
POSGGym: A Library for Decision-Theoretic Planning and Learning in Partially
Observable, Multi-Agent Environments

Jonathon Schwartz1, Rhys Newbury1,2, Dana Kulić2, Hanna Kurniawati1,
1School of Computing, Australian National University, Canberra, ACT, Australia

2Department of Electrical and Computer Systems Engineering, Monash University, Clayton, VIC, Australia
jonathon.schwartz@anu.edu.au, rhys.newbury@anu.edu.au, dana.kulic@monash.edu, hanna.kurniawati@anu.edu.au

Abstract

Seamless integration of Planning Under Uncertainty and Re-
inforcement Learning (RL) promises to bring the best of both
model-driven and data-driven worlds to multi-agent decision-
making, resulting in an approach with assurances on perfor-
mance that scales well to more complex problems. Despite
this potential, progress in developing such methods has been
hindered by the lack of adequate evaluation and simulation
platforms. Researchers have had to rely on creating custom
environments, which reduces efficiency and makes compar-
ing new methods difficult. In this paper, we introduce POSG-
Gym: a library for facilitating planning and RL research in
partially observable, multi-agent domains. It provides a di-
verse collection of discrete and continuous environments,
complete with their dynamics models and a reference set of
policies that can be used to evaluate generalization to novel
partners. Leveraging POSGGym, we empirically investigate
existing state-of-the-art planning methods and a method that
combines planning and RL in the type-based reasoning set-
ting. Our experiments corroborate that combining planning
and RL can yield superior performance compared to plan-
ning or RL alone, given the model of the environment and
other agents is correct. However, our particular setup also re-
veals that this integrated approach could result in worse per-
formance when the model of other agents is incorrect. Our
findings indicate the benefit of integrating planning and RL
in partially observable, multi-agent domains, while serving
to highlight several important directions for future research.
Code available at: https://github.com/RDLLab/posggym.

1 Introduction
Decision-theoretic planning, also known as planning un-
der uncertainty, addresses the problem of using a dynam-
ics model to find the optimal way to behave in uncer-
tain environments (Blythe 1999; Boutilier, Dean, and Hanks
1999). In scenarios involving a single-agent, this is formal-
ized by the partially observable Markov decision process
(POMDP) (Kaelbling, Littman, and Cassandra 1998), which
incorporates uncertainty in the state of the environment
and the stochastic outcomes of actions. Extending to the
multi-agent setting, various approaches exist (Seuken and
Zilberstein 2008), with the Partially Observable Stochastic
Game (POSG) (Hansen, Bernstein, and Zilberstein 2004)

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

being one of the most general. The appeal of decision-
theoretic planning lies in its mathematical rigor and theo-
retical guarantees for optimal decision-making under uncer-
tainty, vital for reliable autonomous systems in domains like
robotics (Kurniawati 2022; Woodward and Wood 2012), au-
tonomous driving (Carr et al. 2021), and security (Seymour
and Peterson 2009; Ng et al. 2010).

Unfortunately, applying planning under uncertainty to
large, multi-agent environments has remained a challenge,
due to difficulties around computational complexity and
handling of complex dynamics models. Advances in deep
learning (LeCun, Bengio, and Hinton 2015) offer promis-
ing solutions to alleviate these difficulties. Deep learning
has been able to leverage growing compute much more ef-
fectively than planning to solve increasingly difficult prob-
lems (Kaplan et al. 2020). Combining deep reinforcement
learning (RL) with planning has already led to remarkable
achievements in multi-agent decision making in games (Sil-
ver et al. 2018; Brown et al. 2020; Lerer et al. 2020). Inte-
grating learning with planning presents an exciting opportu-
nity for the creation of robust autonomous agents capable of
scaling to complex environments while effectively handling
uncertainty.

In this work, we introduce POSGGym, a research library
for planning and RL in partially observable, multi-agent en-
vironments (Figure 1). POSGGym models environments us-
ing the POSG framework and supports both discrete and
continuous domains. It includes implementations of estab-
lished and newer planning benchmarks, all under a unified
API compatible with the existing ecosystem of multi-agent
RL (MARL) libraries. Additionally, POSGGym provides a
reference set of co-players, crucial for multi-agent research
and for enabling reproducible evaluation with a range of
partners.

POSGGym enables extensive empirical investigation into
decision-theoretic planning and its combination with RL.
We evaluate four state-of-the-art planners and integrated
planning and RL across a diverse set of discrete environ-
ments. Our evaluation encompasses performance with both
known and unknown co-player populations, allowing us to
study various properties of each method along with gen-
eralization to novel partners. Our results demonstrate how
decision-theoretic planning and RL can be combined effec-
tively to get better performance than either method alone.

Figure 1: POSGGym is a library for planning and learning research in partially observable, multi-agent domains. It includes a
diverse set of discrete and continuous environments along with a collection of reference policies for reproducible evaluation.

Furthermore, our findings show areas where existing plan-
ning methods perform poorly and highlight promising di-
rections for future research.

2 Background
2.1 Partially Observable Stochastic Games
Partially Observable Stochastic Games (POSGs) (Hansen,
Bernstein, and Zilberstein 2004) generalize various other
formal decision-making models. A Partially Observable
Markov Decision Process (POMDP) is a POSG with a
single agent (Kaelbling, Littman, and Cassandra 1998).
A decentralized-POMDP (Dec-POMDP) (Bernstein et al.
2002) is a fully cooperative POSG where all agents share a
reward function. A Markov game, also known as a stochas-
tic game, is a fully observable POSG (Shapley 1953). The
generality of POSGs has lead to their wide use in MARL
and decision-theoretic planning.

Formally, a POSG is a tuple M =

⟨I,S, S0, A⃗, O⃗, T ,Z,R⟩ consisting of N agents in-
dexed I = {1, . . . , N}, a set of environment states S,
an initial state distribution S0 ∈ ∆(S), the joint ac-
tion space A⃗ = A1 × · · · × AN , the joint observation
space O⃗ = O1 × · · · × ON , a state transition function
T : S × A⃗ × S → [0, 1], the joint observation func-
tion Z : S × A⃗ × O⃗ → [0, 1], and a reward function
R : S × A⃗ → RN .

At each state s ∈ S, each agent i ∈ I simultaneously
performs an action ai ∈ Ai, following which the environ-
ment transitions to the next state s′ according to T , and the
agents receive an observation oi ∈ Oi, according to Z , and
reward ri ∈ R, according to R. Each agent has no direct
access to the environment state or knowledge of the other
agent’s actions and observations. Instead they must rely only
on information in their action-observation history up to the
current time step t: hi,t = ⟨oi,0ai,0oi,1 . . . oi,t−1ai,t−1oi,t⟩.
Agents select their next action using their policy πi which is
a mapping from their history hi (or belief, see Section 2.2)
to a probability distribution over their actions. The goal of
each agent i is to maximize its total expected return given
by Ji = E

[∑∞
t′=t γ

t′−tri,t′
]
, where γ ∈ [0, 1) is a discount

factor. Importantly, each agent’s reward at each step also de-

pends on the actions taken by the other agents present in the
environment. Throughout this paper, we use i to denote the
planning agent, j ̸= i to denote a single other agent, and
−i = I \ i to denote the set of all other agents.

2.2 Decision-Theoretic Planning
Decision-theoretic planning addresses optimal behavior in
uncertain environments by using a dynamics model of the
environment to explicitly model the uncertainty arising from
partial observability and stochastic outcomes of actions. In
the multi-agent setting, uncertainty about the other agents –
their policy, actions, and internal state – must also be con-
sidered (Seuken and Zilberstein 2008; Albrecht and Stone
2018). The various methods differ along a number of axes.
However, a key axis is regards to the solution, specifically
whether the solution is a joint policy for all agents (i.e. cen-
tralized planning for decentralized control) (Oliehoek and
Amato 2016), or instead a policy for a single agent op-
erating amongst independent other agents (Gmytrasiewicz
and Doshi 2005). The POSG framework, and thus POSG-
Gym, accommodates research in both directions. However,
in this work, we concentrate on the latter: operating a single
agent amongst independent co-players. In cooperative envi-
ronments this is analogous to the problem of ad-hoc team-
work (Stone et al. 2010).

At the core of decision-theoretic planning lies an agent’s
belief, representing a distribution over possible states the
agent could be in. In POMDPs, the belief b is a distribution
over environment states b ∈ ∆(S). In the multi-agent set-
ting, the policies and internal states of the other agents must
also be considered. For the purpose of this work, a belief
bi,t ∈ ∆(S × Π−i × H−i,t) encompasses the environment
state s ∈ S, other agents’ policies π−i ∈ Π−i, and their his-
tories h−i,t ∈ H−i,t, where the other agents’ policy space
is a finite discrete set. The planning agent uses its belief bi,t
to select its next action according to its policy πi and then
updates its belief given its next observation.

2.3 Reinforcement Learning
Reinforcement Learning (RL) (Sutton and Barto 2018) is an-
other approach for solving sequential-decision making prob-
lems. Whereas planning uses a dynamics model and explicit
beliefs, RL focuses on learning a policy through interactions

with the environment or through repeated simulations us-
ing a model. Deep RL in partially observable environments
typically circumvent explicit beliefs by using recurrent net-
works (RNNs) (Bengio, Simard, and Frasconi 1994) such as
LSTMs (Hochreiter and Schmidhuber 1997) to represent the
policy (Hausknecht and Stone 2015). These RNNs can learn
implicit beliefs, in that they learn representations of the suf-
ficient statistics of the state of the world given the agents
action-observation history. However, these learned implicit
beliefs do not permit planning since search in planning re-
quires sampling from beliefs in order to simulate possible fu-
ture trajectories. Instead, prior work has combined RL with
search by using a deep RL policy as the search policy within
Monte Carlo Tree Search (MCTS) (Silver et al. 2018; Brown
and Sandholm 2018; Lerer et al. 2020).

3 Related Work
3.1 Multi-Agent Libraries
Recent years have seen a proliferation of MARL research
libraries. This includes general environment suites provid-
ing a standard API and a large collection of environments,
such as PettingZoo (Terry et al. 2021), Melting Pot (Leibo
et al. 2021) and JaxMARL (Rutherford et al. 2023). There
are libraries focused on specific domains such as the Star-
Craft Multi-Agent Challenge (Samvelyan et al. 2019; Ellis
et al. 2022), massively multi-agent online games (Suarez
et al. 2019), environments with hundreds to millions of
agents (Zheng et al. 2018), drones (Lechner et al. 2023), au-
tonomous driving (Lopez et al. 2018; Zhang et al. 2019) and
robotics (Tunyasuvunakool et al. 2020; Peng et al. 2021; Pa-
poudakis et al. 2021). While these libraries offer a range of
benchmarks they are designed specifically for MARL and
so have no or limited model support and/or focus on limited
domains, making them hard to use for general planning.

A number of libraries focusing on turn-based games have
also been developed, including OpenSpiel (Lanctot et al.
2019), rlcard for card-games (Zha et al. 2019), and Pgx for
accelerator-supported board games (Koyamada et al. 2024).
Unlike most MARL libraries, these libraries support search
by exposing the environment model in their APIs. However,
each library models environments as Extensive Form Games
(Osborne and Rubinstein 1994) which are better suited for
strictly turn-based games, such as card and board games.

MADPToolbox (Spaan and Oliehoek 2008) is a collec-
tion of planning algorithms and benchmarks domains with
a specific focus on discrete Dec-POMDPs. However, it is
no longer maintained and its design makes it difficult to in-
tegrate with the modern library ecosystem. AdLeap-MAS
(do Carmo Alves et al. 2022) also provides some support for
planning, however it includes a very limited set of environ-
ments. More recently, libraries based on planning domain
language description (PDDL) have been proposed, includ-
ing PDDLGym (Silver and Chitnis 2020) and pyRDDLGym
(Taitler et al. 2023). Like POSGGym, these libraries support
both planning and learning, but primarily focus on single
agent domains using the Gym API. In comparison, POSG-
Gym includes a larger collection of multi-agent benchmarks,
reference policies, and a multi-agent focused API design.

