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Abstract
We present a novel approach that combines symbolic, logic-
based reasoning with Reinforcement Learning (RL) to im-
prove training outcome without compromising execution
time. By integrating Inductive Logic Programming (ILP) with
model-free RL, we learn human-interpretable policy heuris-
tics that can bias the exploration process in RL algorithms.
Utilizing Answer Set Programming (ASP) for logical rep-
resentation of policy heuristics, and incremental ILP for ef-
ficient data stream management, we demonstrate the effec-
tiveness of our approach on an approximate Q-learner for the
Pac-Man scenario. Preliminary results show improved train-
ing outcome when offline learned specifications are used to
bias the exploration phase. Moreover, the use of ASP heuris-
tics does not significantly impact the training time, and incre-
mental ILP paves the way towards a novel approach to neu-
rosymbolic RL.

Introduction
The intersection of symbolic, logic-based reasoning and Re-
inforcement Learning (RL) to solve Markov Decision Pro-
cesses (MDPs) represents a topic of interest in Artificial In-
telligence (AI) research, aiming to harness the strengths of
both domains to address their individual limitations. Cur-
rent state-of-the-art approaches in model-free RL, in fact,
predominantly rely on extensive data or pre-defined envi-
ronmental models, facing significant challenges in terms of
efficiency, scalability, and the integration of existing knowl-
edge. Furthermore, the decision process underlying policy
generation is not transparent to other agents and humans, re-
ducing safety and trustworthiness. On the other hand, sym-
bolic AI works well in the small data regime, but is not suit-
able for nonsymbolic data and is not noise tolerant (Ver-
meulen, Manhaeve, and Marra 2023). Incorporating sym-
bolic and logical formalisms into AI systems, as highlighted
by (Kambhampati et al. 2022), can significantly boost their
interpretability, thereby fostering wider acceptance and dif-
fusion, while also playing a crucial role in refining policy
computation. For instance, the REBA framework (Sridharan
et al. 2019) successfully leverages Answer Set Programming
(ASP) (Calimeri et al. 2020), to map out spatial relationships
to direct robots in domestic settings. Moreover, De Giacomo
et al. (2019) and Leonetti, Iocchi, and Patrizi (2012) em-
ploy linear temporal logic to steer MDP exploration, demon-
strating the utility of logical formalisms in enhancing AI

system performance. These methods assume logical speci-
fications are available in advance. Recently, in the field of
neurosymbolic learning and reasoning, Marra and Kuželka
(2021); Hazra and De Raedt (2023) combined statistical re-
lational learning with neural networks and RL, which how-
ever poses challenges as limited expressiveness and poor
scalability (Acharya et al. 2023).

Inspired by results obtained by Mazzi et al. (2023) and
Meli, Castellini, and Farinelli (2024) in model-based RL, we
present the first steps of a novel approach, whose final aim
is to exploit Inductive Logic Programming (ILP, Muggleton
(1991)) to learn human-interpretable policy heuristics dur-
ing the execution of RL algorithms, and directly use them
online to bias the agent in its exploration process. Specifi-
cally, starting from execution traces of a trained model-free
RL agent, we first use ILP to discover logical specifications
that map actions to a higher-level representation of the state
space (features), without any need for user-provided knowl-
edge. Feature definition enhances the interpretability of the
trained policy. Moreover, with respect to approaches based
on neural-networks (Lee, Cai, and Hsu 2021; Cai and Hsu
2022), the ILP solution requires significantly fewer exam-
ples. We then use the logical formalism of ASP (Lifschitz
1999) to represent logical specifications and employ them
as online heuristics in the exploration phase of an approxi-
mate Q-learner. ASP is chosen as the state of the art in plan-
ning domain representation for autonomous agents (Meli,
Nakawala, and Fiorini 2023). We also investigate the fea-
sibility of integrated online planning and learning in model-
free RL, adopting IncrementaLAS (Law, Broda, and Russo
2022) as an ILP system to efficiently handle incremental
streams of data, and evaluating its computational impact and
performance as more batches of RL experience are gathered.

We conduct preliminary tests in the Pac-Man scenario, a
benchmark RL domain posing challenges as sparse rewards,
very long planning horizon and the presence of contrastive
agents (the ghosts chasing Pac-Man) (Rohlfshagen and Lu-
cas 2011; Samothrakis, Robles, and Lucas 2011). After pro-
viding some essential background knowledge, in the upcom-
ing sections we will first outline the methodology used to
conduct preliminary tests on the feasibility of the proposed
approach. This will be followed by a presentation of the re-
sults, and finally a reflection on future goals.



