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Abstract
Foundation Models (FMs) have revolutionized many areas
of computing including Automated Planning and Scheduling
(APS). For example, a recent study found them to be use-
ful for eight aspects of planning problems: plan generation,
language translation, model construction, multi-agent plan-
ning, interactive planning, heuristics optimization, tool in-
tegration, and brain- inspired planning. Besides APS, there
are a number of seemingly related tasks involving genera-
tion of a series of actions with varying guarantee of their exe-
cutability to achieve intended goals, that we collectively call
planning-like (PL) tasks like business processes, programs,
workflows, and guidelines, where researchers have consid-
ered using FMs. However, previous works have primarily fo-
cused on pre-trained, off-the-shelf FMs and optionally fine-
tuned them. In this paper, we discuss the need for a compre-
hensive FM for PL tasks from scratch and explore the design
considerations for it. We argue that such a FM will open new
and efficient avenues for PL problem solving just like LLMs
are creating for APS.

Introduction
Foundation Models (FMs (Uncbiag 2024)), or Large Lan-
guage Models (LLMs (Hannibal046 2024)) when referring
to them in textual format, have revolutionized many areas
of computing. We will use the terms FM and LLM inter-
changeably to refer to models like GPT (OpenAI 2023),
PaLM (Chowdhery et al. 2022), LLaMA (Touvron et al.
2023) and ImageBind (Girdhar et al. 2023). These are deep-
learning based models trained using large datasets on a set of
tasks (see Figure 1), and optionally fine-tuned using datasets
of a particular domain. An FM model so trained can be used
for a variety of tasks including conversation (chat), i.e., di-
alog management. ChatGPT and Bard are examples of such
chatbots. When testing such a model, neither the training
procedure, consisting of data or tasks, may be known nor
the reason why the chatbot generated an utterance - thus,
they are truly blackbox systems.

Automated Planning and Scheduling (APS) is a branch
of Artificial Intelligence (AI) that focuses on the creation
of action sequences, also called plans or policies, for ex-
ecution by intelligent agents. Besides APS, a number of
other tasks involve generating a series of actions with vary-
ing guarantee for execution semantics, that we collectively
call planning-like (PL) tasks including business processes

Figure 1: Overview of developing an FM-based system -
e.g., an LLM-based chatbot.

Figure 2: The travel agency example from (Srivastava and
Koehler 2003)

(OMG 2011), dialogs (Vlad Serban et al. 2015), guidelines
(Field, Lohr et al. 1990), instructions, design diagrams (Wu,
Xiao, and Zheng 2021), programs (Kernighan and Ritchie
1988; Ziegler et al. 2024), workflows (van der Aalst and van
Hee 2004). For example, a recent instruction generation task
for travel planning (Xie et al. 2024) was introduce in the
Natural Language Processing (NLP) community that can be
processed by humans. But the application scenario of book-
ing travel packages in a travel agency was standardized as
back as in 2002 1 (Figure 2) and spans from a simple, closed-
world travel example into a dynamic, integrated solution.

In the closed-world case, a customer talks to the travel
agent who notes the customer’s requests and generates a trip
request document that may contain several needed flight and
hotel reservations. The travel agent performs all bookings

1See http://www.w3.org/2002/04/17-ws-usecase.



Figure 3: The travel plan in business process notations, from
(Srivastava and Koehler 2003)

and when he is done, he puts the trip request either into the
cancelled requests or the completed requests data base. A
completed document is sent to the customer as an answer to
his request. If the booking fails, the customer is contacted
again and the whole process re-iterates. Now if we allow the
travel agency to cooperate with external specialized service
providers that offer hotel and flight reservations, the process
requires to reorganize the entire processing of customer re-
quests. In the open-world case now, new services have to be
integrated and all services must correctly interact with each
other. Different settings of travel planning were popularly
tackled in APS (Agarwal et al. 2008), business processes
literature (see Figure 3), and web services (Srivastava and
Koehler 2003).