3.2 Multi-Agent Planning
In this work we empirically evaluate existing state-of-the-
art methods for decision-theoretic planning in large par-
tially observable, multi-agent environments. A closely re-
lated problem is that of ad-hoc teamwork (Stone et al. 2010),
where methods based on stage games (Wu, Zilberstein, and
Chen 2011), Bayesian beliefs (Barrett, Stone, and Kraus
2011; Barrett et al. 2014), types with parameters (Albrecht
and Stone 2017), and for the many agent setting (Yourd-
shahi et al. 2018) have been proposed. All these methods
use MCTS but are limited to environments where the state
and actions of the other agents are fully observed. POT-
MMCP (Schwartz, Kurniawati, and Hutter 2023) uses a
meta-policy for guiding search and was shown to outperform
related methods across a range of cooperative, competitive,
and mixed environments in the type-based reasoning setting.

Several Monte Carlo planning methods have been pro-
posed for solving large I-POMDPs. This includes methods
based on finite-state automata (Panella and Gmytrasiewicz
2017) and for systems with communication (Kakarlapudi
et al. 2022). However, most relevant for our setting are
IPOMCP (Eck et al. 2020) and INTMCP (Schwartz, Zhou,
and Kurniawati 2022). These two methods represent the cur-
rent state-of-the-art for large, general I-POMDPs.

3.3 Combined Planning and Learning
Combining search with RL has been an important part of su-
perhuman performance in games. Self-play RL and MCTS
have been combined to achieve beyond expert performance
in two-player fully-observable zero-sum games with both a
known (Silver et al. 2016, 2018) and learned (Schrittwieser
et al. 2020) environment model. Similar methods have been
applied to zero-sum imperfect-information games (Brown
and Sandholm 2018, 2019; Brown et al. 2020; Timbers et al.
2022), as well as cooperative games where there is prior co-
ordination for decentralized execution (Lerer et al. 2020; Hu
et al. 2021). Methods combining MCTS and RL for train-
ing a best-response policy against a distribution over poli-
cies (Li et al. 2023) have also been proposed. A key focus
of existing work in combining RL and search has been for
games which are fully-observable, where the agent has ac-
cess to exact information-states, or using belief representa-
tions trained using specific domain knowledge. To the best
of the authors knowledge ours is the first work to do a com-
prehensive empirical investigation combining RL with exist-
ing Monte Carlo planning methods based on particle filters.

4 POSGGym
The aim of POSGGym is to streamline planning and learn-
ing research in POSGs, with a particular emphasis on plan-
ning, since this is currently lacking in existing libraries. To
accomplish this, POSGGym uses a general yet user-friendly
API, and includes a diverse collection of environments and
reference agents. POSGGym’s API is based on the Gymna-
sium (Foundation 2022) and PettingZoo (Terry et al. 2021)
libraries, as these are widely used by the RL community,
making it simple to integrate POSGGym with the many
MARL algorithm libraries compatible with PettingZoo.

4.1 API Design
The POSGGym API has three main components: environ-
ment, model, and agents.

import posggym
import posggym.agents as pga
env = posggym.make("PursuitEvasion-v1", grid="16x16")

policies = {
"0": pga.make(

"PursuitEvasion-v1/grid=16x16/RL1_i0-v0", env.model, "0"
),
"1": pga.make(

"PursuitEvasion-v1/ShortestPath-v0", env.model, "1"
),

}
seed = 42
obs, infos = env.reset(seed=seed)
for policy in policies.values():

seed += 1
policy.reset(seed=seed)

for _ in range(1000):
actions = {i: policies[i].step(obs[i]) for i in env.agents}
obs, rews, terms, truncs, all_done, infos = env.step(actions)

if all_done:
obs, infos = env.reset()
for policy in policies.values():

policy.reset()

env.close()
for policy in policies.values():

policy.close()

1

Figure 2: POSGGym Environment and Agent APIs.

Environment API The environment API, depicted in
Figure 2, closely follows the structure of PettingZoo’s
parallel environment API, however, with certain aspects
aligning more closely with the Gymnasium API (see
Appendix A.1 for a side-by-side comparison). At each
timestep, each agent provides an action, which collec-
tively form a joint action passed to the step function.
This function updates the state of the environment and
returns observations, rewards, terminations,
truncations, all done, infos. Each of these return
values (except all done) is a mapping from the ID of
the agent to their respective return value. The step func-
tion mirrors PettingZoo’s step function, with the addition
of all done, which indicates when all agents in the en-
vironment have reached a terminal state. Similarly for the
reset method which resets the environment to a starting
state and returns an observation and info for each ac-
tive agent. The render and close function operate identi-
cally to Gymnasium: render provides a visual representa-
tion of the current state of the environment, while close
shuts down the environment and performs any necessary
clean-up.

Model API The model API provides access to a genera-
tive model of the environment for planning and also serves
as the distinguishing feature between POSGGym and exist-
ing libraries. It closely resembles the environment API, ex-
cept that models are stateless (apart from their random seed)
and so the model methods take the environment state as

an additional argument. More details and an example of the
model API are provided in Appendix A.2.

By separating out the underlying model from the envi-
ronment, agents can have access to the model without di-
rectly accessing the environment and its internal state (ex-
cept through their actions of course). This makes it explicit
which model functions can be used for planning (the model
API), and what functions control the true environment (the
environment API). It also allows for greater flexibility. For
example, to study planning with inaccurate models one can
provide agents with models that are different from the envi-
ronment, say with simplified dynamics.

Agent API The goal of the Agent API is to offer a di-
verse collection of high-quality reference policies that can be
leveraged for research. As we demonstrate in Section 5, the
policies can be used to measure generalization by holding-
out the policies for evaluation only, with no use of the poli-
cies during RL training or within the planning algorithm.
Alternatively, the policies can be used for developing plan-
ning algorithms by using the policies to guide planning.

POSGGym’s Agent API, depicted in Figure 2, follows
a similar design to the Environment API. Its key meth-
ods include make, step, and reset. The make func-
tion initializes a new instance of a policy, from the pol-
icy’s unique ID, the environment model, and the ID of
the agent for which the policy will be used. It returns an
instance of the POSGGym.agents.Policy class, the
main Agent API class. The two main methods of the pol-
icy class are: reset which resets the policy to its ini-
tial state, and step which updates the policy with the
agent’s latest observation and returns the agent’s next ac-
tion. To support using reference policies during planning,
the POSGGym.agents.Policy class includes additional
methods that provide finer-grained control over the policy
and its internal state, including methods for getting and set-
ting the policy’s internal state so it can be flexibly queried
during planning. More details are provided in Appendix A.3.

4.2 Environments
POSGGym currently offers a collection of 14 environments
which have been used in multi-agent research in various
forms, with most existing only in paper descriptions, across
disparate programming languages, some in unmaintained re-
search code, and others in MARL libraries with no model
support. Details and references for each environment cur-
rently supported by POSGGym are provided in Appendix B.
For precise explanations of each environment, we refer the
reader to POSGGym’s documentation.

4.3 Reference Agents
POSGGym currently offers reference agents for the majority
of its environments. These agents encompass a combination
of handcrafted heuristic policies and policies trained using
various MARL algorithms. For detailed information on the
training methods for each policy, please refer to Appendix C.
To access the comprehensive and up-to-date list of available
policies, consult the library documentation.

5 Experiments
We used POSGGym to empirically evaluate planning, RL,
and combined planning plus RL methods across diverse en-
vironments. The goal of our experiments was to gain novel
insights into current state-of-the-art planning under uncer-
tainty methods and compare these methods with integrated
RL and planning. Our experiments serve an additional pur-
pose of providing baseline results and algorithm implemen-
tations for POSGGym to facilitate future research1.

5.1 Experiment Setup
In our experiments, we examine a planning agent inter-
acting within a partially observable environment alongside
one other agent with unknown behavior. We focus on the
type-based reasoning setting (Albrecht, Crandall, and Ra-
mamoorthy 2016) where the planning agent reasons about
the policy or ”type” of the other agent from a set of possi-
ble policies P . The goal of the planning agent is to maxi-
mize its expected reward given its uncertainty over the be-
haviour of the other agent and the state of the environment.
We make no assumption about the reward structure of the
environment and test across competitive, cooperative, and
mixed domains.

For each environment the planning agent has access to
a known population of policies Pplan for planning, and is
evaluated against a test population Ptest. We experiment with
both the in-distribution setting where the test and planning
population are the same (Pplan = Ptest), and the out-of-
distribution setting where they are different (Pplan ̸= Ptest).
By comparing in- and out-of-distribution performance, we
investigate generalization to novel co-players.

Two distinct populations, P0 and P1, are used for both
planning Pplan and test Ptest populations, with each exper-
iment iterating over all planning and test population com-
binations, resulting in four distinct trials per algorithm, per
environment. A uniform distribution over the policies within
each population is used as the prior, so each policy had equal
likelihood of being used by the other agent. For each envi-
ronment, 10 to 12 policies were generated and split approx-
imately evenly between P0 and P1, so that each contained
either five or six policies. Further details on the policies are
provided in Appendix C and Appendix D.

5.2 Planning Methods
We focus on planning methods designed for controlling a
single agent within a large, partially observable, multi-agent
environment. This limits us to online planning methods,
and also excludes methods designed for environments with
specific structures, e.g. with communication (Kakarlapudi
et al. 2022), centralized control (Amato and Oliehoek 2014;
Choudhury et al. 2022; Czechowski and Oliehoek 2021)
or full observability (Yourdshahi et al. 2018). However, we
highlight that POSGGym’s general multi-agent API can be
used for any planning method that is applicable to POSGs
and its sub-classes, e.g. Dec-POMDPs, etc.

We compare the following planning methods:

1Algorithm implementations and experiment code is available
at: https://github.com/RDLLab/posggym-baselines

POMCP (Silver and Veness 2010): Models the environ-
ment as a POMDP with the other agent’s actions selected
uniformly at random. This approach acts as a baseline with
naive modeling for the other agent, UCB (Auer, Cesa-
Bianchi, and Fischer 2002) for the exploration policy and
Monte Carlo rollouts for node evaluation.

INTMCP (Schwartz, Zhou, and Kurniawati 2022): Mod-
els the environment as an I-POMDP and uses nested-MCTS
to solve the I-POMDP at each reasoning level online. We
use a reasoning level of l = 2 for our experiments, UCB for
the exploration policy, and Monte Carlo rollouts for node
evaluation. It does not incorporate Pplan into its decision-
making, instead using a recursive I-POMDP model for the
other agent.

IPOMCP (Eck et al. 2020; Kakarlapudi et al. 2022): Mod-
els the environment as an I-POMDP with uncertainty over
the other agent’s internal state (history and policy). Uses
Pplan for modelling the other agent2, UCB for the exploration
policy and Monte Carlo rollouts for node evaluation.

POTMMCP (Schwartz, Kurniawati, and Hutter 2023):
Similar to IPOMCP except the set of other agent policies are
additionally utilized to inform planning via a meta-policy.
Uses PUCB (Rosin 2011) for the exploration policy with
the meta-policy as the search policy and Monte Carlo roll-
outs and pre-computed value function for node evaluations,
depending on the policies in Pplan.

Table 1 shows a comparison of the key differences be-
tween each planning algorithm. For INTMCP and POMCP
we only consider out-of-distribution performance as neither
algorithm incorporates the planning population into their
decision-making. Our experiments help evaluate how ben-
eficial the inductive biases of these two methods are.

Table 1: Comparison of the planning and combined algo-
rithms used in our experiments.

Algorithm Search
Policy

Explore
Policy

Other Agent
Model

INTMCP Random UCB Nested
MCTS

IPOMCP Random UCB Pplan
POMCP Random UCB Random

POTMMCP Meta-Policy
over Pplan

PUCB Pplan

COMBINED πBR PUCB Pplan

For our experiments, we tested each method across a
range of planning budgets S ∈ [0.1, 1, 5, 10, 20], where S
represents seconds of search time per step. Further details
on each method and their hyperparameters are provided in
Appendix E.

2In the original IPOMCP (Eck et al. 2020) and
CIPOMCP (Kakarlapudi et al. 2022) papers a single policy
for the other agent policy was generated using an I-POMDP
solver; here we use the policies from the planning population.

5.3 Learning Method
For the learning method, we train a single deep RL policy as
a best-response against each population, P0 and P1. We refer
to the learning method as Reinforcement Learning-Best Re-
sponse (RL-BR). To train each policy we use Proximal Pol-
icy Optimization (PPO) (Schulman et al. 2017) as the spe-
cific RL algorithm because it is used extensively for MARL
research (Berner et al. 2019; Baker et al. 2020; Yu et al.
2022) and worked well across all environments we tested.
In each environment, a separate RL-BR policy πBR,k was
trained for each population Pk ∈ {P0, P1}. To ensure repro-
ducibility in our results, we trained five versions of the same
policy using different random seeds for each planning pop-
ulation in each environment. Each individual RL-BR policy
was trained until convergence as indicated by their learning
curve. The learning curves for each policy and training hy-
perparameters are provided in Appendix F.

