
SLOPE: Search with Learned Optimal Pruning-based Expansion

Davor Bokan1, Zlatan Ajanović2, Bakir Lacevic1

1 University of Sarajevo
2RWTH Aachen University

dbokan1@etf.unsa.ba, zlatan.ajanovic@ml.rwth-aachen.de, bakir.lacevic@etf.unsa.ba

Abstract

Heuristic search is often used for motion planning and
pathfinding problems, for finding the shortest path in a graph
while also promising completeness and optimal efficiency.
The drawback is it’s space complexity, specifically storing
all expanded child nodes in memory and sorting large lists
of active nodes, which can be a problem in real-time scenar-
ios with limited on-board computation. To combat this, we
present the Search with Learned Optimal Pruning-based Ex-
pansion (SLOPE), which, learns the distance of a node from
a possible optimal path, unlike other approaches that learn
a cost-to-go value. The unfavored nodes are then pruned ac-
cording to the said distance, which in turn reduces the size
of the open list. This ensures that the search explores only
the region close to optimal paths while lowering memory and
computational costs. Unlike traditional learning methods, our
approach is orthogonal to estimating cost-to-go heuristics,
offering a complementary strategy for improving search ef-
ficiency. We demonstrate the effectiveness of our approach
evaluating it as a standalone search method and in conjunc-
tion with learned heuristic functions, achieving comparable-
or-better node expansion metrics, while lowering the number
of child nodes in the open list.

Introduction
The problem of path planning is a well-known and re-
searched topic in the fields of robotics and artificial intel-
ligence. Oftentimes, we look at a graph search task formula-
tion with the objective of finding the shortest path to the goal
with the least amount of visited nodes. To solve the prob-
lem we deploy search algorithms such as A* (Hart, Nilsson,
and Raphael 1968) or best-first search, which use a heuris-
tic to guide node expansions until reaching said goal. Classic
heuristics, such as Euclidean or Manhattan distance, are very
simple and thus do not provide great results on more compli-
cated tasks, whose ideal heuristic would require significant
domain knowledge.

Multiple works have addressed learning a cost-to-go
heuristic with deep learning methods to empower graph
search algorithms and minimize the search effort. The most
prominent one of them is SAIL (Choudhury et al. 2018),
which trains a heuristic by imitating a clairvoyant oracle and
establishes a map dataset that many works, including ours,
use. A different data-driven approach is presented in Neural

A* (Yonetani et al. 2021), which uses a canonical differen-
tiable A* search as a loss to train an encoder (U-Net) to out-
put a “guidance map” in which the search is conducted. The
guidance map is used to add more cost to suboptimal nodes,
making the search avoid them. This approach is not with-
out its downsides, being very specific and hard to generalize
or use with other search algorithms, as well as the environ-
ment having only unit node costs and the encoder having
to be tailored to high-dimensional space. In (Kirilenko et al.
2023) the authors propose the TransPath method, which uses
a supervised learning approach that teaches a transformer
model two heuristics, one being a correction factor of the
instance-independent heuristic, and the other being a prob-
ability score of a node belonging to the shortest path. The
optimal path can be sought with Theta* algorithm proposed
in (Daniel et al. 2010) and the nodes that are close to the
optimal path are added to the path probability data, other-
wise, their probability is set to 0. This produces relatively
narrow singular tunnels that could be susceptible to bottle-
necking. The path probability score is then used as hFOCAL

in the focal search. The work done by (Araneda, Greco, and
Baier 2021) enhances focal search with a learned discrep-
ancy heuristic, called Discrepancy Focal Search, similar to
an optimal path probability. Their used metric, called dis-
crepancy, is derived from the probability of a node’s sub-
path being a part of an optimal path and is used as a heuris-
tic in focal search. Besides these, some other works treat
different aspects but are still learning cost-to-go value are
Neuro-algorithmic Policy (NAP) (Vlastelica, Rolinek, and
Martius 2021), that is performing the planning on raw im-
age inputs, Groshev et al. (2018), that used initial heuris-
tics to solve problems and bootstrap the learning for solving
more complicated problems, PHS (Ajanovic, Lacevic, and
Kober 2023), that systematically explore the problem us-
ing Prolonged Heuristic Search, Q* (Agostinelli et al. 2021),
that learns one step cost together with cost-to-go and PHIL
(Pándy et al. 2022), that uses GNNs.