Researchers have started considering FMs for PL tasks
extensively. In APS, a recent study found LLMs to be rel-
evant for various aspects of planning problems: plan gener-
ation, language translation, model construction, multi-agent
planning, interactive planning, heuristics optimization, tool
integration, and brain-inspired planning (Pallagani et al.
2024b). Their use has also lead to many ongoing debates.
Consider plan generation. Although there is growing con-
sensus that LLMs cannot reason but act as approximate
information retrievers (Valmeekam et al. 2023b,a, 2022;
Valmeekam, Marquez, and Kambhampati 2023), they can
still be useful to find plans under various LLM/ fine tuning
settings (Pallagani et al. 2022a, 2023b,a). Furthermore, they
can be productively used in conjunction with conventional
planners for effective plan generation (Fabiano et al. 2023).

However, most of the previous works have used pre-
trained, off-the-shelf FMs and optionally fine-tuned them. In
this paper, we discuss the need for a comprehensive FM for
PL tasks from scratch and explore the design considerations
for it. We argue that such a FM will open new and efficient
avenues for PL problem solving just like LLMs are creating
for APS. We begin by providing background on FMs, APS
and planning-like tasks. Then, we outline the desiderata for
a Planning FM and its benefits over current models. We then

discuss design considerations, data choices and training op-
tions, and conclude.

Background
In this section, we give relevant background for classical
planning problem in APS, PL tasks, FMs and LLMs, and
LLM training so that the motivation and design options for
a ground-up FM for PL is well contextualized.

Automated Planning and Scheduling
The simplest APS task is a classical planning problem
(CPP). A CPP is a tuple M = ⟨D, I,G⟩ with domain
D = ⟨F,A⟩ - where F is a set of fluents that define a
state s ⊆ F , and A is a set of actions - and initial and
goal states I,G ⊆ F (Russell and Norvig 2003). Action
a ∈ A is a tuple (ca, pre(a), eff±(a)) where ca is the
cost, and pre(a), eff±(a) ⊆ F are the preconditions and
add/delete effects, i.e., δM(s, a) |= ⊥s if s ̸|= pre(a);
else δM(s, a) |= s ∪ eff+(a) \ eff−(a) where δM(·) is
the transition function. The cumulative transition function
is δM(s, (a1, a2, . . . , an)) = δM(δM(s, a1), (a2, . . . , an)).
A plan for a CPP is a sequence of actions ⟨a1, a2, . . . , an⟩
that transforms the initial state I into the goal state G us-
ing the transition function δM. Traditionally, a CPP is en-
coded using a symbolic representation, where states, ac-
tions, and transitions are explicitly enumerated. This sym-
bolic approach, often implemented using Planning Domain
Definition Language or PDDL (McDermott et al. 1998),
ensures precise and unambiguous descriptions of planning
problems. This formalism allows for applying search algo-
rithms and heuristic methods to find a sequence of actions
that lead to the goal state, which is the essence of the plan.

Planning Like Tasks
We now clarify terminology for prominent tasks that bear
resemblance to planning and we seek to include them in the
proposed FM. They are summarized in Table 1.

The most general representation is a workflow which is
a formalized representation of activities involved in accom-
plishing a well-defined objective using automated and man-
ual actions consisting of control and/or data flow (van der
Aalst and van Hee 2004). So, workflows can represent man-
ufacturing operations (design), machine learning pipelines,
complex operations in a financial institution, dialogs gen-
erated by chatbots, or scripts written for automation. In the
context of automated action execution, they are referred to
as plans or policies in AI community or programs in the
software engineering community, and in the context of busi-
ness improvement, they are also called business processes.
When tasks are described for managing or communicating
with people, they are also represented as instructions or
guidelines.

Thus, in summary:

• Business Processes: a set of coordinated activities de-
scribed within a business context across organizations -
e.g., customers and vendors (OMG 2011; Srivastava and
Mazzoleni 2010a,b).



Table 1: Characterizing Select Planning Like Tasks. Auto Gen: Automatic Generation, Auto Exec: Automatic Execution

Name State Control
Flow

Data
Flow

Auto
Gen

Auto
Exec

Comments Reference

Business Pro-
cess

x x Data, failure, compensation con-
ditions and cross-organization
responsibilities are richly repre-
sented; execution can be manual

(OMG 2011)

Design draw-
ing

x Multi-modal data, geometry con-
straints

(Wu, Xiao, and
Zheng 2021)

Dialogs x * Multi-agent conversation with at
least one human, *: trust issues are
prominent

(Vlad Serban
et al. 2015)

Guidelines x Focused on normative (domain)
preferences and constraints

(Field, Lohr et al.
1990)

Instructions x Step-by-step sequence of actions,
emphasizing simplicity and clarity
for interpretation and action.

