δ-values are intractable and they underscore the necessity
to determine the sampling parameterization empirically and
individually for any trained model and sample size.

For a deeper analysis, we examine the function C∗(δ)
which was tested on the evaluation instances during δ-value
search. Noteworthy representative examples of this function
are presented in Figure 4. Across all examples, the functions
satisfy the assumed smoothness and the hypothesis of a sin-
gle minimum is valid, although some noise exists. Our it-
erative algorithm to find these minima converges towards
reasonable minima, which are marked by the green trian-
gles. Note that the small local minima, e.g. in Figure 4a)
at δ ≈ 0.8, could render gradient-based methods ineffec-
tive. However, as Figure 4a) also exemplifies, δ can have
a minimal overall effect, and in cases such as Figure 4b),
the function plateaus across large δ ranges. In light of these
observations it is likely that the rare exceptions to decreas-
ing δ-values with increasing sample size in L2G in Table 1,
which were discussed above, are relics of statistical noise.

Performance Improvements
Test Instances. The effectiveness of the obtained parame-
terization is tested on 100 test instances. The average C∗

values are presented in Table 2. We report the results for
δ-sampling (ours), using stochastic sampling as in Iklassov
et al. (2022) (stochastic) as a baseline, both for three sam-
ple sizes, and the deterministic solution (deterministic). Rel-
ative improvements between ours and stochastic sampling
((stochastic − ours)/stochastic) are depicted in the last
column.

Both sampling methods find significantly better solutions
than the deterministic solution, confirming previous results
(Iklassov et al. 2022; Kool, van Hoof, and Welling 2019;
Orseau et al. 2018). Our parameterized method outperforms
stochastic sampling in 17 out of 22 cases with up to 3.2% im-
provement. Notably, improvements are achieved across all
tested sample sizes. The most notable exception is δ sam-
pling for the L2D base model on the 6x6 JSSP, which we
partially attribute to statistical uncertainty given the small
sample size of 32. An exception that persists across sam-
ple sizes is L2G on the 20x20 JSSP, where δ-sampling per-
forms slightly worse than the stochastic baseline. Overall,
we observe larger performance differences where δ deviates
more from one, i.e. stochastic sampling. This implies that
our parameter search is effective in finding stronger manip-
ulations where they are useful. On the other hand, constel-
lations where δ-values are close to one and reside within
plateaus of the function C∗(δ), as shown in Figure 4 c) and
d), only minor performance differences can be obtained, as
observed for L2G on the 20x20 JSSP.



sample size base problem size ours stochastic deterministic improvement

32

L2G

6x6 496.0 505.5 517.0 1.9%
15x15 1310.4 1311.4 1364.5 0.1%
20x20 1782.9 1782.3 1866.2 0.0%
100x20 5759.6 5764.1 5867.3 0.1%

L2D

6x6 519.3 516.1 577.1 -0.6%
15x15 1406.9 1434.6 1534.7 1.9%
20x20 1891.4 1957.4 2012.5 3.4%
100x20 5865.8 5928.4 5996.7 1.1%

128

L2G

6x6 491.7 503.6 517.0 2.4%
15x15 1300.4 1300.9 1364.5 0.0%
20x20 1769.3 1767.6 1866.2 -0.1%
100x20 5733.6 5745.1 5867.3 0.2%

L2D

6x6 504.8 506.2 577.1 0.3%
15x15 1385.7 1410.1 1534.7 1.7%
20x20 1865.8 1927.6 2012.5 3.2%
100x20 5869.8 5899.7 5996.7 0.5%

512

L2G
6x6 489.9 501.6 517.0 2.3%
15x15 1281.6 1291.7 1364.5 0.8%
20x20 1752.0 1750.6 1866.2 -0.1%

L2D
6x6 498.0 498.7 577.1 0.1%
15x15 1369.1 1386.9 1534.7 1.3%
20x20 1842.2 1879.6 2012.5 2.0%

Table 2: Average C∗ values on 100 generated test instances per problem size

s.-size base p.-size ours stochastic deterministic improvement optimal
C* (opt. gap) C* (opt. gap) C* (opt. gap) ours vs. stoch. C