Related search algorithms include different partial expan-
sion and bounded-cost search algorithms like focal search
(Pearl and Kim 1982), partial expansion A* (Yoshizumi,
Miura, and Ishida 2000) and recursive approaches like re-
cursive best-first search (Korf 1993). Focal search holds a
focal list of open list nodes with f values under a certain
threshold and uses hFOCAL to order its elements for expan-

Table 1: Comparison of Contributions

Paper Name Learning approach Model type Learned heuristic Search type Node expansion

SAIL Interactive Fully connected Cost-to-go Greedy search All
Neural A* Supervised U-Net Guidance map A* Guidance map-based
TransPath Supervised Transformer Path probability Focal search hFOCAL

Discrepancy Focal Search Supervised Fully connected Discrepancy Focal search hFOCAL

SLOPE (Ours) Supervised CNN regressor Distance to p∗ Partial Expansion Pruning

sion. Partial Expansion A* (PEA*) is a modification of A*
search that adds to the OPEN list only those nodes whose f
value is less than or equal to their parent nodes stored value
plus some cutoff threshold C. If an expanded node has sub-
optimal child nodes, PEA* returns it to the OPEN list with
the worst child’s f value. Recursive best-first search expands
nodes with the best f value that is also under a threshold
and keeps track of previous second-best results. As soon as
the best f value is not monotonically decreasing, the algo-
rithm recursively returns to the previous second-best node
and continues the search from there.

In this work, we examine how a learned heuristic can di-
rect the search effort to stay within an optimal region, ef-
fectively minimizing the number of expanded nodes and
OPEN list size. Our heuristic is learned via a supervised ap-
proach and is not used in any way as a cost-to-go heuris-
tic. We propose a simple metric to evaluate a node’s “opti-
mality”, whose normalized value determines multiple grad-
ual regions to which search can be limited. Having mul-
tiple gradual regions and the method of determining them
distinguishes this work from previous ones, as we consider
this approach to be more forgiving to different used cost-to-
go heuristics and gives us the possibility to tune how strict
we want our search to be based on the environment type.
The region we consider “optimal” is wide enough to allow
all possible shortest paths in situations when they are non-
singular: something approaches with narrow optimal tunnels
do not allow. Our SLOPE search algorithms do not use the
learned heuristic for any type of OPEN list ordering or decid-
ing which node to expand- this we leave to a chosen cost-to-
go heuristic with the goal of leveraging different learned in-
formation for a better search. Our search has built-in failsafe
mechanisms that assure search completeness, even when re-
gion estimations have a bottleneck or are not connected with
the goal. For a more concise comparison, Table 1 presents
key elements of the most relevant works and this paper. To
summarize, our contributions are as follows:

• A simple approach to exploring a problem instance and
generating the region containing all possible optimal
paths, as well as neighboring regions that are k steps
away from the nearest optimal path.

• Training ML model based on the generated dataset to
evaluate a node’s optimality score that is based on the
normalized distance to the optimal path.

• Two variants of a pruning search algorithm, that utilize
the trained model and discard nodes whose score is under
a certain threshold, effectively lowering both the number
of expanded nodes as well as the OPEN list size.

Algorithm 1: Search: search-based planning.
input : nI, nG,O,M, h(·)

1 begin
2 OPEN ← n← nI // initialization
3 CLOSED ← ∅
4 while n ̸= nG and OPEN ̸= ∅ and

CLOSED.size() ≤ Nmax do
5 n← Select(OPEN)
6 OPEN ← OPEN \ n
7 CLOSED ← CLOSED ∪ n
8 (n′,n′

C)← Expand(n,O,M, h(n))
9 CLOSED ← CLOSED ∪ n′

C
10 foreach n′ ∈ n′ do
11 OPEN ← Update(OPEN, n′)

12 return GetPath(nG) // reconstruct the path

• Exhaustive evaluation is done on multiple datasets,
where we showcase the advantages of using our policy,
both with a standard Euclidean heuristic as well as in
combination with learned cost-to-go heuristics.