(Weitzenhoffer
1974)

Plan x x x x x Full initial state, partial goal state,
minimal data representation, execu-
tion guarantee (soundness)

(McDermott et al.
1998)

Program x x x States, including goals, are not for-
mally represented.

(Kernighan and
Ritchie 1988)

Web Services x x * x Web-based endpoints, *: with se-
mantic descriptions added

(Chinnici et al.
2007; Agarwal
et al. 2008)

Workflow x x x Data, failure conditions and han-
dling, compensations elaborately
represented

(van der Aalst and
van Hee 2004)

• Design drawings: Computer-aided design (CAD) dia-
grams represent a sequence of operations for manufac-
turing new physical items. They can have both text and
visual representations and now FMs are being consid-
ered for them (Wu, Xiao, and Zheng 2021; Vuruma et al.
2024).

• Dialogs: represent interaction between a human and au-
tomated system with the collective goal of solving a
problem (Vlad Serban et al. 2015; McTear, Callejas, and
Griol 2016), and are a popular task with both FMs (Jalil
et al. 2023) and application of planning (Botea et al.
2019; Muise et al. 2019; Pallagani and Srivastava 2021).
Trust issues are a key concern with them (Henderson
et al. 2018; Srivastava 2021).

• Guidelines: a sequence of expert-defined information
consisting of questions and constraints (e.g. clinical prac-
tice guidelines) (Field, Lohr et al. 1990).

• Instructions: a sequence of activities a human can follow
to achieve a desirable goal (Weitzenhoffer 1974).

• Plans: a set of coordinated activities where states and
action models are formally represented, guaranteeing

soundness of execution for any plan found.
• Programs: a set of functions implementing activities

and executable on a computer (computable platform)
(Kernighan and Ritchie 1988); Copilot is a popular FM-
based tool that has been shown to improve coding pro-
ductivity (Ziegler et al. 2024).

• Web Services: a set of functions run on computers con-
nected over a network (e.g., internet) (Srivastava and
Koehler 2003; Chinnici et al. 2007).

• Workflows: a structured sequence of activities and tasks
involving automated systems and human participants de-
signed to achieve a specific goal or process efficiently.

We observe from Table 1 that control flow is the common
information across PL tasks. However, since other informa-
tion may be missing, the workflows - referring to the PL out-
puts collectively - may be acceptable for humans but not for
automation. Ensuring automated systems precisely interpret
and execute complex, multi-step tasks requires understand-
ing task-specific actions and contextualizing these within the
physical world (grounding). It also demands alignment with
objectives and adaptability to various contexts (alignment),



ensuring coherent and efficient progression towards goals.
Additionally, the ability to dynamically adapt to new in-
structions in changing environments (instructability) is cru-
cial, necessitating advanced capabilities to bridge the gap
between formal task representations and real-world execu-
tion. While intrinsic to APS, developing these capabilities
in FMs is an active research area.

Foundation and Large Language Models
Large language models are neural network models with
upwards of ∼ 3 billion parameters trained on extremely
large corpora of natural language data (trillions of token-
s/words). These models are proficient in interpreting, gen-
erating, and contextualizing human language, leading to ap-
plications ranging from text generation to reasoning tasks.
The Transformer (Vaswani et al. 2017) architecture, which
is fundamental to advancements in language modeling, has
undergone modifications to develop LLMs that are adept at
a diverse range of tasks. Three notable architectural variants
in language modeling include causal, masked, and sequence-
to-sequence models.
Causal Language Modeling (CLMs): CLMs, such as GPT-
4 (OpenAI 2023), are designed for tasks where text gener-
ation is sequential and dependent on the preceding context.
They predict each subsequent word based on the preceding
words, modeling the probability of a word sequence in a for-
ward direction. This process is mathematically formulated
as shown in Equation 1.