Background
We now introduce some basic notions about the approximate
Q-Learning algorithm, ASP and ILP.

Approximate Q-Learning
Approximate Q-learning (Sutton 1995) addresses scalability
issues inherent in traditional Q-learning, particularly in en-
vironments with large or continuous state spaces (Buşoniu
et al. 2011). Given a MDP ⟨S,A,R, T, γ⟩, respectively de-
noting the state and action spaces, the reward and transition
maps and the discount factor, function Q(s, a; θ) approxi-
mates the Q-value of state-action pairs with parameters θ,
updated at each batch of experience episodes (i.e., observed
states and rewards) via gradient descent. At each episode,
the agent adopts an ϵ-greedy policy to balance between ex-
ploration and exploitation: with probability 1 − ϵ, the agent
selects the action believed to have the highest Q-value (ex-
ploitation), and with probability ϵ, it selects a random action
(exploration). This policy prevents premature convergence
to suboptimal policies by ensuring adequate exploration of
the action space.

Answer Set Programming
Answer Set Programming (ASP) defines a domain as a set
of logical statements (axioms) articulating the logical rela-
tionships between entities represented as variables and pred-
icates (atoms) (Calimeri et al. 2020). Axioms considered
in this work are normal rules h : −b1, . . . , bn, which de-
fine the body of the rule (i.e. the logical conjunction of
terms

∧n
i=1 bi) as a precondition for the head h. We say

that a variable is grounded when assigned a particular value.
Consequently, an atom is grounded when all its variables
are grounded. Given an ASP program P , its Herbrand base
H(P ) defines the set of ground atoms which can be gener-
ated from it. From an ASP domain definition, an ASP solver
computes the answer sets, i.e., the minimal sets of ground
atoms that satisfy the axioms. In this work, we assume that
body atoms represent environmental features describing S
in the MDP, while head atoms are actions. Answer sets will
then represent feasible actions for the RL agent.

Inductive Logic Programming
An ILP (Muggleton 1991) task is defined as a tuple T =
⟨B,M,E⟩, consisting of background knowledge B ex-
pressed in a logic formalism F , a mode declaration defin-
ing how to generate all possible axioms that compose the
search space SM , and a set of examples E, both expressed
in the syntax of F . The goal is to find a hypothesis (i.e. an
axiom) H ⊆ SM covering E. Under the ASP semantics,
examples are weighted context dependent partial interpreta-
tions (WCDPI’s) (Law, Russo, and Broda 2018). A partial
interpretation e is a pair of sets of ground atoms ⟨einc, eexc⟩.
An interpretation (i.e., a set of ground atoms) I extends
e iff einc ⊆ I and eexc ∩ I = ∅. A WCDPI is a tuple
e = ⟨eid, epen, epi, ectx⟩, where eid is an identifier for e,
epen is either a positive integer or∞, called a penalty, epi is
a partial interpretation, and ectx is an ASP program called a
context. A WCDPI e is accepted by a program P iff there

Figure 1: Example scenario for the Pac-Man domain

is an answer set of P ∪ ectx that extends epi. Following
the definition by Law, Russo, and Broda (2018), the goal
of ILP is then to find a hypothesis H ⊆ SM with minimal
length (i.e., number of atoms) and

∑
e e

pen, for all exam-
ples e not accepted by H ∪ B. Since we are interested in
discovering normal rules matching actions to environmen-
tal features, einc, eexc represent executed and not executed
actions, respectively, while ectx is the set of ground envi-
ronmental features. We employ IncrementaLAS learner by
Law, Broda, and Russo (2022) for fast computation from an
incremental list of examples, gathered from RL batches.

Methodology
This section describes our methodology to integrate approx-
imate Q-learning and symbolic learning and reasoning in
ASP. We exemplify it in the context of the standard RL Pac-
Man domain used for empirical evaluation (Figure 1), where
the Pac-Man agent (yellow) must collect food pellets (yel-
low dots) in a grid world, while avoiding walls and ghosts,
with the possibility to collect a power pill (white dots) to
chase and eat ghosts.