Problem Statement
Search-Based Planing
We consider the problem of planning based on the graph
search, as shown in the Algorithm 1. At each iteration, suc-
cessor nodes are generated in the function Expand by ex-
panding the current node n using a transition model M to
all reachable neighboring states. Each reachable collision-
free state is represented with one child node. All collision-
free child nodes n′ are processed and are added to the OPEN
list, unless they are already there. If the child node is already
in the OPEN list, and the new child node has a lower cost,
the parent of that node is updated, otherwise, it is ignored.
From the OPEN list, at every iteration, Select function ex-
tracts the node with the lowest cost, which is then chosen to
be the next current node, and the procedure is repeated until
the goal is reached, the whole graph is explored or the com-
putation time limit for planning is reached. At the end of
the planning, if successful, the path is reconstructed starting
from the goal nG iteratively towards the nI.

Learning Optimal Search
In this work, we focus on the Imitation Learning (Osa et al.
2018) approach for learning optimal search. In contrast to
previous works in the field, we do not learn the heuris-
tic function to estimate the exact cost-to-go. Rather we are

Figure 1: Visualizations of the steps of our method on several map types- forest, bugtrap+forest, maze and single bugtrap. The
visualization elements are: map (upper left square), expanded nodes of our algorithm (upper right), dataset ground truth optimal
areas (lower left) and model estimation of optimal areas (lower right).

learning a state-based function d(n) that represents the dis-
tance from the closest optimal path.

The problem of Learning Optimal Search can be split into
four subproblems:

• Curriculum design of example scenarios and scenario-
variations;

• Scenario Exploration for oracle data generation;
• Supervised Learning to imitate the oracle;
• Using learned function in the search;

We assume having the fixed set of training problem in-
stances from a single domain - curriculum similar to (Bhard-
waj, Choudhury, and Scherer 2017). The goal is to efficiently
explore them and learn reusable knowledge that can be uti-
lized to have more efficient search in novel instances from
the same domain.

Proposed method
The presented approach for learning partial expansion ex-
plores a known model M of the system to generate dataset
D of exact state-distance (n, d(n)) data points. The dataset
is used for supervised learning of the model dML. The
learned model dML is then used as in the heuristic search to
prune unfavorable nodes, based on their estimated distance
from the optimal path. The dataset D consists of data points
that carry information about the scenario (obstacles O, ini-
tial state nI, and goal state nG) and current state n together
with the corresponding distance label (i.e. shortest path from
the current state to any state on the optimal path d(n)).

Dataset generation
To train the appropriate model to estimate the distance
dML(n) of a state to a potential optimal path, we need to
generate an adequate dataset.

To that end, we design a data pipeline that takes in dif-
ferent maps, generates the optimal cost-to-go values h∗(n)
for all reachable states within the map, and uses these values
to find the optimal path region. Then, the shortest distance
is computed for the nodes up to m steps from the optimal
region and the rest of the map is rated as far-from-optimal.

For generating the optimal cost-to-go we employ a pro-
longed Dijkstra-like algorithm backward; starting from the
goal position, we iteratively move a frontier until reaching
the start node. We prolong this search after reaching the start
to generate enough samples for multiple regions.

The next part of dataset processing is extracting from
the map the “optimal path region”, which consists of all
the nodes that belong to some optimal path. This is done
by running a Dijkstra-like search algorithm from the start
that computes the optimal cost-to-come, or distance from
start, g∗(n). The states that belong to the “optimal path re-
gion” all have g∗(n) + h∗(n) constant. The “optimal path
region” is then extended in a similar frontier search fash-
ion to m “neighboring regions”- which consist of points that
are 1, 2, ...,m steps away from the nearest node in the opti-
mal region. The rest of the map is considered far from op-
timal. These regions of nodes with the same distance from
an optimal path we refer to as “optimality regions”. For eas-
ier learning and usage, we normalize d(n) by the maximum
value m, with points in the optimal region having the value
1, and far from optimal points having the value 0. We refer
to this value as a node’s “optimality rating”.

It is worth noting that we calculate the proposed metric
from cost-to-go data via described transformations, and as
such should be as difficult to learn as a cost-to-go heuristic.
Conversely, the method with which we define our regions
for dataset creation is based on Dijkstra search, and as such
scales as well as Dijkstra. Overall, we can conclude the
proposed method can scale to more complex problems as
well as other supervised cost-to-go approaches.