P (T ) =

n∏
i=1

P (ti|t<i) (1)

In this formulation, P (ti|t<i) represents the probability
of the i-th token given all preceding tokens, t<i. This char-
acteristic makes CLMs particularly suitable for applications
like content generation, where the flow and coherence of the
text in the forward direction are crucial.
Masked Language Modeling (MLMs): Unlike CLMs,
MLMs like BERT(Vaswani et al. 2017) are trained to un-
derstand the bidirectional context by predicting words ran-
domly masked in a sentence. This approach allows the
model to learn both forward and backward dependencies in
language structure. The MLM prediction process can be rep-
resented as Equation 2.

P (Tmasked|Tcontext) =
∏
i∈M

P (ti|Tcontext) (2)

Here, Tmasked is the set of masked tokens in the sentence,
Tcontext represents the unmasked part of the sentence, and M
is the set of masked positions. MLMs have proven effective
in NLP tasks such as sentiment analysis or question answer-
ing.
Sequence-to-Sequence (Seq2Seq) Modeling: Seq2Seq
models, like T5 (Raffel et al. 2020a), are designed to trans-
form an input sequence into a related output sequence. They
are often employed in tasks that require a mapping between
different types of sequences, such as language translation or
summarization. The Seq2Seq process is formulated as Equa-
tion 3.

P (Toutput|Tinput) =

m∏
i=1

P (toutputi |Tinput, toutput<i
) (3)

In Equation 3, Tinput is the input sequence, Toutput is the
output sequence, and P (toutputi |Tinput, toutput<i

) calculates
the probability of generating each token in the output se-
quence, considering both the input sequence and the preced-
ing tokens in the output sequence.

In addition to their architectural variants, the utility of
LLMs is further enhanced by model adaptation strategies.
One key strategy is fine-tuning, which involves further train-
ing pre-trained LLMs on a smaller, task-specific dataset,
thereby adjusting the neural network weights for particular
applications. This process is mathematically represented in
Equation 4.

θfine-tuned = θpre-trained − η · ∇θL(θ,Dtask) (4)

Here, θfine-tuned are the model parameters after fine-tuning,
θpre-trained are the parameters obtained from pre-training, η is
the learning rate, and ∇θL(θ,Dtask) denotes the gradient of
the loss function L with respect to the parameters θ on the
task-specific dataset Dtask.

In contrast to fine-tuning, in-context learning offers a dis-
tinct adaptation strategy for LLMs, notably seen in CLMs.
This method allows models to tailor responses to immedi-
ate prompts without additional training. Given a context C,
the model generates text T that is contextually relevant, as
shown in Equation 5. Here, P (T |C) is the probability of
generating text T given the context C, and P (ti|t<i, C) is
the probability of generating the i-th token ti given the pre-
ceding tokens t<i and the context C.

P (T |C) =

n∏
i=1

P (ti|t<i, C) (5)

Which model to start with for plan generation? (Pal-
lagani et al. 2023a) identify that pre-trained LLMs can-
not generate plans for classical planning problems off the
shelf. The selection of pre-training data and the methodol-
ogy employed for model adaptation play pivotal roles in im-
proving the quality of plan generation. It is observed that
LLMs pre-trained on programming languages, as opposed
to solely natural language, when fine-tuned with incremen-
tally hard planning problems (Pallagani et al. 2022b), ex-
hibit enhanced capabilities in generating optimal plans for
domains in which they have been fine-tuned. Despite these
advancements, the fine-tuned models demonstrate a limita-
tion in their ability to generalize to domains not included in
the fine-tuning process.

Training LLMs
There are tutorials on training CLMs, Masked, and Seq2Seq
LLMs for NLP from scratch, including (Karpathy 2023) and
(HuggingFace 2024). Training LLMs requires a vast and
high-quality dataset, as the data’s quality directly influences
model performance. With adequate data, LLMs can achieve
near-human proficiency across various domains (Gunasekar



Figure 4: A timeline capturing the progression of FMs for planning and the need for designing a Planning FM from ground up
for solving PL tasks.

et al. 2023). Training data typically involves diverse sources
such as Books, CommonCrawl, Reddit feeds, Wikipedia,
and Code. While next-word prediction remains the primary
pre-training task for LLMs, there is a shift towards incor-
porating domain-specific pre-training tasks. Such tasks, de-
signed for specialized fields like code synthesis and Chess
strategy analysis, offer more targeted learning pathways for
the models.