5.4 Combined Planning and Learning Method
The combined planning and learning method incorpo-
rates the RL-BR policies from the previous section as
a search policy within an MCTS based planner. POT-
MMCP (Schwartz, Kurniawati, and Hutter 2023) was used
as the base planner with the search policy (normally the
meta-policy) replaced with the RL-BR policy. We refer to
this method simply as Combined. Table 1 compares its prop-
erties against the other planning methods. For the Combined
method experiments we follow the same protocol used for
the planning methods, testing across a range of planning
budgets S ∈ [0.1, 1, 5, 10, 20]. We also repeat each exper-
iment using each of the five RL-BR policies trained for each
environment and planning population.

5.5 Experiment Environments
We tested each method on a range of cooperative, compet-
itive, and mixed environments from POSGGym. This in-
cluded CooperativeReaching (CR) (Rahman et al. 2023),
PredatorPrey (Tan 1993; Leibo et al. 2017), Driving (Mc-
Kee et al. 2022; Lerer and Peysakhovich 2019), Level-Based
Foraging (LBF) (Christianos, Schäfer, and Albrecht 2020;
Papoudakis et al. 2021), and PursuitEvasion (Seaman, van
de Meent, and Wingate 2018; Schwartz, Zhou, and Kurni-
awati 2022). These environments have all been previously
studied in the RL and planning literature and tested a range
multi-agent concepts (Table 4 in the appendix). We limited
the selection to those with discrete actions and observations,
as this was what the planning methods in our experiments
were designed for. The size of the various components of
each environment are shown in Table 2.

5.6 Overall Results
We start by looking at the key high-level findings when av-
eraging performance across the entire set of environments,
shown in Figure 3. Averaging across environments allows
us to look at performance across a broad distribution. To en-
sure all environments are weighted equally, we normalize
the returns to be within [0, 1], so that 0 and 1 correspond
to the minimum and maximum possible return within each
environment.

Table 2: Environment properties. |S0| denotes the number of
possible initial states given the agent’s initial observation.

Environment |S| |S0| |Ai| |Oi|
CR 625 1 5 625
Driving 8.9x1012 9 5 6.6x106

LBF 1.5x1011 5x106 6 30
PredatorPrey 7.2x1010 64 5 100
PursuitEvasion i0 2.8x108 3 4 768
PursuitEvasion i1 2.8x108 1 4 4608

0 10 20
Search Time (s)

0.4

0.5

0.6

0.7

0.8

M
ea

n
No

rm
al

ize
d

Re
tu

rn

In Distribution

0 10 20
Search Time (s)

0.4

0.5

0.6

0.7

0.8
Out of Distribution

INTMCP
IPOMCP

POMCP
POTMMCP

RL-BR
COMBINED

Figure 3: In-distribution (left) and out-of-distribution (right)
performance of planning, learning, and combined methods
averaged across all environments. Each plot shows the mean
normalized return across search budgets (x-axis). Shaded ar-
eas show 95% confidence intervals

For the in-distribution setting, combining planning and
learning improves on either approach alone, given
enough planning time. We observe the benefits of incor-
porating planning alongside a trained RL policy when pro-
vided with an accurate model of the world and other agents.
This finding aligns with previous research on combining
search and RL games (Silver et al. 2016, 2018; Brown et al.
2020; Lerer et al. 2020; Hu et al. 2021). Unlike previous
studies that utilize exact or learned belief models with fac-
tored public and private observations, here we show that
combining a RL policy with a planner is also an effective
method when using particle based beliefs. We believe this
is a promising result for efforts to scale up planning to more
complex domains, showing that existing particle based plan-
ning methods can benefit from an RL trained policy, and vice
versa.

However, the relative gain in performance does not oc-
cur in the out-of-distribution setting where the model of the
other agent is inaccurate. In fact, performance appears to de-
grade slightly with increased search time. In subsequent sec-
tions we discuss the possible explanations for this.

The RL-BR generally outperforms all pure planning
methods in both in- and out-of-distribution settings.
This demonstrates a general benefit of RL over pure plan-
ning within our experimental setup. However, the RL perfor-
mance does not come without some cost, requiring a larger

0 5 10 15 20

0.80

0.85

0.90
M

ea
n

Re
tu

rn
CooperativeReaching-v0

0 5 10 15 20

0.6

0.8

1.0
Driving-v1

0 5 10 15 20

0.2

0.3

0.4

M
ea

n
Re

tu
rn

LevelBasedForaging-v3

0 5 10 15 20
0.2

0.4

0.6

0.8
PredatorPrey-v0

0 5 10 15 20
Search Time (s)

0.2

0.0

0.2

0.4

M
ea

n
Re

tu
rn

PursuitEvasion-v1_i0

0 5 10 15 20
Search Time (s)

0.0

0.5

PursuitEvasion-v1_i1

IPOMCP POTMMCP RL-BR COMBINED

Figure 4: In-distribution performance of planning, learning,
and combined methods in each environment. The plots show
the mean return of each across planning budgets (x-axis).
Shaded areas show 95% confidence intervals

amount of offline compute for training –up to 48 hours on
32 CPUs and 1 GPU per policy– compared to the online
planners. Nonetheless, RL policies offer faster per-step exe-
cution time. Our observations highlight a key advantage of
modern deep RL based methods, namely their ability to ef-
fectively leverage large amounts of compute.

For the in-distribution setting, planning methods exhibit
improved performance with longer search time, with POT-
MMCP even matching RL-BR’s performance with 20 s of
search time per step. We observe that planning methods
tend to converge towards optimality in environments where
they posses a perfect model of the environment and the
other agent. Notably, in some specific environments, plan-
ning methods outperform RL-BR, as shown in Figure 4. We
discuss this further in Section 5.7.

Monotonic improvement in performance with search
time is evident for all planning and combined methods
in the in-distribution setting, contrasting with the out-of-
distribution setting. While accurate models of the envi-
ronment and the other agent lead to performance gain with
increased search time, this trend does not hold uniformly
in multi-agent settings. Notably, when the test population
differs from the planning population, we see performance
plateau or even decline with planning budget. Further explo-
ration into the underlying cause of this discrepancy is dis-
cussed in Section 5.8.

A large gap exists between in- and out-of-distribution
performance across all methods. This contrast in perfor-
mance (also shown in Appendix G) highlights the impact of

0 5 10 15 20

0.7

0.8

0.9

M
ea

n
Re

tu
rn

CooperativeReaching-v0

0 5 10 15 20

0.6

0.7

0.8

0.9
Driving-v1

0 5 10 15 20

0.2

0.3

0.4

M
ea

n
Re

tu
rn

LevelBasedForaging-v3

0 5 10 15 20

0.2

0.4

0.6

PredatorPrey-v0

0 5 10 15 20
Search Time (s)

0.2

0.0

M
ea

n
Re

tu
rn

PursuitEvasion-v1_i0

0 5 10 15 20
Search Time (s)

0.50

0.25

0.00

0.25
PursuitEvasion-v1_i1

INTMCP
IPOMCP

POMCP
POTMMCP

RL-BR
COMBINED

Figure 5: Out-of-distribution performance of planning,
learning, and combined methods in each environment. The
plots show the mean return across planning budgets (x-axis).
Shaded areas show 95% confidence intervals

inaccurate other agent models, regardless of whether meth-
ods are learning or planning based, or a combination of both,
and indicates the general brittleness of the tested methods
when encountering novel partners.

However, it’s worth pointing out that our results are in-
fluenced by the specific planning and test populations used.
Adjusting the planning population, such as a larger or more
diverse population based on some diversity metric, could po-
tentially narrow this performance gap. The design of popu-
lations to enhance the robustness of autonomous agents in
multi-agent settings is an active area of research (Lanctot
et al. 2017; Lupu et al. 2021; Xing et al. 2021; Rahman et al.
2023), and our finding emphasize its significance for both
planning and RL.

5.7 In-Distribution Performance
Figure 4 shows in-distribution performance in each environ-
ment. Contrary to the overall results, we observe more nu-
anced trends at the individual environment level.

In some cases, combining planning and learning can
lead to deteriorating performance as the planning bud-
get increases. Specifically, in the LBF environment, we
observed a decline in performance for the combined method
as the search duration increased, contrary to expectations.
The result highlights a limitation of current particle-based
planners, namely the introduction of error due to poor belief
approximation.

Specifically, the number of possible initial states in LBF
(|S0| = 5 × 106), as shown in Table 2, is significantly

larger than in any other environment. Conversely, the max-
imum number of particles used for initial belief represen-
tation in our experiments was 2320, which, although more
than double the amount used in prior research (Eck et al.
2020; Kakarlapudi et al. 2022), is still a minor fraction of
LBF’s initial state space. This discrepancy is exacerbated
by the fact that many state features in LBF do not change
post-initialization. Since all our planning methods rely on
Bayesian updates for the beliefs, if the true value of a state
features is not within the initial belief, the planner will never
be aware of the true value, even with unlimited planning
budget post-initial belief. This is evidenced by the low prob-
ability (less than 0.04) assigned to the true state by the com-
bined agent’s belief, as detailed in Sup. Figure 15. The be-
lief inaccuracy causes the policy produced by planning to
diverge from the optimal policy, and away from the RL pol-
icy as planning time increases.

In four of six tested environments, at least one plan-
ning method either matched or outperformed the RL-
BR learning approach given adequate planning time.
Specifically, POTMMCP excelled in the Driving and Preda-
torPrey environments and equaled performance in CR and
PursuitEvasion i0, contrasting with the overall results where
RL-BR does better. One explanation for this is the planning
methods’ superior generalization to novel situations, given
an accurate model. With an accurate belief and model of
the environment, planning allows the agent to improve its
action value estimates online for any encountered state, re-
gardless of the state’s rarity. In contrast, RL-BR performs
all policy improvement offline, making it brittle when faced
with situations during execution rarely encountered during
training. Evidence of this can be seen in the Driving environ-
ment where all methods succeed the vast majority of the time
(> 93%), however in the rare failures RL-BR crashes signif-
icantly more often than even the worst performing planning
method (4.14%vs0.98%, Table 3). We hypothesize planning
methods are able to improve on the robustness of RL-BR in a
minority of situations, likely those rare in RL-BR’s training
distribution. When mistakes have large consequences, this
can have a significant impact on final performance.

Table 3: Percentage of in-distribution Driving environment
episodes that ended with a crash (Crashed), reaching the
goal (Success), or the step limit being reached (Timedout).
Results are using the maximum search time (20 s).

Algorithm Crashed Success Timedout

IPOMCP 0.98% 97.46% 1.56%
POTMMCP 0.12% 99.88% 0.00%
RL-BR 4.14% 93.12% 2.74%
COMBINED 0.46% 99.51% 0.03%

Conversely, in the LBF and PursuitEvasion i1 environ-
ments, no planning approach surpassed RL-BR. In LBF,
the limitation stemmed from the belief inaccuracy discussed
above. In PursuitEvasion i1, the challenge lies in the long
horizon planning needed in this environment in order to find

the optimal policy of reaching the goal. RL-BR is able to
leverage significantly more compute to handle the long hori-
zons, actually requiring 10× more training steps to converge
in PursuitEvasion i1 compared to PursuitEvasion i0 (Sup.
Figure 12)). The planning methods on the other hand have
a limited search budget which in our experiments was not
enough to plan to the necessary horizon. We see evidence
of this in the longer episode lengths for planning methods
versus RL-BR, with the gap in episode length between learn-
ing and planning methods much greater in PursuitEvasion i1
than for any other environment (Sup. Figure 17). The longer
episodes in this case indicate the agent prioritizing avoid-
ing the other agent (the sub-optimal, short-horizon strategy),
compared with going for the goal. Fortunately, improved
search policies, such as used in the Combined method, of-
fer a way to overcome the challenge of planning over long-
horizons.