SLOPE algorithm
To properly utilize the models trained on the described
dataset, we develop two algorithms: pruning search SLOPE,
described in the Algorithm 2 and recursive prune search
SLOPER, defined as Algorithm 3; both based on greedy
best-first search. We have chosen greedy over A* search be-
cause not only does it outperform A* in these specific tasks
(as shown in the comparison table of Bhardwaj, Choudhury,
and Scherer (2017)), but it’s otherwise desirable feature of

completeness is not of paramount importance to our ap-
proach. By pruning, we consider the act of evaluating the
node’s optimality rating using dML, and based on a thresh-
old τ we either add it to the OPEN list or discard it (or in
the case of the first algorithm, add it to the backup OPEN
list). Unlike other approaches that give a probabilistic rat-
ing of a node belonging to the shortest path (rather binary
categorization), our model is trained on data with a larger
range of values representing path optimality. This allows the
following search to explore a wider region (up to a point
based on the set threshold) and enables better collaboration
with the heuristic. We generate a wide optimal path region,
made up of all possible non-singular shortest paths, which
allows more space for the chosen heuristic to navigate, en-
abling plug-and-play ease of use of cost-to-go heuristics.
Pruning search, hereafter casually denoted as SLOPE, takes
in a fixed threshold value, ranging from 0 to 1, and either
adds a node to the OPEN list, if its rating is higher than τ ,
or adds it to the backup OPEN list, which becomes the ac-
tive OPEN list if all of the optimal nodes are expanded but
the goal is not yet reached. In this situation, we also scale
down the threshold to ensure the continuation of the search
effort (in our implementation we halve τ every time we run
out of nodes). With this threshold scaling we assure search
completeness, as our search becomes classic greedy search
when τ approaches 0. The described algorithm keeps search
efforts close-to-optimal, which is an improvement in itself,
but it does not fully optimize memory consumption, consid-
ering unfavored nodes are still stored in a backup list. The
advantage of this approach, however, is minimizing OPEN
list size, which speeds up real-time operations with the list,
such as sorting elements for node selection.
In our testing we found determining τ to be a map-based
task, considering the model has more difficulty learning the
optimality ratings of certain map types than others (for al-
ternating gaps we can safely use a τ of 0.9, while for bug-
trap+forest maps we found 0.57 to be the optimal thresh-
old1). Because of this, we introduce a recursive variant
of our algorithm, the recursive pruning search denoted by
SLOPER. Unlike the first algorithm, this one does not save
nonoptimal nodes to a backup list. Instead, it starts with a
high value of the threshold (we set it at 0.9), and each time
the search runs out of nodes in the OPEN list, it recursively
calls again itself with a lowered τ (we decrement our thresh-
old by 0.1 each call). In this way, the threshold is recursively
custom-tailored to each specific map instance, unlike the
first approach that uses one threshold for all maps in a test
set, conversely achieving better results, leveraging the no-
tion that search with the highest threshold value will give the
most optimal results. As we will see in the Experiments sec-
tion, this proved to be true as this algorithm achieved over-
all the best results, however with slightly increased compu-
tational overhead cost stemming from its recursive nature.
Unlike the first algorithm, SLOPER does introduce mem-
ory consumption improvements, as unfavored nodes are dis-
carded, and it’s best-case scenario is an improvement in both
speed and memory costs. The worst-case scenario, however,

1For visual examples of mentioned map types refer to Table 2

Algorithm 2: SLOPE: pruned search-based plan-
ning.

input : nI, nG,O,M, d, τ

1 begin
2 OPEN ← nI // initialization
3 CLOSED ← ∅
4 OPEN′ ← ∅
5 while n ̸= nG and OPEN ̸= ∅ do
6 n← Select(OPEN)
7 OPEN ← OPEN \ n
8 CLOSED ← CLOSED ∪ n
9 (n′,n′

C)← Expand(n,O,M, h(n))
10 CLOSED ← CLOSED ∪ n′

C
11 foreach n′ ∈ n′ do
12 if CheckChild(n′) and n′ /∈ CLOSED then
13 if d(n′) > τ then
14 OPEN ← OPEN ∪ n′

15 else
16 OPEN′ ← OPEN′ ∪ n′

17 if n ̸= nG and OPEN = ∅ then
18 OPEN ← OPEN′

19 OPEN′ ← ∅
20 τ ← τ/2

21 return GetPath(nG) // reconstruct the path

does suffer from higher computational overhead. This ap-
proach does depend more on the quality of the learnt heuris-
tic than the SLOPE approach.