ASP representation of the domain
We start from the representation of the domain in ASP
syntax. This requires the definition of ASP environment
features F and actions A. For the Pac-Man domain, F
contains: wall(Dir), which denotes the presence of a
wall in front of the agent (i.e., one cell away) in that
direction, food(Dir, Dist), ghost(Dir, Dist), and
capsule(Dir, Dist), representing Manhattan distance
Dist ∈ [0, 10] between PacMan and a cell containing food
(or ghost, or capsule) in direction Dir ∈ {north, south,
east, west}. Finally, we need to introduce upper and
lower bounds on atoms Dist. To this aim, we define atoms
X dist Y(Dir,Dist,D), where X is either ghost, food
or caps, and Y is either geq or leq. These atoms state that
item X has Manhattan distance Dist from Pac-Man along
direction Dir, and Dist is greater (geq) or lower (leq) than
D. Action atoms are constructed as move(Dir), denoting the
movement of the agent in direction Dir. The agent also has
the option to perform a ’stop’ action. However, we chose not
to include it in the learning phase as it was rarely used in
the examples collected during training. Once F and A are
defined, we need a feature map FF : S → H(F) and an ac-
tion map FA : A → H(A) to ground atoms from collected
batches of RL. The only information needed to build F are



the positions of the agent, food, ghosts and capsules in the
environment, all of which are available in S.

Definition of the learning task
Once the ground atoms are obtained from execution traces,
they serve to construct WCDPIs for IncrementaLAS. For
each training batch, we extract the episodes in which the
agent obtained the highest reward. We then use them to de-
fine, for each state-action pair ⟨āi, s̄i⟩, happening at time
step i ∈ 1 . . . N (where N is the lenght of the episode from
start to win/lose), a WCDPI of the following form:

ei = ⟨idi, wi, ⟨{āi}, a ∈ A \ {āi}⟩, FF (s̄i)⟩,
where idi is a unique identifier and wi represents the penalty
of the WCDPI. We assign the same weight to each step com-
ing from the same run, normalising the reward obtained by
the agent in that episode to a value w ∈ [1, 100]. This allows
us to give more relevance to the behaviour of the agent that
resulted in a higher reward, in order to generate rules that
can lead to the same performance. We populate einc with
the agent’s chosen action and eexc with the grounding for
all unobserved actions. The background knowledge of the
task only contains the definition of the ASP variables and
ranges, and the mode bias is defined in order to only have
rule’s heads in the form move(Dir), and bodies containing
atoms from F . Once the task is defined, we run Incremen-
taLAS once for each batch of training, incrementally adding
WCDPIs to the task in order to refine rules as the training
progresses.

Integration of extracted rules in RL
Once the rules are obtained from the execution of Incre-
mentLAS, they can be used to guide the agent’s exploration
in subsequent training runs. We then modify the approxi-
mate Q-Learning algorithm so that it chooses, with proba-
bility ϵ, not a random action from among all the actions al-
lowed in the environment, but one among the actions whose
premises are satisfied (i.e. the actions that are represented as
heads of rules whose bodies are entirely grounded). Algo-
rithm 1 shows the modified version of the Approximate Q-
Learning we implemented. Assuming that the getBiasedAc-
tionsSet(s) function calls the ASP program in which ex-
tracted rules have been integrated, the current state s is con-
verted to ASP formalism via FF (s), to adapt the answer set
generation based on real-time information. The returned an-
swer set, then, is the set of actions (after F−1

A transforma-
tion) that can be accomplished based on the available rules.
Actions not recommended by ASP are excluded from the list
of available actions for the agent. From this set, the agent
selects an action to perform with uniform probability. The
variation of ϵ gives control over the influence of the rules in
the algorithm. Moreover, while this is still not implemented
in this work, rules can be iteratively updated at each batch of
learning, due to the incremental nature of IncrementaLAS.

Preliminary Results
Preliminary results investigating the feasibility of the
methodology outlined in the previous section are now pre-
sented. All experiments have been performed on a computer

Algorithm 1: Biased Approximate Q-Learning
Input: S, A, ϕ(s, a)
Parameters: α ∈ (0, 1], γ ∈ [0, 1], ϵ ∈ [0, 1]
Output: Q(s, a)

1: Initialize weight vector w with small random values
2: while ¬stop do
3: Observe initial state s
4: while s is not terminal do
5: Generate a random number rand
6: if rand < ϵ then
7: a← rand(getBiasedActionsSet(s))
8: else
9: a← argmaxa′ w⊤ϕ(s, a′)

10: end if
11: Execute a and observe reward r and new state s′

12: a∗ ← argmaxa′ w⊤ϕ(s′, a′)
13: δ ← r + γw⊤ϕ(s′, a∗)−w⊤ϕ(s, a)
14: w← w + αδϕ(s, a)
15: s← s′

16: end while
17: end while
18: return w

equipped with 5.1GHz e.g. 13th Gen Intel i5 processor and
64GB RAM.

