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Abstract

Graph Neural Networks (GNNs) have recently emerged
as a powerful mechanism within the Artificial Intelligence
(AI) research community, proving especially effective in
a variety of applications from molecular structure predic-
tion to enhancing recommender systems. In the realm of
AI planning, the concept of general policy learning —
which aims at creating agents capable of solving any in-
stance within a specific domain — has gained significant
attention. So far, the pursuit of general policies has often
involved the use of custom-built GNN architectures tai-
lored to unique graph representations of planning prob-
lems. These custom approaches, while effective, are heav-
ily dependent on the construction of their underlying graph
representation, which can limit their applicability and scal-
ability. In this paper, we explore the feasibility of achieving
similar successes in general policy learning using standard
GNNs and Transformers, which have been extensively
tested and researched; the latter are additionally not con-
strained by specific graph representations. Our findings in-
dicate that while state-of-the-art GNNs and Transformers
are generally suitable for general policy learning, their per-
formance does not yet match that of the more specialized,
custom-built GNN architectures previously developed in
the field.

Introduction
Recently, graph neural networks (GNNs) have emerged as a
powerful tool within the Artificial Intelligence (AI) research
community. To name just a few applications, GNNs have
demonstrated remarkable effectiveness in predicting molec-
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ular structures (Gilmer et al. 2017), facilitating drug discov-
ery (Bongini, Bianchini, and Scarselli 2021), and enhancing
recommender systems (Fan et al. 2019).

AI planning, at its core, is about devising sequences of ac-
tions, so-called plans, to achieve specific goals. This process
is typically applied across various instances of a planning
domain, aiming to identify the optimal sequence of actions
that transitions from the instances’ clearly defined start state
to meet its established goal conditions.

The remarkable successes of GNNs have not gone unno-
ticed within the AI planning community. Consequently, re-
searchers started to leverage graph neural networks as gen-
eral policies.1

Toyer et al. presented the pioneering approach, utiliz-
ing a CNN-inspired architecture to compute general poli-
cies for probabilistic planning (2018). Their architecture fea-
tures modules specific to predicates and action schemas.
Sharma et al. introduced an expressive graph representa-
tion of RDDL states, addressing the capture of long-range
pairwise relationships between nodes (2023). Rivlin, Hazan,
and Karpas utilized a novel architecture combining layers of
both GNNs and so-called Transformers, addressing several
classical planning problems through training with deep rein-
forcement learning (2020). Furthermore, Ståhlberg, Bonet,
and Geffner developed a relational GNN architecture for
learning general value functions for classical planning prob-
lems (2022a; 2022b). Their work puts focus on the expres-
sive limits of GNNs and proposed the integration of derived
atoms to overcome these limitations. Further, they investi-
gate how variations in their GNN’s structure impacts the
ability to solve different domains.

However, each of these approaches employs a custom-
built GNN architecture based on their custom-built graph
representation. Simultaneously, there is a growing research

1Essentially, a policy can be understood as a trained agent that
possesses the capability to compute a plan for a specific instance
of a domain. The ambition behind a general policy goes a step fur-
ther: creating an agent capable of solving any instance of a specific
domain.



community studying GNNs, establishing state-of-the-art ar-
chitectures. These well-examined architectures have already
addressed some of the issues that custom-built GNNs for
general policy learning have to face, e.g., failing to capture
relationships between distant nodes (Wu et al. 2021; Li et al.
2021), or being unable to distinguish certain non-isomorphic
graphs (Rampášek et al. 2022; Morris et al. 2019).

Lately, Horcik and Šı́r proposed various graph representa-
tions for classical planning states and delved into the expres-
sive capabilities of state-of-the-art GNNs by quantifying the
number of states indistinguishable by the policies (2024).
However, they do not utilize these GNNs to investigate
plans.

With this paper, we aim at bridging the gap between these
two research strands. Rather than crafting a more advanced
and specialized custom GNN along with a specialized graph
representation, we explore the potential of standard GNNs
that have undergone extensive testing and research. Start-
ing from scratch, we introduce an intuitive graph represen-
tation of classical planning states that is both expressive and
architecture-agnostic. We refrain from customizing or spe-
cializing this graph representation; instead, we assess the
ability of standard GNNs to embody general policies using
this graph representation.