32

L2G
15x15 1345.9 (9.5%) 1345.1 (9.5%) 1417.4 (15.3%) -0.1% 1228.9
20x20 1858.9 (14.9%) 1858.7 (14.9%) 1935.3 (19.7%) 0.0% 1617.3
100x20 5759.7 (7.3%) 5784.6 (7.8%) 5878.4 (9.6%) 0.4% 5365.7

L2D
15x15 1452.5 (18.2%) 1465.9 (19.3%) 1530.5 (24.5%) 0.9% 1228.9
20x20 1953.2 (20.8%) 2027.1 (25.3%) 2081.8 (28.7%) 3.6% 1617.3
100x20 5928.6 (10.5%) 5983.1 (11.5%) 6089 (13.5%) 0.9% 5365.7

128

L2G
15x15 1340.3 (9.1%) 1340.9 (9.1%) 1417.4 (15.3%) 0.0% 1228.9
20x20 1846.4 (14.2%) 1837.4 (13.6%) 1935.3 (19.7%) -0.5% 1617.3
100x20 5751.1 (7.2%) 5766.5 (7.5%) 5878.4 (9.6%) 0.3% 5365.7

L2D
15x15 1416.2 (15.2%) 1442 (17.3%) 1530.5 (24.5%) 1.8% 1228.9
20x20 1943.4 (20.2%) 2002.7 (23.8%) 2081.8 (28.7%) 3.0% 1617.3
100x20 5888.2 (9.7%) 5930.4 (10.5%) 6089 (13.5%) 0.7% 5365.7

512
L2G 15x15 1323.1 (7.7%) 1333.7 (8.5%) 1417.4 (15.3%) 0.8% 1228.9

20x20 1825.5 (12.9%) 1828.9 (13.1%) 1935.3 (19.7%) 0.2% 1617.3

L2D 15x15 1409.0 (14.7%) 1427.6 (16.2%) 1530.5 (24.5%) 1.3% 1228.9
20x20 1895.3 (17.2%) 1946.2 (20.3%) 2081.8 (28.7%) 2.6% 1617.3

Table 3: Results on Taillard Instances



Figure 4: Examples of results in the δ value search algorithm with found minima

Figure 5: Comparison of sampling methods over sample sizes

To understand those cases where very similar average
C∗ are generated, we analyze the resulting schedule differ-
ences. Within the schedules of L2G on the 15x15 JSSP with
128 samples, the most striking example, we counted in how
many cases the same schedules, measured by the same C∗,
were found per instance. Surprisingly, C∗ was equal in only
4/100 test instances. This shows that even though the aver-
age values of C∗ were less than 0.00% apart, different solu-
tions were found, such that δ still had a significant impact. In
contrast, for 6x6 JSSPs of L2G with a sample size of 128, we
obtained the same C∗ in roughly one third of the instances.
This is most likely an effect of the smaller total solution
space compared to the other problem sizes. The conclusion
is that even if only a few different solutions are found, they
can still have a significant impact, as the 1.9% improvement
demonstrates. Therefore, our sampling method is effective
for small problem sizes with smaller solution spaces, too.

Benchmark Instances. We further report the results on
benchmark instances of Taillard (1993), which we abbre-
viate as TA instances, in Table 3. In comparison, there are
only ten instances per size, but the optimal solutions are
known, enabling us to additionally provide the relative gap
(opt. gap) for reference. The effects of sampling methods
are fundamentally similar. As before, both sampling ap-
proaches outperform the deterministic solution. While the
results on L2D indicate even greater improvements through
our sampling method, the results on L2G are more ambigu-
ous. We attribute the differences of the above results to the
fact that only ten TA instances exist per problem size, in-
troducing a larger statistical error. Note that overall we find
slightly larger makespans than those reported in (Iklassov
et al. 2022), as we could not reproduce the reported perfor-

mance on benchmarks with our trained model. However, our
contribution is a relative improvement per model and sample
size applicable to any learned construction heuristic, not the
creation of a new learning strategy or network architecture.
For details on the most recent absolute results and a compre-
hensive comparison of learning-based, priority-rule-based or
heuristic methods, we refer the interested reader to (Iklassov
et al. 2022), (Corsini et al. 2024) and (Falkner et al. 2022).

In Figure 5, relative improvements on TA instances
through our adjusted sampling method can be compared
to improvements achievable by increasing sample sizes.
In many cases, we find that the achieved C∗ through δ-
sampling is similar or better than the C∗ achieved via
stochastic sampling with a four times larger sample size. In
practical terms, the same results can be achieved with a quar-
ter of the computational budget through better sampling in
these cases, rendering δ-sampling four times more efficient.