For planning, there is a recent tutorial on fine-tuning
LLMs (Pallagani et al. 2024a) with planning problems for
plan generation. Additionally, there has been progress in
adapting the Transformer architecture to A* search dynam-
ics for puzzles like Sokoban (Lehnert et al. 2024). However,
a significant gap persists in the availability of a comprehen-
sive training corpus for PL tasks and novel pre-training tasks
apt for an FM to learn the execution semantics and the syn-
tactic knowledge intrinsic to a PL task.

The Need for a Planning Foundation Model
Current approaches to FMs in NLP and AI research have
predominantly centered around generic pre-training tasks
such as masked or next-word/sentence prediction, as shown
in Figure 4. These models are trained on diverse text cor-
pora, enabling them to perform various downstream tasks,
from sentiment detection to question answering. How-
ever, when these models are applied to PL tasks, their ef-
fectiveness is inherently limited by their generic training
paradigms. This limitation is due to the complex require-
ments of PL tasks, which not only necessitate the under-
standing of textual information but also require an intricate
capture of state, control flow, and data flow alongside the
constrained generation and execution semantics unique to
each task (see Table 1). Current pre-training tasks lack the

specificity to model these detailed, dynamic relationships in-
herent in PL tasks, leading to a gap in effectiveness when
transitioning from general text understanding to specialized
plan generation and execution.

The finetuning of FMs, exemplified by models like Plans-
former, represents a step towards domain-specific adapta-
tion, where generic FMs are trained on PL tasks. While
this method offers improvements in performing PL tasks by
leveraging domain-specific data, it still falls short in fully
capturing the nuances of plan generation, validation, and
generalizing across all PL tasks due to the limitation in
training data and the inherent general-purpose pre-training.
Prompting is another approach that has gained popularity
recently. Despite its wide adoption, it has demonstrated in-
ferior plan generation performance compared to fine-tuning
and often relies heavily on the human-in-the-loop’s skill in
crafting effective prompts.

The need for a Planning FM arises from these limitations
and new opportunities. Note from Table 1 that PL tasks have
a complementary focus, which may be leveraged with an
FM. For example, business processes and dialogs focus on
multi-party interaction, design focuses on geometry; plans
focus on soundness, and workflows and business processes
focus on failure handling. An FM trained on diverse consid-
erations may bring these insights learned from data to bear
in its output. It can also focus on PL-specific tasks during
both pre-training and downstream and metrics to enable bet-
ter execution of semantics associated with PL tasks. Such an
FM may be critical for effectively generating, summarizing,
and generalizing PL tasks. We note that in the past, in code
generation, FMs trained for that objective (Wang et al. 2021)
performed better than fine-tuning text-based FMs (Raffel
et al. 2020b) with code - a trend seen in many other areas.



Table 2: Novel Pre-training Tasks for PL Tasks

Pre-training Task Description Relevance

Next Action Prediction Training the model to make context-based decisions, simulating
step-by-step plan execution.

Mimics real-world planning
and workflow execution.

Conditional Branching
Prediction

Predicting outcomes from multiple possible branches in a given
scenario.

Reflects decision-making in
complex processes.

Action and Effect
Modeling

Understanding causal relationships between actions and their
consequences.

Fundamental for realistic
plan generation.

Constraint Satisfaction Identifying and applying constraints to optimize outcomes. Crucial for generating
efficient and viable plans.

Hierarchical Task
Planning

Generating plans involving tasks at multiple levels of abstraction. Addresses complex tasks
with sub-tasks in detailed
planning.

Cross-Domain
Understanding

Recognizing entities and relationships across different planning
domains.

Enhances model’s
versatility, applicability,
and generalizability.

Execution Simulation Simulating the execution of plans or code to predict outcomes. Improves the model’s
execution semantics
understanding.

Error Detection Identifying and correcting errors in plans or instructions. Enhances reliability and
correctness of outputs.

Multi-modal Contrastive
Learning

Incorporating visual, textual, and auditory data for plan understanding
and generation.

Relevant for tasks relying
on multi-modal inputs.