Additionally, we consider the widely successful Trans-
former architecture (Vaswani et al. 2017) as an alternative
to GNNs. Transformers, in contrast to GNNs, do not de-
pend on any graph representation. Therefore, while the per-
formance of GNNs relies on the underlying graph structure,
Transformers do not have such a strong restriction but can
directly be applied to the states’ representation. Thus, their
performance is not limited by a (possibly misconstructed)
graph representation.

Our investigations reveal that state-of-the-art GNNs and
Transformers are viable for general policy learning, yet they
have not achieved the performance levels of the custom-built
GNNs by Ståhlberg, Bonet, and Geffner (2022a).

The contribution of our paper is outlined as follows. First,
we introduce graph neural networks and focus specifically
on the state-of-the-art architectures that we will utilize in
our analysis. Additionally, we discuss the limitations of
GNNs and subsequently introduce Transformers. We then
present our general graph representation for classical plan-
ning states. Afterward, we analyze the proposed approaches
in our experiments and conclude our work.

Graph Neural Networks and Transformers
In this section, we lay the foundation for the remainder of
the paper, starting with an overview of Graph Neural Net-
works, detailing the specific GNN models employed in our
study, and concluding with an exploration of Transformer
architectures.

Graph Neural Networks
A graph neural network (Scarselli et al. 2008) represents
a parameterized function f over graphs that is invariant to
graph isomorphism and can be applied to graphs of any size.
Given an undirected graph G, with nodes V (G) and edges

E(G), a GNN computes for every node v ∈ V (G) an em-
bedding hv capturing information regarding the local struc-
ture of v in G. The computation of a node embedding h

(l)
v

consists of L so-called layers l, where the initial embedding
h
(0)
v corresponds to the node’s feature vector as specified by

the graph G. The computation of a single layer can be di-
vided into two steps:

1. AGGREGATE: The embeddings h(l)
u of all nodes u in the

so-called 1-hop neighborhood N(v), i.e., ∀u ∈ V (G) :
(u, v) ∈ E(G), are aggregated.

2. COMBINE: The aggregated embeddings h
(l)
u and the

node’s current embedding2 h
(l)
v are combined to produce

an updated embedding h
(l+1)
v .

Thus, these two steps jointly can be written as the general
GNN update rule

h(l+1)
v = COMBINE(h(l)

v , AGGREGATE({{u ∈ N (v)}})),
(1)

where {{ . . . }} denotes a multiset. The update is applied to
each node v ∈ V (G) simultaneously and for each layer l it-
eratively. Essentially, the choice of AGGREGATE and COM-
BINE functions is what differentiates most GNN architec-
tures.

After computing the final node embeddings h
(L)
v , a pre-

diction of the function f is made for a node v by passing
the embedding h

(L)
v to another neural network, such as a

multi-layer perceptron (MLP). For making graph-level pre-
dictions, we apply the so-called READOUT operation,

hG = READOUT({{h(L)
v |v ∈ G}}), (2)

where the embeddings h(L)
v of all nodes v ∈ V (G) are ag-

gregated into a global embedding hG before being passed to
the final MLP. There are several choices for the readout op-
eration, such as taking the maximum, the mean, or the sum
across each dimension, where the latter has been shown to
yield the most expressive function approximator (Xu et al.
2018), and thus will be used in our experiments.

Using a GNN, we can learn a general policy by defining
a suitable graph representation for planning states and then
training the GNN to, for any given state s, either predict an
action a or state value V (s), corresponding to the cost of
reaching a goal state sg from s. In the latter case, we learn a
general value function, which induces a general policy when
we always take the actions leading to the successor states s′
with the lowest state value V (s′).

State-of-the-art GNNs
In the following, we will introduce the three state-of-the-art
GNN architectures used in our experiments.

Graph Convolutional Network. The graph convolutional
network (GCN) (Kipf and Welling 2016) is a simple but
widely used architecture utilizing the update rule

h(l+1)
v = ReLU(W · MEAN({{h(l)

u |u ∈ N (v) ∪ {v}}})),
(3)

2The current embedding is given by the node features for the
first layer and the value from the former layer otherwise.



where the aggregation function corresponds to the element-
wise mean operator, and the combination function corre-
sponds to a linear neural network layer parameterized by the
weight matrix W , followed by the non-linear ReLU activa-
tion function.