Conclusion and Outlook
In this paper, we proposed a sampling method for the more
effective usage of trained DRL-based construction heuristics
for the JSSP. We showed that an optimal balance between
exploration and exploitation during inference exists, which
is specific to the trained model and the chosen sample size.
Based on this insight, a method was developed that allows
the tradeoff between exploration and exploitation to be eas-
ily and smoothly parameterized during solution generation
of learned construction heuristics. The effectiveness of this
method was experimentally evaluated and showed promis-
ing results across different base models and computational
budgets on common JSSP sizes. We believe that our ap-
proach is neither limited to the studied base models nor the



application to the JSSP, but can be used to improve any other
learned construction heuristic on both the JSSP and other re-
lated combinatorial optimization problems.

In the future, we would like to transfer the insights gained
into training protocols that steer agents to find the best pos-
sible solutions given a previously set computational budget
to enforce a learned exploration-exploitation tradeoff. In ad-
dition, we will combine our sampling method with Monte
Carlo Tree Search (MCTS) for a more effective policy-
guided search during inference.

References
Bello, I.; Pham, H.; Le V, Q.; Norouzi, M.; and Bengio, S.
2017. Neural Combinatorial Optimization with Reinforce-
ment Learning. ICLR Workshop. http://arxiv.org/pdf/1611.
09940v3.

Corsini, A.; Porrello, A.; Calderara, S.; and Dell’Amico,
M. 2024. Self-Labeling the Job Shop Scheduling Problem.
arXiv:2401.11849.

Deepak Pathak; Pulkit Agrawal; Alexei A. Efros; and
Trevor Darrell. 2017. Curiosity-driven Exploration by Self-
supervised Prediction. International Conference on Ma-
chine Learning, 34(70): 2778–2787.

Falkner, J. K.; Thyssens, D.; Bdeir, A.; and Schmidt-
Thieme, L. 2022. Learning to Control Local Search for
Combinatorial Optimization. Falkner, Jonas K., et al. Learn-
ing to Control Local Search for Combinatorial Optimiza-
tion. Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, 13717: 361–376.

Iklassov, Z.; Medvedev, D.; Solozabal, R.; and Takac, M.
2022. Learning to generalize Dispatching rules on the Job
Shop Scheduling. Advances in Neural Information Process-
ing Systems, 33: 1621–1632.

Kool, W.; van Hoof, H.; and Welling, M. 2019. Attention,
Learn to Solve Routing Problems! International Conference
on Learning Representations, 7.

Kumar, A.; and Dimitrakopoulos, R. 2021. Production
scheduling in industrial mining complexes with incoming
new information using tree search and deep reinforcement
learning. Applied Soft Computing, 110: 107644.

Kwon, Y.-D.; Choo, J.; Kim, B.; Yoon, I.; Gwon, Y.; and
Min, S. 2020. Pomo: Policy optimization with multiple op-
tima for reinforcement learning. Advances in Neural In-
formation Processing Systems, 34: 21188–21198. https:
//arxiv.org/pdf/2010.16011.pdf.

Ni, F.; Hao, J.; Lu, J.; Tong, X.; Yuan, M.; Duan, J.; Ma,
Y.; and He, K. 2021. A Multi-Graph Attributed Reinforce-
ment Learning based Optimization Algorithm for Large-
scale Hybrid Flow Shop Scheduling Problem. In Zhu, F.,
ed., Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, ACM Digital Li-
brary, 3441–3451. New York,NY,United States: Association
for Computing Machinery. ISBN 9781450383325.

Oren, J.; Ross, C.; Lefarov, M.; Richter, F.; Taitler, A.; Feld-
man, Z.; Daniel, C.; and Di Castro, D. 2021. SOLO: Search