5.8 Out-of-Distribution Performance
In Figure 5 we show out-of-distribution performance within
each environment.

Combining learning and planning leads to worse perfor-
mance than learning alone in four of six environments.
This outcome is largely attributed to poor belief accuracy
similar to the LBF environment in the in-distribution setting.
Incorrect models of the other agent in the out-of-distribution
setting results in worse beliefs about the environment state
compared to the in-distribution setting, despite having a per-
fect environment model in both cases (shown in Sup. Fig-
ure 15). Finding robust methods for modelling the other
agents, and planning techniques that better handle model in-
accuracy are both important directions for future work.

Planning methods that modeled the other agent naively
(POMCP) or recursively (INTMCP) generally per-
formed worse than other approaches. While frame-
works based on recursive reasoning hold promise for do-
mains like human-robot interaction (Woodward and Wood
2012), they showed limited utility in our experiments, where
the other agent policies did not behave randomly or employ
explicit recursive reasoning. Rather our experiments show
the benefits that can be gained by explicitly considering the
possible types of other agent behaviour.

6 Conclusion and Future Directions
In this paper, we presented POSGGym, a library facilitating
research at the intersection of decision-theoretic planning
and RL. Using POSGGym we conducted an extensive em-
pirical evaluation of existing state-of-the-art planning under
uncertainty methods and combined planning and RL. Our
results demonstrate that combining RL with particle based
planning can be effective in large, multi-agent environments.
They also highlight important directions for future research,
namely improving robustness to novel partners, and explor-
ing scalable representations of complex beliefs. We hope
these contributions will spur further research on the integra-
tion of planning and RL in partially observable multi-agent
domains, so as to gain the best of both model-driven and
data-driven techniques.

References
Albrecht, S.; Crandall, J.; and Ramamoorthy, S. 2016. Be-
lief and Truth in Hypothesised Behaviours. Artificial Intel-
ligence, 235: 63–94.
Albrecht, S.; and Stone, P. 2017. Reasoning about Hypo-
thetical Agent Behaviours and Their Parameters. AAMAS.
Albrecht, S.; and Stone, P. 2018. Autonomous Agents Mod-
elling Other Agents: A Comprehensive Survey and Open
Problems. Artificial Intelligence, 258: 66–95.
Amato, C.; and Oliehoek, F. A. 2014. Scalable Planning and
Learning for Multiagent POMDPs: Extended Version. arxiv
preprint arXiv:1404.1140.
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-Time
Analysis of the Multiarmed Bandit Problem. Machine learn-
ing, 47(2): 235–256.
Baker, B.; Kanitscheider, I.; Markov, T.; Wu, Y.; Pow-
ell, G.; McGrew, B.; and Mordatch, I. 2020. Emergent
Tool Use From Multi-Agent Autocurricula. arxiv preprint
arXiv:1909.07528.
Barrett, S.; Agmon, N.; Hazon, N.; Kraus, S.; and Stone, P.
2014. Communicating with Unknown Teammates. In ECAI,
45–50.
Barrett, S.; Stone, P.; and Kraus, S. 2011. Empirical Evalu-
ation of Ad Hoc Teamwork in the Pursuit Domain. In Au-
tonomous Agents and Multiagent Systems, 567–574.
Bengio, Y.; Simard, P.; and Frasconi, P. 1994. Learning
Long-Term Dependencies with Gradient Descent Is Diffi-
cult. IEEE transactions on neural networks, 5(2): 157–166.
Berner, C.; Brockman, G.; Chan, B.; Cheung, V.; Debiak,
P.; Dennison, C.; Farhi, D.; Fischer, Q.; Hashme, S.; and
Hesse, C. 2019. Dota 2 with Large Scale Deep Reinforce-
ment Learning. arXiv preprint arXiv:1912.06680.
Bernstein, D.; Givan, R.; Immerman, N.; and Zilberstein, S.
2002. The Complexity of Decentralized Control of Markov
Decision Processes. Mathematics of Operations Research,
27(4).
Blomqvist, V. 2023. Pymunk.
Blythe, J. 1999. Decision-Theoretic Planning. AI magazine,
20(2): 37–37.
Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-
Theoretic Planning: Structural Assumptions and Computa-
tional Leverage. Journal of Artificial Intelligence Research,
11: 1–94.
Brown, N.; Bakhtin, A.; Lerer, A.; and Gong, Q. 2020.
Combining Deep Reinforcement Learning and Search for
Imperfect-Information Games. Advances in Neural Infor-
mation Processing Systems, 33: 17057–17069.
Brown, N.; and Sandholm, T. 2018. Superhuman AI for
Heads-up No-Limit Poker: Libratus Beats Top Profession-
als. Science, 359(6374).
Brown, N.; and Sandholm, T. 2019. Superhuman AI for
Multiplayer Poker. Science, 365(6456): 885–890.
Carr, S.; Jansen, N.; Bharadwaj, S.; Spaan, M. T.; and Topcu,
U. 2021. Safe Policies for Factored Partially Observable
Stochastic Games. In Robotics: Science and Systems.

Choudhury, S.; Gupta, J. K.; Morales, P.; and Kochender-
fer, M. J. 2022. Scalable Online Planning for Multi-Agent
MDPs. Journal of Artificial Intelligence Research, 73: 821–
846.
Christianos, F.; Schäfer, L.; and Albrecht, S. V. 2020.
Shared Experience Actor-Critic for Multi-Agent Reinforce-
ment Learning. NeurIPS.
Cui, B.; Hu, H.; Pineda, L.; and Foerster, J. 2021. K-Level
Reasoning for Zero-Shot Coordination in Hanabi. NeurIPS.
Czechowski, A.; and Oliehoek, F. A. 2021. Decentralized
MCTS via Learned Teammate Models. In International
Joint Conferences on Artificial Intelligence, 81–88.
De Souza, C.; Newbury, R.; Cosgun, A.; Castillo, P.; Vi-
dolov, B.; and Kulić, D. 2021. Decentralized Multi-Agent
Pursuit Using Deep Reinforcement Learning. Robotics and
Automation Letters, 6(3).
de Witt, C.; Gupta, T.; Makoviichuk, D.; Makoviychuk, V.;
Torr, P.; Sun, M.; and Whiteson, S. 2020. Is Independent
Learning All You Need in the StarCraft Multi-Agent Chal-
lenge? arxiv preprint arXiv:2011.09533.
do Carmo Alves, M. A.; Varma, A.; Elkhatib, Y.; and Sori-
ano Marcolino, L. 2022. AdLeap-MAS: An Open-Source
Multi-Agent Simulator for Ad-Hoc Reasoning. In Proceed-
ings of the 21st International Conference on Autonomous
Agents and Multiagent Systems, 1893–1895.
Eck, A.; Shah, M.; Doshi, P.; and Soh, L.-K. 2020. Scalable
Decision-Theoretic Planning in Open and Typed Multiagent
Systems. AAAI.
Ellis, B.; Moalla, S.; Samvelyan, M.; Sun, M.; Mahajan,
A.; Foerster, J.; and Whiteson, S. 2022. SMACv2: An Im-
proved Benchmark for Cooperative Multi-Agent Reinforce-
ment Learning. CoRR, abs/2212.07489.
Foundation, F. 2022. Gymnasium.
Gmytrasiewicz, P.; and Doshi, P. 2005. A Framework for
Sequential Planning in Multi-Agent Settings. JAIR, 24.
Gupta, J.; Egorov, M.; and Kochenderfer, M. 2017. Cooper-
ative multi-agent control using deep reinforcement learning.
AAMAS.
Hansen, E.; Bernstein, D.; and Zilberstein, S. 2004. Dy-
namic Programming for Partially Observable Stochastic
Games. National Conference on Artifical Intelligence.
Hausknecht, M.; and Stone, P. 2015. Deep Recurrent Q-
Learning for Partially Observable MDPs. In 2015 AAAI Fall
Symposium Series.
Hochreiter, S.; and Schmidhuber, J. 1997. Long Short-Term
Memory. Neural computation, 9(8): 1735–1780.
Hu, H.; Lerer, A.; Brown, N.; and Foerster, J. 2021. Learned
Belief Search: Efficiently Improving Policies in Partially
Observable Settings. arxiv preprint arXiv:2106.09086.
Kaelbling, L.; Littman, M.; and Cassandra, A. 1998. Plan-
ning and Acting in Partially Observable Stochastic Domains.
Artificial Intelligence, 101(1-2): 99–134.
Kakarlapudi, A.; Anil, G.; Eck, A.; Doshi, P.; and Soh, L.-K.
2022. Decision-Theoretic Planning with Communication in
Open Multiagent Systems. UAI.

Kaplan, J.; McCandlish, S.; Henighan, T.; Brown, T. B.;
Chess, B.; Child, R.; Gray, S.; Radford, A.; Wu, J.; and
Amodei, D. 2020. Scaling Laws for Neural Language Mod-
els. arXiv preprint arXiv:2001.08361.
Koyamada, S.; Okano, S.; Nishimori, S.; Murata, Y.; Habara,
K.; Kita, H.; and Ishii, S. 2024. Pgx: Hardware-Accelerated
Parallel Game Simulators for Reinforcement Learning.
arxiv preprint arXiv:2303.17503.
Kurniawati, H. 2022. Partially Observable Markov Deci-
sion Processes and Robotics. Annual Review of Control,
Robotics, and Autonomous Systems, 5(1): 253–277.
Lanctot, M.; Lockhart, E.; Lespiau, J.-B.; Zambaldi, V.;
Upadhyay, S.; Pérolat, J.; Srinivasan, S.; Timbers, F.; Tuyls,
K.; Omidshafiei, S.; Hennes, D.; Morrill, D.; Muller, P.;
Ewalds, T.; Faulkner, R.; Kramár, J.; Vylder, B. D.; Saeta,
B.; Bradbury, J.; Ding, D.; Borgeaud, S.; Lai, M.; Schrit-
twieser, J.; Anthony, T.; Hughes, E.; Danihelka, I.; and
Ryan-Davis, J. 2019. OpenSpiel: A Framework for Rein-
forcement Learning in Games. CoRR, abs/1908.09453.
Lanctot, M.; Zambaldi, V.; Gruslys, A.; Lazaridou, A.;
Tuyls, K.; Pérolat, J.; Silver, D.; and Graepel, T. 2017. A
Unified Game-Theoretic Approach to Multiagent Reinforce-
ment Learning. Advances in Neural Information Processing
Systems, 30.
Lechner, M.; Yin, L.; Seyde, T.; Wang, T.-H.; Xiao, W.;
Hasani, R.; Rountree, J.; and Rus, D. 2023. Gigastep - One
Billion Steps per Second Multi-agent Reinforcement Learn-
ing. In Thirty-Seventh Conferences on Neural Information
Processing Systems Datasets and Benchmarks Track.
LeCun, Y.; Bengio, Y.; and Hinton, G. 2015. Deep Learning.
nature, 521(7553).
Leibo, J.; Dueñez-Guzman, E.; Vezhnevets, A.; Agapiou, J.;
Sunehag, P.; Koster, R.; Matyas, J.; Beattie, C.; Mordatch, I.;
and Graepel, T. 2021. Scalable Evaluation of Multi-Agent
Reinforcement Learning with Melting Pot. ICML.
Leibo, J.; Zambaldi, V.; Lanctot, M.; Marecki, J.; and Grae-
pel, T. 2017. Multi-Agent Reinforcement Learning in Se-
quential Social Dilemmas. AAMAS.
Lerer, A.; Hu, H.; Foerster, J.; and Brown, N. 2020. Improv-
ing Policies via Search in Cooperative Partially Observable
Games. AAAI Conference on Artificial Intelligence, 34(05):
7187–7194.
Lerer, A.; and Peysakhovich, A. 2019. Learning existing
social conventions via observationally augmented self-play.
AIES.
Li, Z.; Lanctot, M.; McKee, K. R.; Marris, L.; Gemp, I.;
Hennes, D.; Muller, P.; Larson, K.; Bachrach, Y.; and Well-
man, M. P. 2023. Combining Tree-Search, Generative Mod-
els, and Nash Bargaining Concepts in Game-Theoretic Re-
inforcement Learning. arxiv preprint arXiv:2302.00797.
Lopez, P. A.; Behrisch, M.; Bieker-Walz, L.; Erdmann, J.;
Flötteröd, Y.-P.; Hilbrich, R.; Lücken, L.; Rummel, J.; Wag-
ner, P.; and Wießner, E. 2018. Microscopic Traffic Simula-
tion Using Sumo. ITSC.
Lupu, A.; Cui, B.; Hu, H.; and Foerster, J. 2021. Trajec-
tory Diversity for Zero-Shot Coordination. In International
Conference on Machine Learning, 7204–7213. PMLR.