Graph Attention Network v2. The graph attention net-
work v2 (GATv2) (Brody, Alon, and Yahav 2021) utilizes
a dynamic attention mechanism, enabling it to learn which
neighbors of a node contain the most relevant information.
Its update rule can be written as

h(l+1)
v = ReLU

 ∑
u∈N (v)∪{v}

αv,u ·Wh(l)
u

 , (4)

where the normalized attention coefficients αu,v are com-
puted as

αv,u =
exp(a⊤LeakyReLU(W ·

[
h
(l)
v ||h(l)

u

]
))∑

u′∈N (v)∪{v} exp(a⊤LeakyReLU(W ·
[
h
(l)
v ||h(l)

u′

]
))
,

(5)
and a corresponds to a learned weight vector. We can fur-
ther improve performance and stabilize learning by applying
multi-head attention, where the GATv2 update is computed
K times in parallel using separate weight matrices W k and
weight vectors ak, and the results are concatenated

h(l)
v =

Kn

k=1

hk,(l)
v . (6)

Whereas GCN assigns equal importance to all neighbors
during aggregation, GATv2’s attention coefficients αv,u de-
termine the importance of each neighbor node u’s embed-
ding h

(l)
u for the update of node v, such that the updated

embedding h
(l+1)
v can be computed as a weighted sum over

all h(l)
u and h

(l)
v .

Graph Isomorphism Network. The expressivity of
GNNs has been shown to be limited to that of the Weisfeiler-
Leman (WL) test, meaning that they cannot distinguish cer-
tain types of non-isomorphic graphs (Morris et al. 2019).
However, many GNNs are even less expressive. Xu et al. in-
troduced the graph isomorphism network (GIN) (2018) and
have proven that it as expressive as possible, i.e., as expres-
sive as the (WL) test. Its update rule corresponds to

h(l+1)
v = MLP(l)

(
1 + ϵ(l)

)
· h(l)

v +
∑

u∈N (v)

h(l)
u

 , (7)

where ϵ is a fixed scalar. Further, GIN introduces a special
readout operator

hG =

Ln

l=0

∑
v∈V (G)

h(l)
v , (8)

where the embeddings h
(l)
v computed in every layer l are

summed up and then concatenated into a global embedding

hG. This might be beneficial, as embeddings from earlier
layers may contain important structural information not in-
cluded in the last layer. Note that in contrast to this architec-
ture, GNNs usually only use the last layer and not all layers
to compute the global embedding.

GNN Limitations
Since every application of the GNN update rule lets informa-
tion travel to nodes from their 1-hop neighborhood, the num-
ber of GNN layers L determines the distance that informa-
tion can travel in any given graph. Specifically, information
can only flow between two nodes along up to L hops (Wu
et al. 2021). Restricting information flow to local neighbor-
hoods provides GNNs with a strong inductive bias, making
learning very efficient (Wu et al. 2020). However, if there
are important relationships between distant nodes in a graph,
the GNN may be unable to capture them. Depending on the
graph representation, this can prevent general policies from
solving large instances, e.g., Ståhlberg, Bonet, and Geffner
observed that their GNN architecture could not solve some
instances of domains requiring the computation of distances
exceeding the number of layers L (2022b). Increasing L to a
large value can address such issues, but, in general, it leads
to deteriorating performance, as, with increasing depth, all
nodes tend to aggregate information from the same neigh-
borhoods, causing all embeddings to converge to the same
value (so-called over-smoothing). Further, increasing L ex-
ponentially increases the number of neighbors which every
node considers, meaning each fixed-size node embedding
needs to process an exponentially increasing amount of in-
formation, likely leading to information loss (so-called over-
squashing) (Alon and Yahav 2020).

Another limitation of GNNs for general policy learning is
that, due to their limited expressivity, they may be unable to
distinguish certain states with different optimal state values
or actions (Horcik and Šı́r 2024).

