
Exploring Simultaneity: Learning
Earliest-time Semantics for Automated Planning

Ángel Aso-Mollar1, Óscar Sapena1, Eva Onaindia1

1 Valencian Research Institute for Artificial Intelligence (VRAIN),
Universitat Politècnica de València (UPV)

aaso@vrain.upv.es, ossaver@upv.es, onaindia@dsic.upv.es

Abstract

In this paper, we aim to explore the potential of learning par-
allel plans and handle the execution of simultaneous actions
in Automated Planning, in the form of Markov Decision Pro-
cesses. Our objective is to investigate the upsides and down-
sides when learning a policy that not only involves the ac-
tion to apply but also when to apply it. Concretely, we focus
on guiding an agent to learn earliest-time semantics, wherein
actions are to be executed as early as possible. Our solution
approximates this theoretical normal form of parallel plans
with an MDP that models the execution of actions along with
their time steps, and rewards actions to be executed as early
as possible. We solved the MDP with several methods and
proved that RL adheres very well to the earliest-time seman-
tics in the solved problems for a variety of domains, instead
of other classical learning techniques.

Introduction
This paper explores the adequacy of learning simultaneous
action application in the context of planning. We investigate
a novel approach for learning parallel action application us-
ing a Markov Decision Process (MDP) framework, in which
the simultaneous application of a set of actions is regarded
as a constructive procedure. Our definition of the problem
as an MDP allows us to inject semantic planning knowledge
in the form of a reward signal. In this work, we focus on
a semantics that executes actions as early as possible, the
process semantics, as defined in (Rintanen, Heljanko, and
Niemelä 2006). State-of-the-art SAT planners like Mada-
gascar (Rintanen 2014) explicitly comply with this seman-
tics, so the ultimate objective of this work is to answer the
question: is it possible to learn to plan in parallel following
a certain semantics instead of explicitly embedding the se-
mantics within a resolution schema, as it is the case of the
Madagascar planner? As an exploratory approach, we focus
on solving particular planning instances and investigate the
strengths and weaknesses of learning what we call process
plans (parallel plans that follow the process semantics) us-
ing different techniques.

Hegemonically in the literature, when one has wanted
to deal with the goal-oriented planning problems using

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

MDPs, a 1-1 mapping has generally been established be-
tween the MDP action space and the grounded planning op-
erator space, either to solve concrete instances by using goal
MDPs (Geffner and Bonet 2013a) or by learning general-
ist policies that work for several problems (Gehring et al.
2022; Rivlin, Hazan, and Karpas 2020; Ståhlberg, Bonet,
and Geffner 2023). This restricts learned policies to work
only in the context of sequential planning.

But what happens if we want to increase the complex-
ity of the policies, so that they can produce parallel plans?
What has been done so far in this context equates the MDP
action space to the power set of grounded planning opera-
tors. This is the case of (Aberdeen, Thiébaux, and Zhang
2004), in the field of decision-theoretic military operations,
or (Aso-Mollar and Onaindia 2024), in the field of general-
ized planning, with the concept of meta-operator.

This one-to-many correspondence becomes an issue for
medium to large sized instances, since the generation of the
MDP action space leads to a combinatorial explosion. This
is a problem especially for model-based, dynamic program-
ming approaches such as LRTDP (Bonet and Geffner 2003)
or LAO* (Hansen and Zilberstein 2001). The significant in-
crease of the MDP action space also impacts the goal search,
as the number of options increases exponentially. Our work
seeks to alleviate these problems by shifting the action space
expansion to the state space, which may be benefited by cer-
tain model-free solving techniques such as Reinforcement
Learning (Sutton and Barto 2018). Moreover, injecting se-
mantic knowledge to the search alleviates the sparse-reward
problem of learning to plan.

The purpose of this work is thus to define a novel MDP
framework that allows to plan in parallel, and to inject paral-
lel planning semantic knowledge into the learning process,
in the form of a reward signal. We will compare two differ-
ent methods for learning parallel plans using that model: (1)
solving the MDP using dynamic programming; and (2) ap-
proximate the policy using Reinforcement Learning. A com-
parison will be made of the adequacy of each method for
this task, using a state-of-the-art SAT planner, Madagascar.
We will prove that it is possible to learn plans that follow
specific semantics using our MDP framework, and we will
discuss which approach is more suitable for that purpose.
Results of the work also indicate that yielded plans are com-
petitive with respect to Madagascar, even though our goal

differs from directly competing against a planner.
This paper is structured as follows. The next section intro-

duces the background including the main basic notions on
classical planning and MDPs to support our approach. Sec-
tion Modeling process semantics in an MDP presents the
formalization of the MDP model establishing the link with a
planning problem and following section proves several prop-
erties of the MDP. Section Experimental evaluation shows
the empirical results, provides details on the implementation
and auxiliary algorithms to undertake the experimentation
and includes a discussion on the results. Finally, last section
concludes and summarizes future work.