The most noticeable difference between the two ap-
proaches is the existence of a backup list in SLOPE, which
in turn enables different effects of thresholding to be uti-
lized, even though both approaches adapt the threshold when
the OPEN list is empty. Proposed algorithms leverage the
advantages of the learned heuristic in different fashions,
achieving diverse results due to search space being uniquely
limited by their respective thresholding approaches.

Experiments
Implementation details
In this work, we use a collection of different instances from
8 grid domains, containing different obstacle types and map
topologies and 8-connected cells, as used in SaIL (Bhard-
waj, Choudhury, and Scherer 2017). We train and evalu-
ate our ML models on 8 types of datasets. For simplicity
and lowering computational costs, we rescale the original
200x200 maps to 32x32 environments (as in (Yonetani et al.
2021)), as well as fix the starting point to the lower left cor-
ner and the goal to the upper right one. We use 320 maps
for training, 80 maps for validation (80/20 split) and 100
test maps. For every reachable point of every map, we cre-
ate a dedicated training sample by drawing in the point on
the map and its optimality rating being the output, thus cre-
ating a dataset of hundreds of thousands of samples from
just 400 maps. Considering different maps can have differ-
ently unbalanced region data (for instance, open maps such
as single bugtrap or random forest have much more nonopti-
mal nodes than optimal ones), we downscale the most repre-

Algorithm 3: SLOPEr: recursive calling of pruned
search-based planning.

input : nI, nG,O,M, d, τ

1 begin
2 OPEN ← nI // initialization
3 CLOSED ← ∅
4 while n ̸= nG and OPEN ̸= ∅ do
5 n← Select(OPEN)
6 OPEN ← OPEN \ n
7 CLOSED ← CLOSED ∪ n
8 (n′,n′

C)← Expand(n,O,M, h(n))
9 CLOSED ← CLOSED ∪ n′

C
10 foreach n′ ∈ n′ do
11 if CheckChild(n′) and n′ /∈ CLOSED and

d(n′) > τ then
12 OPEN ← OPEN ∪ n′

13 if n ̸= nG and OPEN = ∅ then
14 return SLOPEr(nI, nG,O,M, τ − ϵ)

15 return GetPath(nG) // reconstruct the path

sented region down to the second most represented one per
map with random sampling. It is worth noting that experi-
ments with heavy downsampling of the regions and adding
transformations to the input image were successful, prov-
ing that the model is able to learn multi-positional problems
with a smaller dataset. Preliminary testing of learning the
proposed heuristic on full-sized environments has been suc-
cessful, proving the approach scales to larger environments.
An example of this is shown on Figure 2. The ML model is
based on 3 convolutional-maxpool blocks with 3 fully con-
nected layers for regressing the convoluted image to the out-
put “optimality” value. We train using Adam (Kingma and
Ba 2014) for 45 epochs with step learning rate reduction.
Something to note: the focus of the paper was on developing
the methodology, leaving the model architecture and train-
ing procedure room to improve.

Metrics and baselines
To evaluate and analyze the performance of our method,
we use metrics based on three search result parameters: the
number of expanded nodes, the length of the reconstructed
path and the size of the OPEN list. Considering our data gen-
eration pipeline, we can extract the global minimal length of
the optimal path. Using this, we define our three metrics as:
the relative error of the number of expanded nodes w.r.t. the
global minimum, the relative error of the length of the re-
constructed path w.r.t. the global minimum and the size of
the unused OPEN list normalized by the hypothetical full
explorable space (set at 32x32=1024).