Transformers
GNNs are popular for general policy learning because they
can process graphs of any size, allowing a trained GNN
to solve instances of any size. However, recurrent neural
networks (RNNs) (Hochreiter and Schmidhuber 1997) and
Transformers (Vaswani et al. 2017) can also handle variable-
sized input data, where the latter has emerged as the supe-
rior architecture in recent years (Lin et al. 2022). We note
that since classical planning states are relational structures
and not graphs (Ståhlberg, Bonet, and Geffner 2022a), we
are not restricted to using GNNs for general policy learn-
ing and, thus, should also investigate the benefits of utilizing
Transformers.

Transformers represent parameterized functions f over
sequences which are divided into separate inputs xi, so-
called tokens. Given N tokens xi, a Transformer computes
an embedding hi for every xi, which are subsequently used
to predict f . Similarly to the GNN, the embedding compu-
tation consists of L layers, where each comprises two main
steps:

1. ATTENTION: The embedding h
(l)
i of token xi is updated



by aggregating the embeddings h
(l)
j of all other tokens

xj .
2. POSITION-WISE FEED-FORWARD NETWORK: The em-

bedding h
(l+1)
i is further updated by passing it to a feed-

forward network.

ATTENTION. The Transformer’s attention mechanism is
commonly referred to as self-attention, and involves three
steps: First, we compute a query qi, key ki, and value vector
vi for each embedding h

(l)
i using learnable linear transfor-

mations. Second, we multiply the query qi of each embed-
ding h

(l)
i with the keys kj of all embeddings h(l)

j , and then
apply the softmax function to obtain normalized attention
coefficients

αi,j =
exp(qikj)∑N−1

j′=0 exp(qikj′)
, (9)

modeling the pair-wise importances of the h(l)
j to h

(l)
i . Third,

we compute the updated embeddings h
(l+1)
i as weighted

sums over the value vectors vj of all embeddings h(l)
j

h
(l+1)
i =

N−1∑
j=0

αi,j · vj . (10)

In practice, self-attention is computed for all embeddings si-
multaneously using matrix multiplications

ATTENTION(Q,K, V ) = softmax

(
QK⊤
√
dk

)
V, (11)

where dividing the attention scores by the root of the
queries’ and keys’ dimension dk has been shown to increase
performance. Similarly to the GATv2 architecture (6), we
can compute the more expressive multi-head attention by
applying multiple self-attention heads in parallel and con-
catenating the results.

POSITION-WISE FEED-FORWARD NETWORK. We fur-
ther update each embedding h

(l+1)
i by separately giving

them to the same feed-forward network (FFN) consisting
of two fully connected layers and a non-linear activation
function3. To reduce the chance of overfitting, a dropout
layer (Srivastava et al. 2014) is applied, which randomly
deactivates a fixed percentage of the FFN’s neurons during
training.

Predicting f . Both sub-layers of the Transformer layer
have residual connections around them (He et al. 2016),
followed by a normalization layer such as layer normaliza-
tion (Ba, Kiros, and Hinton 2016), which stabilizes train-
ing. After computing the embedding h

(L)
i of each token xi,

we make a prediction of the function f by summing all to-
ken’s embeddings across each dimension and passing the
result to an MLP. We can pass a classical planning state ei-
ther directly to a Transformer by appropriately encoding the

3In this case, the feed-forward network is an MLP, but we here
stick to the more general term of FFN used in the original pa-
per (Vaswani et al. 2017)

ground atoms true in the state as tokens, or we can reuse an
existing graph representation by using the nodes feature vec-
tors as tokens, disregarding the graph’s connectivity. In our
experiments, we will do the latter to enable a fair compari-
son between GNNs and Transformers.

State-of-the-art Transformers
We now introduce the Transformer-based architectures uti-
lized.

Performer. The Performer (Choromanski et al. 2020) ar-
chitecture reduces the quadratic time and space complex-
ity of self-attention by computing a linear approximation
of the softmax attention matrix. This linear attention mech-
anism ensures that our Transformer-based general policies
can scale to large instances efficiently.