Discussion
We now discuss how the proposed FM may be developed.
The envisioned Planning FM distinguishes itself through a
specialized focus on PL tasks and its design principles of
compactness, generalizability, and an intrinsic awareness of
temporal and execution semantics.

Training Procedure
We provide a detailed description of the comprehensive
training procedure involved in constructing the Planning
FM, encompassing critical aspects from tokenization and
model architecture to the application of the Planning FM in
various downstream tasks.
Tokenization and Embeddings: Designing a tokenizer for
the Planning FM, which is specialized for handling PL tasks
requires a nuanced approach to understand and encode di-
verse data types and structures. Such a tokenizer can be de-
signed as follows:

• Pre-processing and Normalization
– Input Normalization: The initial stage involves stan-

dardizing heterogeneous inputs, including textual data
from various PL task documents and non-textual data
such as design drawings. Textual data undergo normal-
ization processes, including case normalization, spe-
cial character removal, and spelling correction. Non-
textual data is processed through Optical Character
Recognition (OCR) techniques to extract textual infor-
mation, ensuring a unified text-based input for further
processing.

– Semantic Augmentation: Employing domain-specific
ontologies such as the Planning Ontology, the text is
augmented with semantic annotations. This involves
the identification and annotation of domain-relevant
entities and their interrelations, enhancing the model’s
comprehension of planning-specific lexicon and struc-
tures.

• Tokenization Strategy
– Adaptive Subword Tokenization: A subword tok-

enization algorithm, tailored to the planning domain
through the training on the pre-processed and normal-
ized corpus, is employed. Techniques such as Byte-
Pair Encoding (BPE), Unigram Language Model, or
SentencePiece can be considered, with the aim to cap-
ture the lexical characteristics of PL tasks.

– Multi-Modal Tokenization: For incorporating non-
textual information, a multi-model tokenization ap-
proach is adopted. This involves the extraction of vi-
sual features using Convolutional Neural Networks
(CNNs), subsequently mapped into a discrete token
space compatible with textual tokens, facilitating in-
tegrated multi-modal analysis.

• Special Tokens and Embeddings
– Integration of Domain-Specific Tokens: The tok-

enizer incorporates special tokens designed to signify
critical PL constructs (e.g., START OF PLAN,
END OF TASK) and entities (e.g., OBJECTS,
COST). These tokens are crucial for the model to
recognize and prioritize PL task elements within the



data.
– Enhanced Embedding Layer: The embedding layer for

the Planning FM incorporates rotary position embed-
dings (RoPE)(Su et al. 2024) to effectively encode se-
quential information in PL tasks. RoPE distinguishes
itself by directly encoding positional information into
the embeddings, allowing the model to maintain the
relative order of tokens without losing the context of
their placement.

This approach to tokenizer for Planning FM provides for
a blend of linguistic processing, domain-specific tailoring,
and multi-modal integration, enabling the model to be adept
at PL tasks.
Model Architecture A Seq2Seq architecture will be the pre-
ferred choice for the Planning FM, as prior research has
demonstrated its capabilities in generating structured se-
quences compared to CLMs or MLMs. The Seq2Seq frame-
work, originally devised for machine translation, excels at
comprehending and producing complex sequences, making
it an optimal choice for PL tasks.

The Seq2Seq architecture comprises two principal com-
ponents: an encoder and a decoder. The encoder processes
the input sequence, capturing its semantic and structural
essence into a comprehensive context vector. For PL tasks,
this involves encoding the initial state, objectives, con-
straints, and available resources. The inclusion of a self-
attention mechanism enables the encoder to assess the rel-
ative importance of different elements within the input se-
quence, a critical function for understanding complex plan-
ning instructions and dependencies.