We compare our two main search methods, pruning with
a preset fixed threshold SLOPE and recursive pruning
SLOPER, both using Euclidean distance for the heuristic
cost-to-go estimate. The SLOPER is expected better results.
However, as this method is computationally more difficult,
it is also beneficial to compare hML and the pruning method
SLOPE with a fixed threshold. The optimal threshold value
is manually obtained for specific dataset types, while not

Figure 2: Learned optimality regions of a fully-sized
200x200 map. This model serves as a proof of concept, and
as such was trained for 10 epochs on 100 maps, noticeably
lower than our downscaled experiments.

dipping below 0.45 to preserve the point of this method. We
compare our algorithms to two greedy search baselines, one
with Euclidean heuristic search hEUC and one with trained
optimal cost-to-go hML. We train models that estimate op-
timal cost-to-go values generated from the first step of our
dataset generation. We find this to be a suitable comparison,
seeing how this is essentially the same data as the one for our
SLOPE models, just used differently. To see how both our
described search algorithms are orthogonal to ones that learn
cost-to-go, and to prove our method can work in conjunction
with the heuristic-based search, SLOPE and SLOPER are
benchmarked using hML instead of Euclidean heuristic.

Results
The performance indicators of the aforementioned methods
are shown in Table 2. A visual representation of optimality
regions, learned estimations of optimality regions and ex-
panded nodes during search for certain map types can be
seen on Figure 1. Firstly, by comparing the individual meth-
ods hML, SLOPE and SLOPER, we notice that SLOPER
performs better on average. This is to be expected, as the
pruning threshold is recursively adjusted for each individ-
ual map, with the highest threshold (up to a resolution step)
that enables reaching the goal giving a better result. While
comparing the expanded node metrics, we can see the prun-
ing method achieves better results on maps such as alter-
nating gaps, forest and multiple bug traps, but also achieves
drastically worse results on gaps+forest and maze maps. In
these cases, the worse results are partly due to using the Eu-
clidean heuristic, with these maps having inherent bug trap-
like obstacles trapping the agent, even though most of the
expanded nodes are in the optimal region. A worthy men-
tion is both SLOPE algorithms achieve perfect results on the
shifting gaps dataset, mostly due to the simple and repetitive
nature of the map types.

Further focusing on the comparison of the ML-powered

Table 2: Comparison of the relative error of expanded nodes (upper row, %), relative error of the length of the reconstructed
paths (middle row, %) and normalized open list sizes (lower row) on 8 datasets and 6 methods. We pay special attention to
comparing our approach combined with hML to standard hML (up/down arrows).

World Samples hML SLOPE SLOPE + hML SLOPEr SLOPEr + hML hEUC
alternating gaps 0.845 0.265 0.458 ↓ 0.265 0.458 ↓ 340.135

0.386 0.072 0.193 ↓ 0.072 0.193 ↓ 3.284
0.118 0.058 0.086 ↓ 0.058 0.086 ↓ 0.122

shifting gaps 0.360 0 0.205 ↓ 0 0.205 ↓ 149.871
0.257 0 0.051 ↓ 0 0.051 ↓ 1.519
0.119 0.053 0.078 ↓ 0.053 0.078 ↓ 0.110

single bugtrap 2.619 7.909 2.515 ↓ 3.915 17.479 ↑ 56.587
1.218 0.985 1.270 ↑ 0.881 2.930 ↑ 3.993
0.120 0.083 0.119 ↓ 0.070 0.087 ↓ 0.108

forest 13.054 11.336 15.030 ↑ 10.277 18.923 ↑ 5.410
6.069 1.889 6.355 ↑ 2.519 7.414 ↓ 2.920
0.113 0.101 0.110 ↓ 0.092 0.098 ↓ 0.105

bugtrap+forest 23.323 41.031 32.977 ↑ 13.998 24.593 ↑ 94.359
9.273 3.912 9.349 ↑ 2.261 8.536 ↓ 11.839
0.122 0.105 0.122 ↓ 0.085 0.092 ↓ 0.107

gaps+forest 26.733 154.844 49.641 ↑ 101.068 22.317 ↓ 261.243
6.061 4.978 5.132 ↓ 3.009 3.220 ↓ 20.053
0.183 0.112 0.180 ↓ 0.076 0.142 ↓ 0.110

maze world 1.615 22.739 1.615 ↓ 16.783 1.687 ↑ 44.393
1.085 2.700 1.109 ↑ 1.929 1.109 ↑ 6.317
0.125 0.099 0.121 ↓ 0.069 0.091 ↓ 0.106

multiple bugtraps 130.085 37.554 70.075 ↓ 21.742 96.046 ↓ 205.722
8.067 4.435 7.538 ↓ 2.229 4.205 ↓ 16.501
0.118 0.100 0.109 ↓ 0.071 0.077 ↓ 0.111

Table 3: Comparison of results obtained with trained pruning model and ground truth annotations, both standalone and in
combination with ML heuristic. We can note ground truth experiments having the best results, further proving the methodology
and capabilites of combining with ML heuristics.