General, Powerful, Scalable Graph Transformer. The
general, powerful, scalable graph Transformer (Rampášek
et al. 2022) (GPS) processes a graph in every layer by pass-
ing it in parallel to a GNN and Transformer layer, and then
combines the resulting node embeddings using an MLP. This
allows GPS to attain both the GNN’s strength of captur-
ing structural information from nodes’ local neighborhoods
and the Transformer’s strength of capturing long-range re-
lationships between nodes. GPS can be used with any GNN
and Transformer layer, where if the latter uses a linear at-
tention mechanism, the overall complexity of GPS is linear
in the number of nodes and edges, making it more efficient
than previous Graph Transformer approaches. In our exper-
iments, we will use GCN as the GNN layer and Performer
as the Transformer layer. Note that, given GPS’s nature as a
hybrid architecture, its performance might be influenced by
the quality of the provided graph representation, even with
the flexibility offered by the Transformer component.

Comparing Transformers and GNNs
It is interesting to compare Transformers and GNNs on
a theoretical level as both architectures have many simi-
larities. The Transformer’s self-attention is similar to the
GNN’s aggregation, with the main difference being that self-
attention exchanges information between the embeddings of
all tokens, whereas GNN aggregation exchanges informa-
tion only within each node’s local neighborhood. Hence,
Transformers can model arbitrary pair-wise relationships be-
tween their input tokens, independent from the distance of
the corresponding nodes. In a nutshell, a Transformer ap-
plied to graphs can be seen as a GNN where all nodes are
assumed to be connected to each other, i.e., information
can flow between any possible nodes. A drawback of us-
ing Transformers is that because they make only small as-
sumptions about their input’s structure, they typically re-
quire more training data than architectures with stronger in-
ductive biases, such as GNNs (Lin et al. 2022).

Graph Representation
This section introduces our graph representation for classi-
cal planning states represented in the planning domain defi-
nition language (PDDL). We seek a simple graph represen-
tation that contains all necessary information while avoiding



Figure 1: Example of our graph representation for the Blocks World Domain. Nodes for ground atoms true in the current state
are blue and nodes for ground atoms in the goal state are green.

expressivity issues and inducing excessively large graphs.
Further, the graph representation (or node representation, re-
spectively) should be compatible with any GNN or Trans-
former architecture, to enable a fair comparison in our ex-
periments. Figure 1 shows an example where a graph is con-
structed for a pair of current and goal states from the Blocks
World domain.

Nodes. First, we add a node for every ground atom true in
the current state to the graph. We repeat this for every ground
atom true in the goal state. Further, we add a node for every
object of the instance. Each node is assigned a feature vec-
tor [i, t, n, a0, ..., am] that encodes the corresponding ground
atom or object and has a dimensionality of 3 +m, where m
is the maximum arity of the domain’s atoms:

1. i: unique ID to prevent symmetries in the graph.
2. t: integer representing the type of the node, correspond-

ing to either object, ground atom, or goal ground atom.
3. n: integer representing an object’s name or a ground

atom’s predicate symbol.
4. ai: integers representing the names of a ground atom’s

arguments, entries are set to −1 if atom’s arity is smaller
than m, all are set to −1 for object nodes.

Edges. The inclusion of nodes for both the ground atoms
and objects allows to simply insert edges between ground
atoms and their arguments. Nodes corresponding to ground
atoms with an arity of 0 are connected to the nodes of all ob-
jects since they represent global properties potentially rele-
vant to all objects. Note that the GNN does not need to infer
the states’ ground atoms through the graph’s local structures,
as they are directly encoded in the nodes. Thus, the edges
serve only to guide the exchange of embeddings during the
aggregation step. This also enables us to utilize Transform-
ers by passing the node features as tokens.

Comparison to Similar Graph Structures. Although
the relational GNN architecture by Ståhlberg, Bonet, and
Geffner does not explicitly construct a graph, its layers pass

messages between ground atoms and their arguments in a
similar way to how a GNN, applied to our graph represen-
tation, would exchange embeddings between neighboring
nodes (2022a; 2022b). By explicitly constructing graphs for
given classical planning states we disconnect the graph rep-
resentation from the neural network architecture, and thus
we can easily apply different GNN and Transformer archi-
tectures.

Our graph representation is also akin to the object-atom
binary structure introduced in Horcik and Šı́r (2024), with a
significant difference: we abstain from using edge features
due to their lack of support across all GNN architectures
and their incompatibility with existing Transformer archi-
tectures employing linear attention mechanisms (Rampášek
et al. 2022).