McKee, K.; Leibo, J.; Beattie, C.; and Everett, R. 2022.
Quantifying the effects of environment and population di-
versity in multi-agent reinforcement learning. AAMAS.
Ng, B.; Meyers, C.; Boakye, K.; and Nitao, J. 2010. To-
wards Applying Interactive POMDPs to Real-World Adver-
sary Modeling. In Innovative Applications of Artificial In-
telligence.
Oliehoek, F. A.; and Amato, C. 2016. A Concise Introduc-
tion to Decentralized POMDPs. SpringerBriefs in Intelli-
gent Systems. Springer International Publishing.
Ooi, J.; and Wornell, G. 1996. Decentralized Control of a
Multiple Access Broadcast Channel: Performance Bounds.
Conference on Decision and Control, 1.
Osborne, M.; and Rubinstein, A. 1994. A Course in Game
Theory. MIT press.
Panella, A.; and Gmytrasiewicz, P. 2017. Interactive
POMDPs with Finite-State Models of Other Agents. AA-
MAS.
Papoudakis, G.; Christianos, F.; Schäfer, L.; and Albrecht,
S. 2021. Benchmarking Multi-Agent Deep Reinforcement
Learning Algorithms in Cooperative Tasks. NeurIPS Track
on Datasets and Benchmarks.
Peng, B.; Rashid, T.; Schroeder de Witt, C.; Kamienny, P.-
A.; Torr, P.; Böhmer, W.; and Whiteson, S. 2021. FAC-
MAC: Factored Multi-Agent Centralised Policy Gradients.
NeurIPS.
Rahman, A.; Fosong, E.; Carlucho, I.; and Albrecht, S. 2023.
Generating Teammates for Training Robust Ad Hoc Team-
work Agents via Best-Response Diversity. arxiv preprint
arXiv:2207.14138.
Rosin, C. D. 2011. Multi-Armed Bandits with Episode
Context. Annals of Mathematics and Artificial Intelligence,
61(3): 203–230.
Rutherford, A.; Ellis, B.; Gallici, M.; Cook, J.; Lupu, A.;
Ingvarsson, G.; Willi, T.; Khan, A.; de Witt, C. S.; Souly, A.;
Bandyopadhyay, S.; Samvelyan, M.; Jiang, M.; Lange, R. T.;
Whiteson, S.; Lacerda, B.; Hawes, N.; Rocktäschel, T.; Lu,
C.; and Foerster, J. N. 2023. JaxMARL: Multi-Agent RL
Environments in JAX. In Second Agent Learning in Open-
Endedness Workshop.
Samvelyan, M.; Rashid, T.; de Witt, C. S.; Farquhar, G.;
Nardelli, N.; Rudner, T.; Hung, C.-M.; Torr, P.; Foerster, J.;
and Whiteson, S. 2019. The StarCraft Multi-Agent Chal-
lenge. AAMAS.
Schrittwieser, J.; Antonoglou, I.; Hubert, T.; Simonyan, K.;
Sifre, L.; Schmitt, S.; Guez, A.; Lockhart, E.; Hassabis, D.;
and Graepel, T. 2020. Mastering Atari, Go, Chess and Shogi
by Planning with a Learned Model. Nature, 588(7839): 604–
609.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal Policy Optimization Algorithms.
arXiv preprint arXiv:1707.06347.
Schwartz, J.; Kurniawati, H.; and Hutter, M. 2023. Com-
bining a Meta-Policy and Monte-Carlo Planning for Scal-
able Type-Based Reasoning in Partially Observable Envi-
ronments. arXiv preprint arXiv:2306.06067.

Schwartz, J.; Zhou, R.; and Kurniawati, H. 2022. On-
line Planning for Interactive-POMDPs Using Nested Monte
Carlo Tree Search. IROS.
Seaman, I. R.; van de Meent, J.-W.; and Wingate, D. 2018.
Nested Reasoning About Autonomous Agents Using Proba-
bilistic Programs. arXiv preprint arXiv:1812.01569.
Seuken, S.; and Zilberstein, S. 2008. Formal Models and
Algorithms for Decentralized Decision Making under Un-
certainty. Autonomous Agents and Multi-Agent Systems, 17:
190–250.
Seymour, R.; and Peterson, G. L. 2009. A Trust-Based Mul-
tiagent System. In International Conference on Computa-
tional Science and Engineering, volume 3, 109–116. IEEE.
Shapley, L. 1953. Stochastic Games. Proceedings of the
National Academy of Sciences, 39(10).
Silver, D.; Huang, A.; Maddison, C.; Guez, A.; Sifre, L.; Van
Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Pan-
neershelvam, V.; and Lanctot, M. 2016. Mastering the Game
of Go with Deep Neural Networks and Tree Search. nature,
529(7587).
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; and Grae-
pel, T. 2018. A General Reinforcement Learning Algorithm
That Masters Chess, Shogi, and Go through Self-Play. Sci-
ence, 362(6419): 1140–1144.
Silver, D.; and Veness, J. 2010. Monte-Carlo Planning in
Large POMDPs. NeurIPS.
Silver, T.; and Chitnis, R. 2020. PDDLGym: Gym Environ-
ments from PDDL Problems. In International Conference
on Automated Planning and Scheduling PRL Workshop.
Spaan, M.; and Oliehoek, F. 2008. The MultiAgent Decision
Process Toolbox: Software for Decision-Theoretic Planning
in Multiagent Systems. Proceedings of the AAMAS Work-
shop on Multi-Agent Sequential Decision Making in Uncer-
tain Domains (MSDM).
Stone, P.; Kaminka, G. A.; Kraus, S.; and Rosenschein, J. S.
2010. Ad Hoc Autonomous Agent Teams: Collaboration
without Pre-Coordination. In AAAI.
Suarez, J.; Du, Y.; Isola, P.; and Mordatch, I. 2019. Neu-
ral MMO: A Massively Multiagent Game Environment for
Training and Evaluating Intelligent Agents. arXiv preprint
arXiv:1903.00784.
Sunberg, Z.; and Kochenderfer, M. 2018. Online Algorithms
for POMDPs with Continuous State, Action, and Observa-
tion Spaces. International Conference on Automated Plan-
ning and Scheduling, 28: 259–263.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement Learn-
ing: An Introduction. MIT press.
Taitler, A.; Gimelfarb, M.; Jeong, J.; Gopalakrishnan, S.;
Mladenov, M.; Liu, X.; and Sanner, S. 2023. pyRDDLGym:
From RDDL to Gym Environments. In International Con-
ference on Automated Planning and Scheduling PRL Work-
shop.
Tan, M. 1993. Multi-Agent Reinforcement Learning: Inde-
pendent vs Cooperative Agents. ICML.

Terry, J.; Black, B.; Grammel, N.; Jayakumar, M.; Hari, A.;
Sullivan, R.; Santos, L.; Dieffendahl, C.; Horsch, C.; Perez-
Vicente, R.; et al. 2021. Pettingzoo: Gym for Multi-Agent
Reinforcement Learning. NeurIPS.
Tesauro, G. 1994. TD-Gammon, a Self-Teaching Backgam-
mon Program, Achieves Master-Level Play. Neural compu-
tation, 6(2).
Timbers, F.; Bard, N.; Lockhart, E.; Lanctot, M.; Schmid,
M.; Burch, N.; Schrittwieser, J.; Hubert, T.; and Bowling,
M. 2022. Approximate Exploitability: Learning a Best Re-
sponse. In Proceedings of the International Joint Confer-
ence on Artificial Intelligence (IJCAI), 3487–3493.
Tunyasuvunakool, S.; Muldal, A.; Doron, Y.; Liu, S.; Bohez,
S.; Merel, J.; Erez, T.; Lillicrap, T.; Heess, N.; and Tassa,
Y. 2020. Dm control: Software and Tasks for Continuous
Control. Software Impacts, 6.
Woodward, M. P.; and Wood, R. J. 2012. Learning from
Humans as an I-POMDP. arXiv preprint arXiv:1204.0274.
Wu, F.; Zilberstein, S.; and Chen, X. 2011. Online Plan-
ning for Ad Hoc Autonomous Agent Teams. In Interna-
tional Joint Conference on Artificial Intelligence.
Xing, D.; Liu, Q.; Zheng, Q.; Pan, G.; and Zhou, Z. H. 2021.
Learning with Generated Teammates to Achieve Type-Free
Ad-Hoc Teamwork. In IJCAI, 472–478.
Yourdshahi, E. S.; Pinder, T.; Dhawan, G.; Marcolino, L. S.;
and Angelov, P. 2018. Towards Large Scale Ad-Hoc Team-
work. In International Conference on Agents, 44–49. IEEE.
Yu, C.; Velu, A.; Vinitsky, E.; Gao, J.; Wang, Y.; Bayen, A.;
and Wu, Y. 2022. The Surprising Effectiveness of Ppo in
Cooperative Multi-Agent Games. Advances in Neural In-
formation Processing Systems, 35: 24611–24624.
Zha, D.; Lai, K.-H.; Cao, Y.; Huang, S.; Wei, R.; Guo, J.;
and Hu, X. 2019. RLCard: A Toolkit for Reinforcement
Learning in Card Games. arxiv preprint arXiv:1910.04376.
Zhang, H.; Feng, S.; Liu, C.; Ding, Y.; Zhu, Y.; Zhou, Z.;
Zhang, W.; Yu, Y.; Jin, H.; and Li, Z. 2019. Cityflow:
A Multi-Agent Reinforcement Learning Environment for
Large Scale City Traffic Scenario. The World Wide Web
Conference.
Zheng, L.; Yang, J.; Cai, H.; Zhou, M.; Zhang, W.; Wang,
J.; and Yu, Y. 2018. Magent: A Many-Agent Reinforce-
ment Learning Platform for Artificial Collective Intelli-
gence. AAAI, 32.

A POSGGym API
Here we provide some additional details about POSGGym’s
API not included in the main text. The high-level design for
the main API is shown in Figure 6.

A.1 Environment API Comparison
The POSGGym environment API, depicted in Figure 2,
closely follows the structure of PettingZoo’s parallel envi-
ronment API, however, with certain aspects aligning more
closely with the Gymnasium API. Figure 7 shows a compar-
ison between the three libraries.

can
access

Model

Environment

posggym.POSGModel

observations
rewards

posggym.Env

actions

Agent Policy
posggym.agents.Policy

Figure 6: High-level design of POSGGym. Agents interact
with the environment by selecting actions according to their
policy which has access to a model of the environment for
planning.

POSGGym’s environment API differs from the Petting-
Zoo parallel environment API in two key aspects: the make
function for environment initialization, and the inclusion of
all done in the step method’s return values. The use
of the make function aligns more closely with the design
of Gymnasium, offering users more convenience and con-
trol. While the inclusion of all done differs from both
PettingZoo and Gymnasium. This addition aims to simplify
the tracking of agent termination during an episode, which
can be non-trivial in open environments where the active
agents may change over time. It also accounts for scenar-
ios where agents can leave or join the environment within a
single episode.

To make integration with existing MARL libraries eas-
ier, POSGGym provides a PettingZoo wrapper class that
enables the conversion of any POSGGym environment into
an equivalent PettingZoo parallel API environment. By us-
ing this wrapper, any POSGGym environment can be used
seamlessly with any library that supports the PettingZoo
API.