World Samples hML SLOPEML SLOPEML + hML SLOPEGT SLOPEGT + hML

single bugtrap 2.619 7.909 2.515 ↓ 1.296 1.919 ↓
1.218 0.985 1.270 ↑ 0 1.218 ↓
0.120 0.083 0.119 ↓ 0.054 0.119 ↓

forest 13.054 11.336 15.030 ↑ 0.085 2.891 ↓
6.069 1.889 6.355 ↑ 0 0.944 ↓
0.113 0.101 0.110 ↓ 0.047 0.054 ↓

multiple bugtraps 130.085 37.554 70.075 ↓ 9.813 62.790 ↓
8.067 4.435 7.538 ↓ 0 7.423 ↓
0.118 0.100 0.109 ↓ 0.070 0.077 ↓

gaps+forest 26.733 154.844 49.641 ↑ 73.871 22.106 ↓
6.061 4.978 5.132 ↓ 0 4.992 ↓
0.183 0.112 0.180 ↓ 0.058 0.170 ↓

maze world 1.615 22.739 1.615 ↓ 6.679 1.567 ↓
1.085 2.700 1.109 ↑ 0 1.085 ↓
0.125 0.099 0.121 ↓ 0.052 0.124 ↓

SLOPE search with the base one, competitive node expan-
sion metrics are achieved on maps such as alternating gaps,
single bug trap, maze world and multiple bug traps, while
also lowering OPEN list size for all. We notice the com-
bined approach having the best or close to the best results
of all methods on single bug trap, gaps+forest and maze
world. The combined approach achieves worse results than
individual methods on the forest dataset and in-between re-
sults on the rest of the datasets. Thus we show the possibil-

ity of combining the two methods, weighing between opti-
mizing the expanded nodes and minimizing the OPEN list,
and in so, the computational cost. With regards to the re-
cursive pruning approach and its combination with the hML

for cost-to-go estimate, we note the same weighing effect on
most maps, except for forest, single bug trap, bugtrap+forest,
which were worse, and gaps+forest which gave better re-
sults than individual methods. The gaps+forest improvement
comes from the mentioned problems with the Euclidean

Figure 3: Visualization of the different approaches by the
cost-to-go model (upper row) and dML (lower row). The vi-
sualization of the cost-to-go model shows the model leaning
towards the path under the bugtrap, while dML is blocking
that approach and taking the path above it. Combining the
two, that are individually both sound, gives an in-between
mix that is worse than both.

heuristic and them being solved using the ML heuristic. The
problem with the bugtrap maps is illustrated in Figure 3. The
two models (cost-to-go and dML) lead the search in different
directions, both optimal solutions, but significantly different,
due to the existence of multi-modal solution. This in turn,
when combining them, gives results that are suboptimal to
both individual approaches.

Another possible reason for the combined results not be-
ing always better might the inherent imperfection of the
trained ML models, with certain estimation errors carrying
great consequences in the pruning task. As an interesting ex-
periment and a proof of concept of the fundamental method,
we use the ground truth optimality region labels generated
for the test set as a pruning heuristic and compare using it in-
stead of the trained ML pruning, results of this are shown in
Table 3. This way we remove any effective bias that results
from the ML pruning model having faulty estimations. Here
we see using the ground truth optimality regions achieves the
best results in multiple map types, and its combination with
ML heuristic achieves the best results in gaps+forest and
maze world datasets, it being an improvement to Euclidean
heuristic as explained earlier. These experiments also put in
perspective results from Table 2, seeing how the ground truth
experiments are the best-case scenario for the trained heuris-
tic. This gives us insight into the level of involvement the
Euclidean heuristic had in producing worse results on maze
world and gaps+forest datasets. Both ground truth experi-
ments beat out the ML heuristic approach on all datasets,
which is what we aimed to prove.