We can directly apply our graph representation to domains
with atoms that have an arity higher than 2, whereas the
graph representation of Rivlin, Hazan, and Karpas would re-
quire a pre-processing step that decomposes such atoms to
lower arity atoms (2020).

Empirical Evaluation
We now compare the previously introduced GNN and Trans-
former architectures for general policy learning w.r.t. their
performance as general policies.

Setup
We compare the 5 different architectures on the Blocks-
clear, Gripper, Visitall, Parking-behind, and Satellite do-
mains.

Datasets. The influence of dataset construction merits its
own thorough examination. As a starting point, we adhere to
the data generated by Ståhlberg, Bonet, and Geffner (2022a).
The training and validation data sets were created by per-
forming random walks from the instances’ initial states s0,
and then computing an optimal plan from each visited state
si.



Domain Training Validation Test
Blocks-clear [6− 26] [22− 31] [27− 44]

Gripper [22− 48] [52− 60] [65− 138]

Visitall [133− 662] [563− 962] [966− 1959]

Parking-behind [63− 85] [94− 95] [94− 115]

Satellite [30− 134] [142− 202] [155− 333]

Table 1: Numbers of nodes of graphs in training, validation,
and test sets. Intervals correspond to minimum and maxi-
mum number of nodes.

Each data sample then consists of the current state si, goal
state sg , and state value V ∗(si) which computes the minimal
cost of reaching sg from si. The test data sets consist of
PDDL instance files.

The sizes of the instances used are measured by their
number of objects and increase from training over validation
to test sets. Table 1 displays the sizes of the resulting graphs.
Hence, we train the GNNs and Transformers to imitate the
optimal planner on small and medium-sized instances, such
that the networks learn to generalize the knowledge, en-
abling them to solve even larger instances after training.

Training. Our models’ parameters are learned by min-
imizing the standard mean-squared error loss [V (s) −
V ∗(s)]2 using the Adam optimizer (Kingma and Ba 2014).
We employ a learning rate schedule that, starting from a high
learning rate of 0.001, decays the learning rate by a factor of
0.5 whenever the validation loss does not decrease for 25
epochs. We stop the training when the validation loss does
not decrease for 50 epochs. During testing, a general pol-
icy is induced by expanding states s and taking the actions
leading to successors s′ with the lowest predicted state value
V (s′). As done in (Ståhlberg, Bonet, and Geffner 2022b),
we avoid cycles by keeping a history of previously visited
states and disregarding them as possible successors.

Hyperparameters. For each architecture, we conduct a
grid search over the most impactful hyperparameters: the
number of layers (2, 4), the dimension of hidden layers (32,
64, 128), the dropout percentage (0.1, 0.5), and the num-
ber of attention heads (1, 2). We report the hyperparameters
used for each domain in the Appendix. Each configuration
is trained using three random seeds, and the model with the
lowest validation error is returned.

Performance
Table 2 shows the number of solved test instances of the
five considered architectures on all domains. Additionally,
the number of optimally solved instances, i.e., solved with
the shortest possible plan, is displayed in parentheses. In our
evaluation, nearly all architectures fully solve the test sets
of Blocks-clear and Gripper, with all discovered plans on
Gripper being optimal. On Visitall, the Transformer-based
Performer and GPS architectures can solve 11 and 10 out of
12 test instances, respectively, whereas the GNN architec-
tures fall behind by only solving up to 8 test instances. Given
that the states in Visitall’s test set induce large graphs of up
to 1959 nodes, we suspect that the Transformer-based archi-
tectures’ ability to capture long-range dependencies between
nodes gives them an advantage over the GNN architectures
on this domain. On the Parking-behind domain, GPS solves
all 32 test instances, where only one instance was not solved
optimally. GIN follows closely by solving 31 instances, of
which only 12 were solved optimally. Surprisingly, GCN,
GATv2, and Performer can only solve up to 18 instances.
On Satellite, GPS performs best by solving 16 out of the
20 test instances. We suspect that this domain is particularly
challenging because it has the highest number of atoms, in-
ducing more complex graphs than the other domains.