From the benchmark domain, we executed the Ap-
proximate Q-Learning agent and collected 50,000 training
episodes. These episodes were then divided into batches of
100 each and, for each batch, we saved the top five episodes
with the highest reward to generate the WCDPIs for the
learning task. We then used IncrementaLAS on the result-
ing tasks, gradually increasing the number of examples (we
generated≈ 650 WCDPIs from each batch) by adding those
from the new batches. The search space SM remains con-
stant during the whole procedure and consists of 226 unique
rules. Below are the rules we have learned, covering 84% of
WCDPIs:

move(V0) :- food dist leq(V0,V1,4), (1a)
not wall(V0),

ghost dist geq(V0,V2,4)

move(V0) :- food dist leq(V0,V2,1). (1b)
move(V0) :- caps dist leq(V0,V2,4). (1c)

First rule allows movement if food is close, no wall is in the
way, and ghosts are far enough. The second permits move-
ment when food is very close, and the third when a capsule is
nearby. Incrementally performing the learning procedure on
the whole set of acquired examples, we were able to confirm
that the acquired rules converge as RL progresses.

Figure 2 shows the convergence of the learned rules ex-
pressed as the Hamming distance between the atoms com-
posing the body of rules extracted from subsequent batches.
Since every batch consists of 100 episodes, it is immedi-
ate to notice that rules convergence is acquired at the same
point in which return convergence is reached by the approxi-
mate Q-Learning algorithm, which is shown in Figure 3 (red



Table 1: Execution times (in seconds) for the RL algorithm with and without bias across 5 different seeds. Both for the whole
training and for a single batch. The last row shows the average execution time for each method.

Seed Approx
Q-Learning Time (s)

Avg Time
Per Batch (s)

Biased Approx
Q-Learning Time (s)

Avg Time
Per Batch (s)

0 3433.67 6.87 5345.87 10.7
1 4754.06 9.51 4175.16 8.35
2 2748.81 5.50 4124.22 8.25
3 2738.73 5.47 4143.45 8.28
4 4700.36 9.40 4154.31 8.30

Average 3674.26 7.35 4388.02 8.78

Figure 2: Convergence of learned rules. In order to facilitate
representation, episodes beyond the 50th (with null Ham-
ming distance) are omitted.

curve). The figure also shows the return obtained by the ex-
ecution of our biased approximate Q-Learning algorithm 1,
in which rules that were learned from the previous training
were inserted to bias the exploration. In addition to the sig-
nificantly higher reward, which is in part a consequence of
the inserted rules reflecting the behavior of an already fully
trained agent, this test allowed us to investigate the impact
of calculating the grounded set of actions in terms of time.
The training procedure was repeated for both agents using
five different seeds. The execution times, shown in Table 1,
demonstrate that the time overhead from adding the bias is
negligible (less than 20% more) compared to the total train-
ing time.

For the future integration of ILP into the online RL
pipeline, we also investigated the learning time of Incremen-
taLAS. On average, the rule extraction procedure took less
that 2 seconds per batch, which is again not impacting if
compared to the algorithm’s execution time on a batch of ex-
amples. Moreover, this time can be significantly reduced by
keeping the number of WCDPIs of the task constant instead
of progressively increasing it. This can be accomplished by
gradually substituting the gathered examples with the re-
cently obtained ones, once they have attained a higher re-
ward.

Figure 3: Average reward over a 50k episodes training per-
formed with the approximate Q-Learning algorithm (red)
and on the biased approximate Q-Learning version (blue),
in which learned rules are employed. We show mean and
standard deviation over 5 random seeds.

Conclusion

We proposed a novel approach that merges symbolic, logic-
based reasoning with Reinforcement Learning (RL) to ad-
dress the challenges of interpretability, scalability, and in-
tegration of existing knowledge within AI systems. Our
method employs incremental Inductive Logic Programming
(ILP) in the ASP semantics to extract human-interpretable
policy heuristics from the behavior of a model-free RL
agent, based on approximate Q-learning. This has the poten-
tial to significantly enhance the transparency and efficiency
of the learning process, and the generalization of the learned
policy. Our approach has achieved promising results in pre-
liminary tests in the benchmark Pac-Man domain in terms
of computational time and performance, laying a promising
foundation for further research on neurosymbolic planning
and learning. As future work, we plan to implement the on-
line rule learning procedure in the RL pipeline, extend this
methodology to other RL algorithms than Q-learning, and
investigate the generalizability of the obtained policy heuris-
tics in more complex scenarios.
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