A.2 Model API
In Figure 8 we show POSGGym’s Model API in action. The
main model API methods are:

• sample initial state – samples an initial envi-
ronment state

• sample initial obs – samples initial observations
for each agent given a state

• get agents – returns the IDs of agents that are active
in a given state

• step – similar to the environment step function, but
also returns the next state. It takes both a state and joint
actions as arguments

• seed – sets the random seed for the model

Full POSG Model API In addition to the gen-
erative model functionality, POSGGym defines the
POSGGym.POSGFullModel API, which extends the
POSGGym.POSGModel class to include all components of
the formal POSG definition. This extension allows POSG-
Gym to be used for defining models for planning algorithms
that require the full model, rather than just a generative

import posggym
env = posggym.make("PursuitEvasion-v1", render_mode="human")
obs, infos = env.reset(seed=42)

for _ in range(1000):
actions = {i: policies[i](obs[i]) for i in env.agents}
obs, rews, terms, truncs, all_done, infos = env.step(actions)

if all_done:
obs, infos = env.reset()

env.close()

1

(a) POSGGym
from pettingzoo.butterfly import pistonball_v6
env = pistonball_v6.parallel_env(render_mode="human")
obs = env.reset(seed=42)

for _ in range(1000):
actions = {i: policies[i](obs[i]) for i in env.agents}
obs, rew, terms, truncs, infos = env.step(actions)

if not env.agents:
obs = env.reset()

env.close()

1

(b) PettingZoo
import gymnasium as gym
env = gym.make("LunarLander-v2", render_mode="human")
obs, info = env.reset(seed=42)

for _ in range(1000):
action = policy(obs)
obs, rew, term, trunc, info = env.step(action)

if term or trunc:
obs, info = env.reset()

env.close()

1

(c) Gymnasium

Figure 7: Comparison of POSGGym, Gymnasium, and Pet-
tingZoo Environment APIs

model. Specifically, the POSGGym.POSGFullModel
includes the following additional methods:

• get initial belief – returns the initial state distri-
bution S0

• transition fn – defines the state transition function
T : S × A⃗ × S → [0, 1]

• observation fn – defines the joint observation func-
tion Z : S × A⃗ × O⃗ → [0, 1]

• reward fn – defines the joint reward function R : S ×
A⃗ → RN

The full model definition is not included in the main
POSGGym.POSGModel model class due to the difficultly
of implementing it in environments with very large state, ac-
tion, or observation spaces and complex dynamics. In such
cases, it is often more practical and common to define a gen-
erative model that can be used for sample-based planning
approaches like MCTS.

import posggym
env = posggym.make("PredatorPrey-v0")
model = env.model
model.seed(seed=42)

state = model.sample_initial_state()
obs = model.sample_initial_obs(state)

for t in range(50):
actions = {i: policies[i](obs[i]) for i in model.get_agents(state)}
timestep = model.step(state, actions)

timestep attribute can be accessed individually:
state = timestep.state
obs = timestep.observations

Or unpacked fully
state, obs, rews, terms, truncs, all_done, infos = timestep

if timestep.all_done:
state = model.sample_initial_state()
obs = model.sample_initial_obs(state)

1

Figure 8: POSGGym Model API.

A.3 Agent API
When tackling POSGs, a critical consideration is the re-
quirement for policies to maintain an internal state to han-
dle the partial observability of the environment. Approaches
to tackle this challenge vary: some utilize explicit beliefs
where agents maintain and update a probabilistic representa-
tion of the unobservable features of the environment, while
others rely on implicit beliefs that leverage learned repre-
sentations or neural network architectures to capture rele-
vant information from observations. Incorporating these cru-
cial elements into decision-making processes allows poli-
cies to exhibit more sophisticated and adaptive behaviors
within complex environments. To support internal states, the
POSGGym.agents.Policy class also includes a num-
ber of additional methods that provide information and finer-
grained control over the policy. These methods include:
• get initial state - returns the initial state of the

policy. For example, the initial hidden state for a RNN
based policy.

• get next state - returns the next policy state, given
the current policy state and the next observation.

• sample action - sample an action given a policy state
• get pi - get the distribution over actions given a policy

state
• set state - set the internal state of the policy
• get state - get the internal state of the policy
• get state from history - unrolls the policy to get

its state given an action-observation history.
All together, the API provides enough control that the

policy can be used for evaluation using the step method,
or for planning using the finer-grained control methods like
get next state and sample action.

B POSGGym Environments
POSGGym currently supports 14 different environments.
Table 4 shows the complete list of environments, along with
some of their properties and the multi-agent concepts they
involve.

B.1 Classic
POSGGym includes several well-known problems that have
been used extensively in planning and multi-agent research.
These include Multi-Access Broadcast Channel (MABC)
(Ooi and Wornell 1996; Hansen, Bernstein, and Zilberstein
2004), Multi-Agent Tiger (Gmytrasiewicz and Doshi 2005),
and Rock-Paper-Scissors. These problems encompass co-
operative, mixed, and competitive scenarios, respectively,
and support discrete actions and observations. Due to their
smaller size and well-defined characteristics, some versions
of these problems have known provably optimal solutions.
This makes them useful for debugging and for fine-grained
analysis of algorithms. POSGGym offers full model defini-
tions for all the classic problems currently implemented in
the library.

B.2 Grid-World
Six widely used discrete grid-world problems are also pro-
vided by POSGGym. These problems encompass a variety
of scenarios, including Cooperative Reaching (CR) (Rah-
man et al. 2023), Level Based Foraging (LBF) (Christianos,
Schäfer, and Albrecht 2020; Papoudakis et al. 2021), Two
Paths (Schwartz, Zhou, and Kurniawati 2022), Unmanned
Aerial Vehicle (UAV) (Panella and Gmytrasiewicz 2017),
Driving (McKee et al. 2022; Lerer and Peysakhovich 2019),
Predatory Prey (Tan 1993; Leibo et al. 2017) and Pur-
suit Evasion (Seaman, van de Meent, and Wingate 2018;
Schwartz, Zhou, and Kurniawati 2022). The current selec-
tion of problems was chosen to provide a diverse range of
cooperative, mixed and competitive environments, as well
as symmetric and asymmetric roles. Each environment is
represented as a grid-world with discrete observations and
actions.

B.3 Continuous
POSGGym also offers four 2D continuous problems, includ-
ing extensions of grid-world environments (Driving, Preda-
tor Prey and Pursuit Evasion) which have been adapted to
a continuous domain. The dynamics of the agents are mod-
eled using a simple non-holonomic unicycle model, where
agents are controlled by both angular and linear velocities.
PyMunk (Blomqvist 2023) is employed as the physics en-
gine to support these dynamics. The observation incorporate
sensors that emit from the agents’ positions in a circular pat-
tern at a fixed distance. This approach aligns with the ob-
servation model used in PettingZoo’s WaterWorld environ-
ment (Gupta, Egorov, and Kochenderfer 2017). The fourth
environment is the Drone Team Capture (DTC) environ-
ment (De Souza et al. 2021), which simulates a coopera-
tive pursuit-evasion scenario. POSGGym’s implementation
of DTC closely adheres to the original paper, with enhance-
ments to accommodate partial observability, such as limited
sight distance.

C Agent Populations
POSGGym comes with a diverse set of policies for the ma-
jority of the supported environments. Depending on the en-
vironment the set of policies will be made of up of a mix

Table 4: Properties and multi-agent concepts of POSGGym environments (related properties are grouped by row color).

Classic Grid-World Continuous

M
A

B
C

M
A

Ti
ge

r

R
PS C
R

L
B

F

Tw
o

Pa
th

s

U
AV

D
riv

in
g

Pr
ed

at
or

Pr
ey

Pu
rs

ui
tE

va
si

on

D
riv

in
g

Pr
ed

at
or

Pr
ey

Pu
rs

ui
tE

va
si

on

D
T

C

Cooperative x x x x x x
Mixed x x x x x x
Competitive x x x x x
Symmetric roles x x x x x x x x x x
Asymmetric roles x x x x
Discrete Actions x x x x x x x x x x x x x x
Continuous Actions x x x x
Discrete Observations x x x x x x x x x x
Continuous Observations x x x x

Pr
op

er
tie

s

Pixel Observations x x x x x x

Temporal Coordination x x x x x x x x
Spacial Coordination x x x x x x x
Reciprocity x
Fair Resource Sharing x x x x
Deception x x x x x
Convention following x x

C
on

ce
pt

s

Nested-Reasoning x x x x x x

of heuristic and deep RL policies. In this section we provide
some details on the general training procedures used for the
deep RL policies. We also go into greater detail about the
policy populations used in our experiments. Over time we
expect to update the set of policies included in POSGGym,
for the full up-to-date list please check out the documen-
tation at https://posggym.readthedocs.io/. All code used for
training the RL policies is available at https://github.com/
RDLLab/posggym-baselines.

C.1 Reinforcement Learning Policy Training
Every RL policy included with POSGGym to-date uses
a LSTM actor-critic neural network architecture and was
trained using Proximal Policy Optimization (PPO) (Schul-
man et al. 2017). LSTM’s allow each policy to be condi-
tioned on histories of action and observations which gener-
ally work more effectively in partially observable environ-
ments. The specific architecture used consisted of a fully-
connected network (FCN) trunk, followed by a single layer
LSTM, and then separate FCN actor and critic heads. The
specific neural network architecture and training hyperpa-
rameters for each environment are shown in Table 5 and
Table 6. We used commonly used hyperparameters values
for the grid-world problems, since we found these generally
worked. For the continuous environments, some hyperpa-
rameter tuning was conducted to select appropriate values.
The number of training steps was chosen such that policies
could train until convergence, as indicated by their learning
curves.

We used different multi-agent training schemes depend-

ing on the environment, while the same RL algorithm and
neural network architecture was used for each individual
policy. The two schemes we used were K-Level Reason-
ing (KLR) (Cui et al. 2021) and independent self-play with
best response (SP-BR, commonly referred to as Independent
PPO when using PPO as the RL algorithm) (de Witt et al.
2020). We used these two methods as they have been exten-
sively studied (Lanctot et al. 2017; Cui et al. 2021; Tesauro
1994; de Witt et al. 2020), are simple to implement (and
thus replicate), and produced diverse populations of policies
when combined with policy pruning to remove similar poli-
cies. Figure 9 provides a visualization of the training schema
used. The following sections contain a high level overview
of each scheme.

K-Level Reasoning In K-Level Reasoning (KLR) train-
ing policies are trained in a hierarchy, the level K = 0 pol-
icy is trained against a uniform random policy, level K = 1
is trained against the level K = 0, and so on with the level
K policy trained as a best response to the level K − 1 pol-
icy for K > 0. Finally, the best-response policy KBR is
trained against all K level policies, excluding the random
policy and the KBR policy itself. In our implementation
we used the Synchronous KLR Best-Response (SyKLRBR)
training method (Cui et al. 2021) which trains all policies
synchronously and was shown to converge in less total wall
time and lead to generally more robust policies.

Self-Play Self-play training involves training independent
policies against themselves (Tesauro 1994; de Witt et al.
2020). For asymmetric environments this meant training a

(a) (b) (c) (d)

Figure 9: Multi-agent training schemas used for generating RL policies for POSGGym environments. (a) KLR in symmetric
environment, (b) KLR in asymmetric environment with two agents, (c) self-play in symmetric environment, (d) self-play in
asymmetric environment with two agents. Each box is an independent policy and arrows indicate which policy a given policy
was trained against. Figure adapted from (Cui et al. 2021).

Table 5: Training hyperparameters for POSGGym Agents
RL policies in grid-world environments.

Hyperparameter

D
riv

in
g

L
B

F
&

Pr
ed

at
or

Pr
ey

Pu
rs

ui
tE

va
si

on

Training steps 32M 100M 10M
Trunk layer sizes [64, 64] [64, 64] [64, 32]

LSTM size 64 64 256
Head layer sizes [64] [64] -

γ 0.99 0.99 0.99
Learning rate 0.0003 0.0003 0.0003

GAE λ 0.95 0.95 0.95
Batch size 6144 6144 2048

Mini-batch size 2048 2048 256
Rollout length 64 64 100
Update epochs 2 2 2

BPTT seq. length 10 10 20
Entropy bonus 0.01 0.01 0.001
Value function

coeff. 0.5 0.5 1.0

Clip parameter 0.2 0.2 0.3
Global gradient clip. 10 10 10

set of policies one for each agent in the environment for each
training seed. While for symmetric environments a single
policy is used by all agents in the environment. In self-play
Best-Response (SP-BR) an additional best-response policy
πBR is trained against a uniform distribution over all the in-
dependent policies trained.

Table 6: Training hyperparameters for POSGGym Agents
RL policies in continuous environments.

Hyperparameter Value

Training steps 100M
Trunk layer sizes [256, 256]

LSTM size 256
Head layer sizes -

γ 0.99
Learning rate 0.0003

GAE λ 0.95
Batch size 65,536

Mini-batch size 2048
Rollout horizon 100
Update epochs 2

BPTT seq. length 20
Entropy bonus 0.001

Value function coeff. 1.0
Clip parameter 0.5

Global gradient clipping 10

D Experiment Environments and
Populations

Figure 10 shows the five environments used in our experi-
ments.

For our experiments we used a set P of 10 to 12 policies
for each environment we tested in.