Conclusion. Regarding the three tested GNN architec-
tures, we do not observe one architecture having a clear ad-
vantage. However, it is noteworthy that the simple GCN’s
performance was better than/competitive with that of the
more sophisticated GIN and GATv2 on most domains. The
Performer solves only a few test instances on the Parking-
behind and Satellite domains, likely due to overfitting,
whereas the hybrid GPS architecture performs best over-
all. This suggests that combining Transformers and GNNs
can introduce inductive biases to increase learning efficiency
while retaining the ability to capture long-range relation-
ships and unlimited expressiveness.

Related Work
To circumvent the limited expressivity of standard GNNs,
Morris et al. introduced so-called k-GNNs, which are based
on the k-dimensional WL test, making them strictly more
expressive (2019). Ståhlberg, Bonet, and Geffner recently
proposed the R-GNN architecture, which computes an ef-
ficient approximation of 3-GNNs (2024). The increased ex-
pressivity of R-GNN allowed learning of general policies

Domain (#Instances) GCN GIN GATV2 PERFORMER GPS

Blocks-clear (11) 10 (2) 11 (1) 11 (6) 11 (3) 11 (6)

Gripper (39) 39 (39) 39 (39) 39 (39) 39 (39) 39 (39)

Visitall (12) 8 (1) 7 (1) 8 (0) 11 (1) 10 (1)

Parking-behind (32) 18 (7) 31 (12) 7 (2) 14 (2) 32 (31)

Satellite (20) 11 (0) 3 (0) 4 (0) 1 (0) 16 (0)

Table 2: Total number of solved test instances and number of optimally solved instances (parantheses).



that previous approaches could not compute. Compared to
our approach, which relies on off-the-shelf architectures, R-
GNN represents an architecture tailored to the planning ap-
plication.

Another compelling line of work is approaches aiming to
learn domain-independent heuristics. The GOOSE architec-
ture (Chen, Thiébaux, and Trevizan 2024) uses graph rep-
resentations for the lifted representation of planning tasks.
This avoids the high computational cost of processing large
graphs induced by grounded representations, thus allow-
ing for efficient planning. Recently, Chen, Trevizan, and
Thiébaux introduced WL-GOOSE, which does not rely on a
GNN but instead computes features from given graphs using
the WL test and passes them to classical machine learning
techniques to compute a heuristic (2024). The advantage of
this approach is that it requires fewer parameters than GNN-
based approaches, leading to faster training. While both of
these approaches need to be combined with a planner, gen-
eral policies, as we use them in this paper, can directly be
applied to any domain instance once they have been trained.

The application of Transformers to planning tasks is
gaining increasing attention. Stein et al. (2024) were the
first to introduce a tool for automatically translating PDDL
problem specifications into benchmarks for large language
model (LLM) planners, enabling them to effectively eval-
uate the planning capabilities of LLMs. Their experiments
showed that the LLMs performed well on some domains
and poorly on others. In comparison, our approach trains
a small transformer model from scratch for the planning
application instead of applying a large Transformer model
trained for natural language processing. The works of Lehn-
ert et al. (2024), and Rossetti et al. (2024) investigated train-
ing LLM Transformer architectures from scratch to predict
plans autoregressively. Although they demonstrated the abil-
ity to generate valid plans for many unseen tasks, these
approaches require tremendous training data and computa-
tional resources. In contrast, our approach builds a plan it-
eratively by executing predicted actions and observing new
states, allowing for more efficient learning.

Conclusion & Future Work
In this paper, we demonstrated that general policies can
be learned using standard, rather than custom-built, graph
neural networks. We also explored Transformers as an al-
ternative to GNNs, which do not require the construction
of a graph representation. In our experiments, both ap-
proaches successfully learned general policies, with Trans-
formers outperforming GNNs.

However, none of the approaches we considered could
match the performance of the policies derived from
the specialized architecture of Ståhlberg, Bonet, and
Geffner (2022a). We contend that with further research,
standard GNNs and Transformers have the potential to sur-
pass the performance of bespoke GNNs, although significant
work remains to achieve this goal.

We have several ideas on potentially beneficial ap-
proaches for training GNNs and Transformers in the context
of classical planning, which we outline here.