The decoder is responsible for generating the output se-
quences, such as plans or summaries, from the encoded rep-
resentation. It predicts the subsequent action or step in the
plan sequentially, considering both the current generation
and the overarching goal articulated by the encoder. The de-
coder employs a cross-attention mechanism, particularly al-
lowing it to concentrate on pertinent portions of the input
sequence while formulating each step of the plan. A signif-
icant advancement in the Seq2Seq architecture for the Plan-
ning FM will be the incorporation of RoPE. RoPE enhances
the Planning FM’s ability to maintain and exploit the tem-
poral and sequential dependencies more effectively than the
traditional positional encoding methods utilized in modern
LLMs.
Pre-training Objectives The novel pre-training objectives
for the Planning FM are outlined in Table 2. We depart from
conventional next-word prediction objective predominantly
used to train LLMs to objectives that are inherently aligned
with the intricacies of PL tasks. Our proposed pre-training
objectives encompass tasks such as Next Action Prediction,
Conditional Branching Prediction, and Action-Effect Mod-
eling, equipping the Planning FM to learn context-based
decision-making, understanding complex process dynamics,
and modeling causal relationships between actions and their
consequences. Furthermore, tasks like Constraint Satisfac-
tion and Hierarchical Task Planning target the generation
of optimal and executable plans by navigating constraints
and orchestrating tasks across multiple levels of abstraction.

The inclusion of Cross-Domain Understanding and Execu-
tion Simulation extends the model’s versatility and applica-
bility across various PL scenarios, enhancing its predictive
accuracy and execution semantics. Additionally, Error De-
tection and Multi-modal Contrastive Learning further refine
the model’s reliability and adaptability to multi-modal in-
puts, ensuring the generation of robust and error-free plans.
Evaluation The training regimen of the Planning FM, fea-
turing novel pre-training tasks specifically devised for PL
tasks, necessitates the introduction of sophisticated evalu-
ation metrics to accurately gauge its efficacy. These met-
rics aim to capture essential dimensions of the model’s out-
put, such as Plan Validity, which scrutinizes the feasibil-
ity and compliance of the generated plans with predefined
constraints and objectives. Plan Optimality assesses the effi-
cacy and resource efficiency of the plans, ensuring goals are
met with minimal expenditure of time and resources. Plan
Length, defined as a numerical value representing the num-
ber of actions or steps in a generated plan. Degree of Cor-
rectness measures the ratio of successfully achieved goals to
the number of specified goals within a plan. Notably, Com-
pression Ratio is introduced as a metric to assess the model’s
efficiency in condensing detailed planning instructions into
succinct, actionable summaries without losing critical infor-
mation. This suite of metrics offer a comprehensive frame-
work for assessing the Planning FM’s performance, ensuring
it delivers practical, optimal, and executable plans suited to
a wide array of real-world planning scenarios.
Downstream Tasks The Planning FM is designed for a va-
riety of downstream tasks, reflecting its utility in planning-
related applications. Key downstream tasks include:
• Plan Generation: Creating detailed plans based on spe-

cific goals and constraints.
• Completing a Partial Plan: Filling in missing elements of

an incomplete plan to ensure its comprehensiveness and
actionability.

• Replanning: Adjusting plans in response to changes in
objectives, constraints, or conditions.

• Predicting Plan Validity: Determining the feasibility and
coherence of plans, identifying potential execution is-
sues.

• Plan Summarization: Condensing comprehensive plans
into brief summaries that retain essential information
(Srivastava 2010).

• Resource Optimization: Ensuring efficient use of re-
sources within plans to achieve objectives with minimal
waste.

• Error Detection and Correction: Identifying and correct-
ing inaccuracies or inconsistencies within plans.

The model can be further adapted to any downstream PL
task by fine-tuning or prompting the Planning FM with with
an appropriate quantity and quality of data.

Model Properties
We envisage the proposed FM to be compact, general and
aware of PL needs. We now describe specific steps towards
the same.



Compactness: Conventional FMs are assumed to be usable
in a resource-rich setting like residing remotely on a cloud
and invoked on-demand via API calls. However, many real
world applications are resource-constrained and we there is
a rising demand for compact models that can be deployed
effectively in both cloud as well as edge settings (Vuruma
et al. 2024) without compromising performance.

Prominent techniques for these are:

• Model Pruning: The process of removing non-critical
and redundant components of a model without a signifi-
cant loss in performance. With respect to LLMs, this can
mean removing weights with smaller gradients or mag-
nitudes and parameter reduction among others. Novel
pruning methods like Wanda (Sun et al. 2023) and LLM-
Pruner (Ma, Fang, and Wang 2023) present optimal solu-
tions for making LLMs smaller. Furthermore, parameter
sharing across different parts of the model and pruning
redundant or non-contributory neurons post-training con-
tribute to a compact yet powerful model architecture.