Online, Learn Offline for Combinatorial Optimization Prob-
lems. Proceedings of the Fourteenth International Sympo-
sium on Combinatorial Search (SoCS 2021).
Orseau, L.; Lelis, L. H. S.; Lattimore, T.; and Weber, T.
2018. Single-Agent Policy Tree Search With Guarantees.
32nd Conference on Neural Information Processing Systems
(NIPS, 32: 3201–3211.
Panzer, M.; Bender, B.; and Gronau, N. 2022. Neural agent-
based production planning and control: An architectural re-
view. Journal of Manufacturing Systems, 65: 743–766.
Park, J.; Chun, J.; Kim, S. H.; Kim, Y.; and Park, J. 2021.
Learning to schedule job-shop problems: representation and
policy learning using graph neural network and reinforce-
ment learning. International journal of production research,
59(11): 3360–3377.
Pinedo, M. 2016. Scheduling: Theory, algorithms, and sys-
tems. Springer International Publishing, fifth edition edition.
ISBN 978-3-319-26578-0.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal Policy Optimization Algorithms.
http://arxiv.org/pdf/1707.06347v2.
Shen, Y.; Chen, J.; Huang, P.-S.; Guo, Y.; and Gao, J. 2018.
M-Walk: Learning to Walk over Graphs using Monte Carlo
Tree Search. https://arxiv.org/pdf/1802.04394.pdf.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre,
L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou,
I.; Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe,
D.; Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T.;
Leach, M.; Kavukcuoglu, K.; Graepel, T.; and Hassabis, D.
2016. Mastering the game of Go with deep neural networks
and tree search. Nature, 529(7587): 484–489.
Sutton, R. S.; and Barto, A. 2018. Reinforcement learning:
An introduction. Adaptive computation and machine learn-
ing. Cambridge, Massachusetts, London, England: The MIT
Press, second edition edition. ISBN 9780262039246.
Taillard, E. 1993. Benchmarks for basic scheduling prob-
lems. European Journal of Operational Research, 64(2):
278–285.
Tassel, P.; Gebser, M.; and Schekotihin, K. 2023. An End-
to-End Reinforcement Learning Approach for Job-Shop
Scheduling Problems Based on Constraint Programming.
Proceedings of the Thirty-Third International Conference on
Automated Planning and Scheduling (ICAPS 2023), 614–
622.
Tassel, P.; Kovács, B.; Gebser, M.; Schekotihin, K.; Kohlen-
brein, W.; and Schrott-Kostwein, P. 2022. Reinforcement
Learning of Dispatching Strategies for Large-Scale Indus-
trial Scheduling. Proceedings of the International Confer-
ence on Automated Planning and Scheduling, 32: 638–646.
van Ekeris, T.; Meyes, R.; and Meisen, T. 2021. Discover-
ing Heuristics And Metaheuristics For Job Shop Scheduling
From Scratch Via Deep Reinforcement Learning. Proceed-
ings of the Conference on Production Systems and Logistics
: CPSL 2021, 709–718.
van Hoorn, J. J. 2018. The Current state of bounds on bench-
mark instances of the job-shop scheduling problem. Journal
of Scheduling, 21(1): 127–128.



Vinyals, O.; Bengio, S.; and Kudlur, M. 2016. Order Mat-
ters: Sequence to sequence for sets. 4th International Con-
ference on Learning Representations 2016.
Vinyals, O.; Fortunato, M.; and Jaitly, N. 2015. Pointer Net-
works. Advances in Neural Information Processing Systems,
29: 2692–2700.
Wang, Q.; Hao, Y.; and Cao, J. 2021. Learning to traverse
over graphs with a Monte Carlo tree search-based self-play
framework. Engineering Applications of Artificial Intelli-
gence, 105: 104422.
Waubert de Puiseau, C.; Peters, J.; Dörpelkus, C.; Tercan,
H.; and Meisen, T. 2023. schlably: A Python framework for
deep reinforcement learning based scheduling experiments.
SoftwareX, 22: 101383.
Waubert de Puiseau, C.; Tercan, H.; and Meisen, T. 2023.
Curriculum Learning in Job Shop Scheduling using Rein-
forcement Learning. Proceedings of the Conference on Pro-
duction Systems and Logistics: CPSL 2023, 34–43.
Zhang, C.; Song, W.; Cao, Z.; Zhang, J.; Tan, P. S.; and Xu,
C. 2020. Learning to Dispatch for Job Shop Scheduling via
Deep Reinforcement Learning. Advances in Neural Infor-
mation Processing Systems, 33: 1621–1632.
Zhang, C.; Song, W.; Cao, Z.; Zhang, J.; Tan, P. S.; and Xu,
C. 2022. Learning to Search for Job Shop Scheduling via
Deep Reinforcement Learning. https://arxiv.org/pdf/2211.
10936.