Dataset Generation. The dataset currently in use com-
prises plans from states reached via random walks starting
from the initial state. Instead, we propose to compute the
optimal plan from the initial state and then perform random
walks from all visited states. This approach will discover
additional, so far not included states. Further, we could iter-
atively repeat this process (planning from the set of discov-
ered states, random walks starting on all states visited when
following the plan to discover additional states). Note that
this idea bears resemblance to the concept of the training
procedure of ASNets (Toyer et al. 2018).

Another option would be to explore even further by fol-
lowing sub-optimal plans (instead of optimal plans only) to
accrue additional states that can be used for dataset genera-
tion. We particularly believe this approach would facilitate
scaling to larger instances, including those so large that tra-
ditional planning becomes impractical.

Further Transformers Investigation. The Transformer
architectures used in this paper have been relatively general.
We plan to enhance our methods by incorporating inductive
biases, for example, by utilizing separate layers for different
atoms, incorporating information about applicable actions
into the input layer, or basing our predictions on the trajec-
tory of visited states rather than solely on the current state.
Note that this differs from custom-building GNNs; rather
than constructing a graph and customizing its processing, we
tailor specific components, as is commonly done in state-of-
the-art Transformer research.

Training Procedure. Rather than relying on standard su-
pervised learning, we recognize advantages in employing of-
fline reinforcement learning (RL) techniques, such as Actor-
Critics, where a policy and a value function are learned
jointly. Additionally, the novel concept of Decision Trans-
formers (Chen et al. 2021) presents a promising direction
for future exploration since it has been shown to be more
data-efficient than other offline RL techniques and to learn
optimal policies from sub-optimal data.

Domain-general Policies. We have already conducted ini-
tial experiments training a general policy not only to solve
all instances within a specific domain but to address multi-
ple domains. Our preliminary experiments suggest that this
approach could enhance performance within individual do-
mains, as the agent may generalize across similar tasks and
leverage this knowledge for superior performance. However,
these results are very preliminary and not yet ready for for-
mal reporting, which is why we will explore them further in
future work.
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Tradition: Learning Reliable Heuristics with Classical Ma-
chine Learning. arXiv preprint arXiv:2403.16508.
Chen, L.; Lu, K.; Rajeswaran, A.; Lee, K.; Grover, A.;
Laskin, M.; Abbeel, P.; Srinivas, A.; and Mordatch, I. 2021.
Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing sys-
tems, 34: 15084–15097.
Choromanski, K.; Likhosherstov, V.; Dohan, D.; Song, X.;
Gane, A.; Sarlos, T.; Hawkins, P.; Davis, J.; Mohiuddin, A.;
Kaiser, L.; et al. 2020. Rethinking attention with performers.
arXiv preprint arXiv:2009.14794.
Fan, W.; Ma, Y.; Li, Q.; He, Y.; Zhao, E.; Tang, J.; and Yin,
D. 2019. Graph neural networks for social recommendation.
In The world wide web conference, 417–426.
Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; and
Dahl, G. E. 2017. Neural message passing for quantum
chemistry. In International conference on machine learn-
ing, 1263–1272. PMLR.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.
Hochreiter, S.; and Schmidhuber, J. 1997. Long short-term
memory. Neural computation, 9(8): 1735–1780.
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Hyperparameters

Domain GCN GIN GATV2 PERFORMER GPS

Blocks-clear (4, 128, 0.5,None) (2, 64, 0.5,None) (2, 32, 0.5, 1) (2, 32, 0.5, 1) (4, 32, 0.1, 1)

Gripper (4, 64, 0.5,None) (4, 64, 0.1,None) (2, 32, 0.1, 1) (4, 64, 0.5, 1) (4, 32, 0.5, 2)

Visitall (2, 64, 0.1,None) (4, 64, 0.1,None) (2, 128, 0.1, 1) (2, 128, 0.1, 1) (2, 64, 0.1, 2)

Parking-behind (2, 128, 0.5,None) (2, 32, 0.1,None) (2, 32, 0.1, 2) (2, 32, 0.5, 2) (4, 64, 0.1, 2)

Satellite (2, 128, 0.5,None) (4, 32, 0.1,None) (2, 64, 0.1, 2) (4, 64, 0.5, 1) (2, 64, 0.5, 1)

Table 2: Hyperparameters of the best-performing policies on each domain. Tuples consist of the number of layers, size of hidden
layers, dropout percentage, and number of attention heads.