• Quantization: A key strategy is mixed precision train-
ing, which utilizes a combination of 16-bit (half-
precision) and 32-bit (single precision) floating-point
operations during the training process or representing
model parameters such as weights in a lower precision,
i.e. using fewer bits to store the value (Gholami et al.
2021). This results in a smaller model size, faster in-
ference, and a reduced memory footprint. LLM Quan-
tization can be achieved either in the post-training phase
(Dettmers et al. 2022) or during the pre-training or fine-
tuning phase (Liu et al. 2023).

• Knowledge Distillation: Transferring the knowledge of
a large teacher model to a smaller learner model to repli-
cate the original model’s output distribution difference.
Knowledge Distillation has been widely used to reduce
LLMs like BERT into smaller distilled versions Distil-
BERT (Sanh et al. 2020). More recently, approaches like
MiniLLM (Gu et al. 2023) and (Hsieh et al. 2023) further
optimize the distillation process to improve the student
model’s performance and inference speed.

Generalizability: refers to the ability to generate output be-
yond the specific training data. We seek to attain it across
the wide range of PL tasks by training the Planning FM
on a diverse corpus that encompasses not just traditional
planning datasets like the International Planning Competi-
tion (IPC (ICAPS 2023)) but also extends to other tasks
like business processes (Camunda 2024), dialogues (Vlad
Serban et al. 2015), design (Wu, Xiao, and Zheng 2021),
and workflows (Allard et al. 2019) form Table 1. Note that
the business process and design data are inherently multi-
modal consisting of image and text. It can be further en-
riched by knowledge from a planning ontology that captures
inter-relationships between different metadata (Muppasani
et al. 2023). This broad training base, combined with task-
agnostic pre-training objectives such as next-action predic-
tion, conditional branching prediction, and execution sim-
ulation, equips the Planning FM with a robust foundation
of knowledge. The ontological knowledge facilitates the
model’s ability to adapt to various planning contexts with-

out requiring extensive task-specific retraining. Moreover,
the incorporation of transfer learning techniques allows the
model to leverage knowledge acquired from one task to im-
prove performance on related tasks, enhancing its generaliz-
ability. (Torrey and Shavlik 2010).
Awareness of temporal and execution considerations is
cultivated by deliberately designing pre-training tasks that
mimic real-planning scenarios as outlined in Table 2. With
the help of novel pre-training tasks, the Planning FM devel-
ops a nuanced comprehension of how plans unfold over time
and how individual actions interrelate. Training the model to
recognize and predict the impact of various actions within
different execution contexts further ensures that the gener-
ated plans are theoretically sound and practically executable.

LLM Properties
The development of Planning FM introduces notable con-
cerns regarding the executional guarantees traditionally of-
fered by APS systems. FMs inherently do not provide sound
and complete solutions due to their probabilistic frame-
works. Therefore, leveraging FM architectures for PL tasks
requires a thorough investigation into the Planning FM’s
properties of alignment, instructability, and grounding - ar-
eas where FMs often encounter limitations.
Grounding: refers to the model’s ability to base its planning
and reasoning processes on real-world knowledge and data.
This necessitates the incorporation of extensive domain-
specific knowledge into the model, potentially with the help
of a knowledge graph (Sheth et al. 2022). The APS plan-
ners may also help in verifying physical constraints just as
information retrievers do in RAG (Lewis et al. 2020).
Alignment: is critical for ensuring that the progression of
Planning FM towards goals is both coherent and efficient.
It involves the model’s capability to accurately interpret and
execute PL tasks in a manner that not only meets predefined
objectives but also dynamically adjusts to changes in the en-
vironment.
Instructability: involves the model’s responsiveness to nu-
anced directives and its capacity to adapt its planning strate-
gies accordingly. Enhancing the Planning FM’s instructabil-
ity requires fine-tuning with preferences (Ziegler et al. 2019)
that encompass a broad range of PL tasks and user intents.

Conclusion
In this paper, we considered various PL tasks together and
argued for the need for a FM to be developed from scratch.
We explored various design considerations including train-
ing tasks, data and its behavioral properties. We argue that
such a FM will open new and efficient avenues for PL prob-
lem solving just like LLMs are creating for APS.
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