Conclusion
In this paper, we presented a novel approach that learns a
heuristic for node expansion. This aids heuristic search plan-
ners in solving grid-based pathfinding problems faster while
also lowering the cost and resources needed for search ef-
forts. We presented the advantages of this approach, mainly
lowering expanded nodes and OPEN list size while also be-
ing open to combining with cost-to-go heuristics, effectively
utilizing the best of both worlds. In experiments, we notice
that the method is sensitive to bottlenecking of the optimal
region. This occurs due to the inherent imperfection of the
trained model’s estimations. We solve this by adjusting the
appropriate threshold, but another natural future direction
would be enhancing the current model structure (which is
a fairly simple CNN) and testing more advanced networks
such as GNNs or Transformers, or different learning ap-
proaches such as Interactive and Reinforcement Learning.
Furthermore, as our experiments were run on downscaled
maps, that is something that should be revised in future
works, as certain maps could yield better results with more
navigation space allowed on full-sized maps. Considering
our method doesn’t assume a cost-to-go value, but rather a
normalized score of a node, it could be adjusted to work
with limited environment visibility, as it is easier to deter-
mine the distance from an optimal path than a cost-to-goal
value without knowing the full map topology.

References
Agostinelli, F.; Shmakov, A.; McAleer, S.; Fox, R.; and
Baldi, P. 2021. A* search without expansions: Learning
heuristic functions with deep q-networks. arXiv preprint
arXiv:2102.04518.
Ajanovic, Z.; Lacevic, B.; and Kober, J. 2023. Value Func-
tion Learning via Prolonged Backward Heuristic Search. In
PRL Workshop Series {\textendash} Bridging the Gap Be-
tween AI Planning and Reinforcement Learning.
Araneda, P.; Greco, M.; and Baier, J. A. 2021. Exploiting
learned policies in focal search. In Proceedings of the Inter-
national Symposium on Combinatorial Search, volume 12,
2–10.
Bhardwaj, M.; Choudhury, S.; and Scherer, S. 2017. Learn-
ing heuristic search via imitation. In Conference on Robot
Learning, 271–280. PMLR.
Choudhury, S.; Bhardwaj, M.; Arora, S.; Kapoor, A.;
Ranade, G.; Scherer, S.; and Dey, D. 2018. Data-driven
planning via imitation learning. The International Journal
of Robotics Research, 37(13-14): 1632–1672.
Daniel, K.; Nash, A.; Koenig, S.; and Felner, A. 2010.
Theta*: Any-angle path planning on grids. Journal of Ar-
tificial Intelligence Research, 39: 533–579.
Groshev, E.; Tamar, A.; Goldstein, M.; Srivastava, S.; and
Abbeel, P. 2018. Learning generalized reactive policies us-
ing deep neural networks. In 2018 AAAI Spring Symposium
Series.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost

Paths. IEEE Transactions on Systems Science and Cyber-
netics, 4(2): 100–107.
Kingma, D. P.; and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.
Kirilenko, D.; Andreychuk, A.; Panov, A.; and Yakovlev,
K. 2023. Transpath: Learning heuristics for grid-based
pathfinding via transformers. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 37, 12436–
12443.
Korf, R. E. 1993. Linear-space best-first search. Artificial
Intelligence, 62(1): 41–78.
Osa, T.; Pajarinen, J.; Neumann, G.; Bagnell, J. A.; Abbeel,
P.; Peters, J.; et al. 2018. An algorithmic perspective on im-
itation learning. Foundations and Trends® in Robotics, 7(1-
2): 1–179.
Pándy, M.; Qiu, W.; Corso, G.; Veličković, P.; Ying, Z.;
Leskovec, J.; and Lio, P. 2022. Learning Graph Search
Heuristics.
Pearl, J.; and Kim, J. H. 1982. Studies in Semi-Admissible
Heuristics. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, PAMI-4: 392–399.
Vlastelica, M.; Rolinek, M.; and Martius, G. 2021. Neuro-
Algorithmic Policies Enable Fast Combinatorial Generaliza-
tion. In Proceedings of the 38th International Conference on
Machine Learning, 10575–10585. PMLR.
Yonetani, R.; Taniai, T.; Barekatain, M.; Nishimura, M.; and
Kanezaki, A. 2021. Path planning using neural A* search.
In International conference on machine learning, 12029–
12039. PMLR.
Yoshizumi, T.; Miura, T.; and Ishida, T. 2000. A* with Par-
tial Expansion for Large Branching Factor Problems. In
AAAI/IAAI, 923–929.