CooperativeReaching P consisted of 11 heuristic poli-
cies H[1-11]. With P0 = {H1, H2, H3, H4, H5}
and P1 = {H6, H7, H8, H9, H10, H11}. These
policies were based on prior work (Rahman et al. 2023) with
some adjustments made to ensure the population had diverse
returns Figure 11a.

Driving P consisted of 10 policies: five heuristic and
five RL trained policies. P0 = {A0, A40, A60, A80,
A100} was made up of the heuristic policies, while P1 =

(a) (b) (c)

(d) (e)

Figure 10: Our experiments used a diverse set of environ-
ments, including cooperative ((a) CooperativeReaching and
(d) PredatorPrey), mixed ((b) Driving and (c) LevelBased-
Foraging), and competitive ((e) PursuitEvasion) scenarios.
Since it is asymmetric we use two versions of PursuitEva-
sion: i0 and i1 where the planner controls the pursuer (blue)
and evader (red), respectively

{RL1, RL2, RL3, RL4, RL5} contained all the RL
policies. Each heuristic policy followed the shortest path
from the agent’s start position to the goal but differed on
how aggressive they were, from least aggressive A0 to most
aggressive A100. The aggressiveness of a policy controlled
how far away another agent had to be within the agent’s
field of vision before the policy would stop the agent’s ve-
hicle from moving. A0 would stop if another agent was ob-
served anywhere and would only continue once that agent
was out of view. Conversely, A100 would continue along
the shortest path irrespective of how close another observed
agent was. A[40-80] followed policies between the two
extremes. The RL policies RL[1-5] were produced by first
training six policies using SP-BR and then pruning away any
similar policies based on pairwise returns to give the final set
of five policies. The pairwise returns for each policy in the
population P for this environment are shown in Figure 11b.

LevelBasedForaging P consisted of 10 policies: five
heuristic and five RL trained policies. P0 = {H1, H2,
H3, H4, H5} contained the heuristic policies, while P1 =
{RL1, RL2, RL3, RL4, RL5} contained all the RL
policies. The heuristic policies were based on prior work
(Rahman et al. 2023), adapted to deal with partial observ-
ability. We pruned many of the heuristic policies used in
the prior work as we found that they resulted in similar be-
haviours based on their returns. The five heuristic policies
used were:

• H1 always goes to the closest observed food, irrespective
of the foods level.

• H2 goes towards the visible food closest to the centre of
visible players, irrespective of food level.

• H3 goes towards the closest visible food with a compati-
ble level.

• H4 selects and goes towards the visible food that is fur-
thest from the center of visible players and that is com-
patible with the agents level.

• H5 targets a random visible food whose level is compat-
ible with all visible agents.

For the RL policies we trained a population of 13 RL poli-
cies including six using SB-BR and seven using SyKLRBR
(up to K = 5). The resulting five RL policies RL[1-5]
were found by pruning away similar policies from the full set
of 13 policies. To do this the policies were clustered based
on their pairwise returns then a single policy from each clus-
ter was chosen. The pairwise returns for each policy in the
population P for this environment are shown in Figure 11c.

PredatorPrey P consisted of 11 policies: three heuris-
tic and eight RL trained policies. P0 = {H1, H2, H3,
RL1, RL2} was made up of a mix of heuristic and RL
policies, while P1 = {RL3, RL4, RL5, RL6, RL7,
RL8} contained the remaining RL policies. The heuristic
policies were chosen based on trying various heuristics and
selecting those that had diverse pairwise returns. The three
heuristic policies used were:

• H1 moves towards closest observed prey, closest ob-
served predator, or explores randomly, in that order.

• H2 moves towards closest observed prey, closest ob-
served predator, or explores in a clockwise spiral around
arena, in that order.

• H3 moves towards closest observed prey to the clos-
est observed predator or explores in a clockwise spiral
around arena, in that order.

For the RL policies we followed an identical protocol to
the LevelBasedForaging environment; first training 13 poli-
cies using SP-BR and SyKLRBR and then pruning similar
policies to produce the final population of RL policies. The
pairwise returns for each policy in the population P for this
environment are shown in Figure 11d.

PursuitEvasion (evader ”0” and pursuer ”1”) For
both agents X ∈ 0, 1, P consisted of 12 RL
policies. P0 = {KLR0 iX, KLR1 iX, KLR2 iX,
KLR3 iX, KLR4 iX, KLRBR iX} was a popula-
tion of KLR policies trained using SyKLRBR, while
P1 = {RL1 iX, RL2 iX, RL3 iX, RL4 iX,
RL5 iX, RL6 iX} contained RL policies trained using
a mix of SP-BR and SyKLRBR. For the RL policies a pop-
ulation of 30 SyKLRBR policies (five separate populations
of six policies with up to K = 4) and five self-play (no best-
response) policies were trained. The most diverse (based on
pairwise returns) SyKLRBR population of six policies was
then selected for P0. P1 was then chosen by pruning away
similar policies from the remaining 29 SyKLRBR and self-
play policies, based on pairwise returns. The pairwise re-
turns for each policy in the population P for this environ-
ment are shown in Figure 11e and Figure 11f.

H1 H2 H3 H4 H5 H6 H7 H8 H9 H1
0

H1
1

Other Agent Policy

H1
H2
H3
H4
H5
H6
H7
H8
H9

H10
H11

Po
lic

y

0.14 0.31 0.28 0.23 0.16 0.21 0.24 0.89 0.66 0.51 0.89

0.21 0.25 0.23 0.28 0.21 0.15 0.21 0.89 0.62 0.44 0.90

0.22 0.30 0.43 0.46 0.00 0.00 0.22 1.00 1.00 0.26 1.00

0.33 0.24 0.49 0.49 0.00 0.00 0.29 1.00 1.00 0.25 1.00

0.13 0.17 0.00 0.00 0.30 0.45 0.14 0.75 0.19 0.75 0.75

0.23 0.15 0.00 0.00 0.43 0.28 0.21 0.75 0.16 0.75 0.75

0.12 0.16 0.33 0.34 0.17 0.17 0.23 0.89 0.57 0.54 0.88

0.89 0.88 1.00 1.00 0.75 0.75 0.88 0.88 0.99 0.77 0.88

0.61 0.64 1.00 1.00 0.20 0.17 0.60 0.99 1.00 0.37 1.00

0.50 0.46 0.32 0.29 0.75 0.75 0.49 0.76 0.41 0.75 0.75

0.88 0.88 1.00 1.00 0.75 0.75 0.87 0.89 1.00 0.75 0.00

0.0

0.2

0.4

0.6

0.8

1.0

(a) CooperativeReaching

A0 A4
0

A6
0

A8
0

A1
00 RL

1
RL

2
RL

3
RL

4
RL

5

Other Agent Policy

A0
A40
A60
A80

A100
RL1
RL2
RL3
RL4
RL5

Po
lic

y

0.60 0.60 0.47 0.60 0.71 0.74 0.71 0.77 0.78 0.71

0.51 0.59 0.52 0.73 0.83 0.80 0.73 0.79 0.80 0.74

0.58 0.52 0.56 0.48 0.60 0.51 0.54 0.57 0.71 0.47

0.65 0.72 0.62 0.57 0.50 0.54 0.42 0.48 0.62 0.49

0.86 0.83 0.61 0.50 0.43 0.56 0.56 0.61 0.54 0.47

0.91 0.96 0.77 0.60 0.79 0.95 1.00 0.96 0.99 0.96

0.85 0.89 0.72 0.75 0.52 0.99 1.00 0.72 0.94 0.97

0.97 0.94 0.61 0.62 0.69 0.99 0.75 0.98 0.99 0.80

0.93 0.83 0.79 0.66 0.83 0.95 0.93 0.92 0.99 0.75

0.68 0.58 0.48 0.37 0.38 0.71 0.55 0.54 0.62 0.77

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) Driving

H1 H2 H3 H4 H5 RL1 RL2 RL3 RL4 RL5
Other Agent Policy

H1
H2

H3
H4

H5
RL

1
RL

2
RL

3
RL

4
RL

5
Po

lic
y

0.19 0.20 0.18 0.19 0.18 0.29 0.26 0.31 0.30 0.27

0.08 0.08 0.07 0.08 0.07 0.21 0.17 0.19 0.15 0.17

0.31 0.31 0.29 0.31 0.28 0.25 0.23 0.20 0.22 0.22

0.07 0.08 0.06 0.07 0.08 0.14 0.14 0.14 0.10 0.14

0.31 0.31 0.29 0.29 0.31 0.33 0.30 0.31 0.28 0.29

0.46 0.44 0.37 0.39 0.42 0.57 0.40 0.42 0.35 0.36

0.46 0.44 0.39 0.41 0.45 0.55 0.54 0.47 0.44 0.44

0.30 0.31 0.30 0.29 0.31 0.44 0.50 0.55 0.38 0.46

0.45 0.44 0.40 0.41 0.45 0.44 0.28 0.34 0.27 0.23

0.45 0.42 0.39 0.40 0.42 0.50 0.27 0.37 0.27 0.22

0.1

0.2

0.3

0.4

0.5

(c) LevelBasedForaging

H1 H2 H3 RL
1

RL
2

RL
3

RL
4

RL
5

RL
6

RL
7

RL
8

Other Agent Policy

H1
H2
H3

RL1
RL2
RL3
RL4
RL5
RL6
RL7
RL8

Po
lic

y

0.12 0.13 0.32 0.39 0.27 0.20 0.46 0.43 0.40 0.39 0.43

0.18 0.19 0.40 0.59 0.49 0.39 0.59 0.48 0.63 0.48 0.59

0.30 0.35 0.41 0.60 0.61 0.47 0.58 0.55 0.63 0.46 0.65

0.37 0.59 0.54 0.68 0.67 0.61 0.74 0.72 0.70 0.61 0.66

0.31 0.45 0.63 0.68 0.83 0.70 0.73 0.66 0.63 0.65 0.65

0.24 0.43 0.44 0.59 0.67 0.74 0.66 0.59 0.54 0.60 0.52

0.47 0.58 0.56 0.65 0.70 0.67 0.76 0.68 0.76 0.65 0.69

0.37 0.45 0.52 0.66 0.69 0.58 0.72 0.61 0.83 0.61 0.75

0.34 0.53 0.69 0.73 0.67 0.56 0.77 0.83 0.49 0.89 0.66

0.47 0.47 0.37 0.63 0.65 0.62 0.64 0.60 0.87 0.45 0.81

0.44 0.44 0.63 0.68 0.64 0.56 0.72 0.76 0.69 0.82 0.76

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(d) PredatorPrey

KL
R0

_i0
KL

R1
_i0

KL
R2

_i0
KL

R3
_i0

KL
R4

_i0
KL

RB
R_

i0
RL

1_
i0

RL
2_

i0
RL

3_
i0

RL
4_

i0
RL

5_
i0

RL
6_

i0
Other Agent Policy

KLR0_i1
KLR1_i1
KLR2_i1
KLR3_i1
KLR4_i1

KLRBR_i1
RL1_i1
RL2_i1
RL3_i1
RL4_i1
RL5_i1
RL6_i1

Po
lic

y
-0.43 -0.96 -0.02 0.16 -0.23 0.23 -0.72 -0.86 -0.74 0.06 0.46 0.31

0.62 -0.29 -0.85 -0.17 0.29 0.25 -0.03 0.15 -0.90 -0.67 -0.42 -0.14

0.15 0.72 0.03 -0.52 -0.40 0.07 0.48 0.62 0.31 -0.06 -0.10 -0.14

-0.45 -0.34 0.73 0.17 -0.62 -0.03 -0.16 -0.31 -0.10 0.39 0.53 0.25

-0.50 -0.52 0.06 0.75 0.13 -0.19 -0.57 -0.74 -0.37 0.11 0.41 0.30

-0.41 -0.22 0.48 0.70 0.29 -0.27 -0.38 -0.29 0.16 0.35 0.49 0.40

0.48 0.20 -0.52 -0.03 0.35 0.20 0.46 0.53 -0.45 -0.46 -0.08 -0.33

0.48 0.39 -0.22 0.11 0.25 0.19 0.07 0.47 -0.31 -0.91 -0.26 -0.01

0.52 0.50 -0.33 -0.10 0.27 0.07 0.36 0.61 -0.25 -0.62 -0.71 -0.21

0.38 0.31 -0.23 -0.45 -0.13 0.19 0.17 0.75 -0.29 -0.55 -0.49 -0.17

-0.55 -0.67 0.36 0.64 -0.03 -0.43 -0.84 -0.86 -0.31 0.44 0.39 0.42

-0.66 -0.09 0.10 -0.01 -0.39 -0.48 -0.20 -0.29 0.77 -0.06 0.10 0.10

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

(e) PursuitEvasion i0 (Evader)

KL
R0

_i1
KL

R1
_i1

KL
R2

_i1
KL

R3
_i1

KL
R4

_i1
KL

RB
R_

i1
RL

1_
i1

RL
2_

i1
RL

3_
i1

RL
4_

i1
RL

5_
i1

RL
6_

i1

Other Agent Policy

KLR0_i0
KLR1_i0
KLR2_i0
KLR3_i0
KLR4_i0

KLRBR_i0
RL1_i0
RL2_i0
RL3_i0
RL4_i0
RL5_i0
RL6_i0

Po
lic

y

0.43 -0.62 -0.15 0.45 0.50 0.41 -0.48 -0.48 -0.52 -0.38 0.55 0.66

0.96 0.29 -0.72 0.34 0.52 0.22 -0.20 -0.39 -0.50 -0.31 0.67 0.09

0.02 0.85 -0.03 -0.73 -0.06 -0.48 0.52 0.22 0.33 0.23 -0.36 -0.10

-0.16 0.17 0.52 -0.17 -0.75 -0.70 0.03 -0.11 0.10 0.45 -0.64 0.01

0.23 -0.29 0.40 0.62 -0.13 -0.29 -0.35 -0.25 -0.27 0.13 0.03 0.39

-0.23 -0.25 -0.07 0.03 0.19 0.27 -0.20 -0.19 -0.07 -0.19 0.43 0.48

0.72 0.03 -0.48 0.16 0.57 0.38 -0.46 -0.07 -0.36 -0.17 0.84 0.20

0.86 -0.15 -0.62 0.31 0.74 0.29 -0.53 -0.47 -0.61 -0.75 0.86 0.29

0.74 0.90 -0.31 0.10 0.37 -0.16 0.45 0.31 0.25 0.29 0.31 -0.77

-0.06 0.67 0.06 -0.39 -0.11 -0.35 0.46 0.91 0.62 0.55 -0.44 0.06

-0.46 0.42 0.10 -0.53 -0.41 -0.49 0.08 0.26 0.71 0.49 -0.39 -0.10

-0.31 0.14 0.14 -0.25 -0.30 -0.40 0.33 0.01 0.21 0.17 -0.42 -0.10

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

(f) PursuitEvasion i1 (Pursuer)

Figure 11: Payoff tables for POSGGym agent policies for environments used in the experiments. Each table shows the mean
returns for the row policy when paired with the column policy after 1000 episodes.

E Planning Experiment Details
The implementation of the planning methods used in our
experiments were based the implementations used in prior
work (Schwartz, Kurniawati, and Hutter 2023). The hyper-
parameters used by each method are shown in Table 7 and
for all methods we used normalized Q-values during plan-
ning as per (Schrittwieser et al. 2020). For methods that used
UCB (INTMCP, IPOMCP, POMCP) we used rollouts us-
ing a random policy for leaf node evaluations. For INTMCP
and POMCP actions for the other agent during rollouts were
chosen using a random policy, while for IPOMCP they were
chosen using the other agent policy sampled from the root
belief. POTMMCP used the value function from its meta-
search policy for leaf node evaluation where available, oth-
erwise used rollouts using the meta-policy for action selec-
tion. We used rejection sampling for all methods for belief
reinvigoration after each update. This was used over other
methods such as weighted particle filtering (Sunberg and
Kochenderfer 2018) as it did not require access to an obser-
vation function. All code is available at https://github.com/
RDLLab/posggym-baselines

F Learning Experiment Details
For the learning based method (RL-BR) used in our exper-
iments we trained a single deep RL policy πBR,k as a BR
against each population Pk ∈ [P0, P1] of other agents in
each environment. PPO (Schulman et al. 2017) was used as

Table 7: Hyperparameters for different planning methods
used in our experiments. S is the search time used, for our
experiments we used S ∈ [0.1, 1, 5, 10, 20] s.

Hyper-Parameter Value

Discount (γ) 0.99
Discount horizon (ϵ) 0.01

Belief particles ⌈100× S × 1.16⌉
CPUCB 1.25

PUCB exploration (λ) 0.25
CUCB

√
2

the RL algorithm. During training at the start of each episode
a policy for the other agent π−i was sampled from a uni-
form distribution over the population being trained against
and this policy was used to select actions for the other agent
−i while actions for the ego agent i were sampled the BR
policy πBR,k. In this way each policy πBR,k was trained to
maximize its expected return against the uniform mixture
over the population Pk.

The BR policy used the same neural network architec-
ture used by the population policies (see Section C.1) with a
FCN trunk, followed by an LSTM layer, then finally separate
FCN policy and value function heads. The hyperparameters
are shown in Figure 8. We trained five separate policies us-

0 1 2 3
Training Step 1e7

0.4

0.6

0.8

M
ea

n
Re

tu
rn

P0

0 1 2 3
Training Step 1e7

P1

(a) CooperativeReaching-v0

0 1 2 3
Training Step 1e7

0.0

0.5

1.0

M
ea

n
Re

tu
rn

P0

0 1 2 3
Training Step 1e7

P1

(b) Driving-v1

0 1 2 3
Training Step 1e7

0.0

0.2

0.4

M
ea

n
Re

tu
rn

P0

0 1 2 3
Training Step 1e7

P1

(c) LevelBasedForaging-v3

0 1 2 3
Training Step 1e7

0.25

0.50

0.75

M
ea

n
Re

tu
rn

P0

0 1 2 3
Training Step 1e7

P1

(d) PredatorPrey-v0

0.0 0.5 1.0
Training Step 1e8

0.5

0.0

0.5

M
ea

n
Re

tu
rn

P0

0.0 0.5 1.0
Training Step 1e8

P1

(e) PursuitEvasion-v1 i0 (Pursuer)

0.0 0.5 1.0
Training Step 1e9

0.5

0.0

0.5

M
ea

n
Re

tu
rn

P0

0.0 0.5 1.0
Training Step 1e9

P1

(f) PursuitEvasion-v1 i1 (Evader)

Figure 12: Learning curves for the BR RL policy in each environment against each population of other agent policies P0, P1.
Grey lines show the mean episode return throughout training for each of the five different seeds. The blue line shows the average
across seeds.

ing different seeds for each combination of population and
environment with each policy being trained for up to 100M
steps. Figure 12 shows the learning curve for each policy
as well as the average learning curve across seeds for each
population and environment.

G Generalization Results
Figures 13 and 14 shows the In- vs Out-of-distribution re-
sults for each method used in our experiments.

H Belief Accuracy Results
Figures 15 and 16 show the belief accuracy for the combined
method throughout an episode in each environment.

Note, for the PursuitEvasion environment in 15 we see
belief state accuracy decreases over time for both in- and
out-of-distribution settings. This is expected and is due to
naturally growing uncertainty over time inherent to the en-
vironment. In particular, in PursuitEvasion both agents start
off knowing each others initial location but then receive no
or very indirect observations of each other until either the
pursuer perceives the evader or the evader reaches the goal,

IP
OM

CP

PO
TM

M
CP

CO
M

BI
NE

D

RL
-B

R

Algorithm

0.00

0.05

0.10

Ge
ne

ra
liz

at
io

n
Ga

p

Figure 13: Gap between in- and out-of-distribution mean
normalized returns of each method averaged across all envi-
ronments. For planning and combined methods results using
the maximum search time (20 s) are shown.

Table 8: Training hyperparameters for RL-BR policies used
in our experiments.

Hyperparameter Value

Training steps
100M (PursuitEvasion-v1 i0)

1B (PursuitEvasion-v1 i1)
32M (all other environments)

Parallel workers 32
Trunk layer sizes [64, 64]

LSTM size 64
Head layer sizes [64]

Discount (γ) 0.99
Learning rate 3× 10−4

GAE λ 0.95
Batch size 65536

Mini-batch size 2048
Rollout horizon 64
Update epochs 2

BPTT sequence length 10
Entropy bonus 0.01

Value function coeff. 0.5
Clip parameter 0.2

Global gradient clipping 10

at which point the episode ends. This growing uncertainty is
in contrast to all other environments, including LevelBased-
Foraging, where we expect more certainty over time since
agents observe each other more directly. Additionally, both
planning and RL methods are affected the same by the grow-
ing uncertainty in the PursuitEvasion environment as it is
independent of the algorithm. This compares with the poor
belief accuracy in LevelBasedForaging which is due to poor
belief approximation stemming from the planning methods
belief representation.

I Experiment Episode Lengths
Figure 17 shows the average episode lengths of each method
in each environment. Maximum episode length is 50 for

0 5 10 15 20

0.2

0.4

0.6

M
ea

n
Re

tu
rn

COMBINED

0 5 10 15 20

IPOMCP

0 5 10 15 20
Search Time (s)

0.2

0.4

0.6

M
ea

n
Re

tu
rn

POTMMCP

0 5 10 15 20
Search Time (s)

RL-BR

True False

Figure 14: Average in- (True) versus out-of-distribution
(False) performance for each method based on search time.

0 10 20 30 40 50
0.0

0.5

1.0

Be
lie

f S
ta

te
 A

cc
ur

ac
y CooperativeReaching-v0

0 10 20 30 40 50
0.0

0.5

1.0
Driving-v1

0 10 20 30 40 50
0.00

0.02

0.04

Be
lie

f S
ta

te
 A

cc
ur

ac
y LevelBasedForaging-v3

0 10 20 30 40 50
0.0

0.1

0.2
PredatorPrey-v0

0 20 40 60 80 100
Episode Step

0.0

0.2

0.4

Be
lie

f S
ta

te
 A

cc
ur

ac
y PursuitEvasion-v1_i0

0 20 40 60 80 100
Episode Step

0.0

0.5

1.0
PursuitEvasion-v1_i1

Search Time (s)
0.1
1.0

5.0
10.0
20.0

In Distribution
True
False

Figure 15: Probability assigned by the combined method’s
belief to the true environment state during an episode. In
general belief accuracy is significantly worse in the out-of-
distribution setting, and also in the LevelBasedForaging-v3
environment where the initial belief size is largest (y-axis
scales differ between plots).

0 10 20 30 40 50
0.0

0.5

1.0

Be
lie

f P
ol

icy
 A

cc
ur

ac
y CooperativeReaching-v0

0 10 20 30 40 50

0.25

0.50

0.75

1.00
Driving-v1

0 10 20 30 40 50

0.20

0.25

0.30

Be
lie

f P
ol

icy
 A

cc
ur

ac
y LevelBasedForaging-v3

0 10 20 30 40 50

0.25

0.50

0.75

PredatorPrey-v0

0 20 40 60 80 100
Episode Step

0.2

0.4

Be
lie

f P
ol

icy
 A

cc
ur

ac
y PursuitEvasion-v1_i0

0 20 40 60 80 100
Episode Step

0.2

0.4

0.6
PursuitEvasion-v1_i1

0.1
1.0

5.0
10.0

20.0

Figure 16: Probability assigned by the combined method’s
belief to the true policy of the other agent throughout an
episode in the in-distribution setting. In general belief ac-
curacy increases with search budget, and as the episode pro-
gresses and the agents have more interactions

all environments except PursuitEvasion-v1, where it is 100.
PursuitEvasion-v1 i1 had the longest effective planning
horizon. All other environments had shorter effective plan-
ning horizons due to the availability of more frequent posi-
tive rewards for the agent.

Co
op

er
at

iv
eR

ea
ch

in
g-

v0

Dr
iv

in
g-

v1

Le
ve

lB
as

ed
Fo

ra
gi

ng
-v

3

Pr
ed

at
or

Pr
ey

-v
0

Pu
rs

ui
tE

va
sio

n-
v1

_i0

Pu
rs

ui
tE

va
sio

n-
v1

_i1

0

10

20

30

40

50

60

M
ea

n
Ep

iso
de

 L
en

gt
h

Algorithm
IPOMCP
POTMMCP
RL-BR
COMBINED

Figure 17: Mean episode length for each algorithm in each
environment for the in-distribution setting. Results for plan-
ning and combined methods are using the maximum search
time (20 s).