Background
This section introduces the basic notions on which our ap-
proach is built. In this work, we focus our attention to
STRIPS operators (Fikes and Nilsson 1971).

Classical planning
A planning problem is a tuple P = ⟨F,O, I,G⟩, where F
is a set of fluents denoting propositional state variables with
values f or ¬f ; O is a set of deterministic grounded op-
erators, I is the initial state of the problem and G is the
goal condition. A problem state s is a full assignment of
truth values to F ; we denote the state space of P as S, and
∀s ∈ S, |s| = |F |. A state s ∈ S is terminal for P if G ⊆ s.
An operator o is defined by its preconditions pre(o) and ef-
fects eff(o), which are both partial truth assignments of F .
True and false effect assignments, respectively, are denoted
by eff+(o) and eff−(o).

An operator o ∈ O is executable in a state s if
pre(o) ⊆ s and eff(o) is consistent (does not con-
tain both f and ¬f for any fluent). We define exeo(s),
for an executable o, as the state obtained as follows:
exeo(s) = (s \ eff−(o)) ∪ eff+(o). The execution of a se-
quence of operators ⟨o1, o2, . . . , on⟩ in a state s is denoted
by exe⟨o1,o2,...,on⟩(s) = exeon(. . . (exeo2(exeo1(s))) . . .).
Let P = ⟨F,O, I,G⟩ be a planning problem and
ϕ = ⟨o1, o2, . . . , on⟩ a sequence of operators such that
exeϕ(I) = s, G ⊆ s; ϕ is called a sequential plan for P .

We consider now plans that are sequences of sets of op-
erators. Let O be a set of operators, s0 an initial state, and
Φ = ⟨L0, . . . , Lt−1⟩ a sequence of sets of operators where
Li = {oij}ni

j=1, oij ∈ O. Assuming the ∀-step plan seman-
tics defined in (Rintanen, Heljanko, and Niemelä 2006):
Definition 1. Φ is a ∀-step plan for O and s0 if there is a se-
quence of states ⟨s0, . . . , st⟩, such that for all Li and every
total ordering ⟨oi1, oi2, . . . , oin⟩ of Li, exe⟨oi1,oi2,...,oin⟩(si)
is defined and generates the same unique state si+1. Abus-
ing notation, we will also use exeLi

(si) = si+1 to denote
the execution of a set of operators Li in state si (any to-
tal ordering of operators in Li generates the same state),
and exeΦ(s0) = exeLt−1(. . . (exeL1(exeL0(s0))) . . .) to
denote the execution of a sequence of sets of operators Φ.

In (Rintanen, Heljanko, and Niemelä 2006), the authors
characterize ∀-step plans by requiring that no operator fal-
sifies the precondition of any other operator that is executed
simultaneously with the following theorem:

Theorem 1. Let O be a set of operators, s0 a state and Φ =
⟨L0, . . . , Lt−1⟩ a sequence of sets of operators Li ⊆ O.
Then Φ is a ∀-step plan for O and s0 if and only if there is a
sequence of states ⟨s0, . . . , st⟩ such that
1. si+1 = exeLi

(si) for all i ∈ {0, . . . , t− 1}
2. for no i ∈ {0, . . . , t − 1} and two operators o, o′ ∈ Li,

there exists a fluent f ∈ eff(o) such that ¬f ∈ pre(o′),
and vice versa.

The above statement about ∀-step plan semantics lays
the principles of simultaneous action execution and yields
the standard and most common definition of parallel plans
for STRIPS operators (for example that of SAT-encodings
(Kautz and Selman 1996; Robinson et al. 2009) or Graph-
plan (Blum and Furst 1997)). The ∀-step plan semantics
amounts to saying that two operators o and o′ can be exe-
cuted in parallel if they do not interfere. In other words, a
set of operators Li can be simultaneously executed if they
are pairwise independent.

Following, we define the process plans (Rintanen, Hel-
janko, and Niemelä 2006), which we will refer to as the
earliest-time semantics, that imposes the condition over ∀-
step plans that operators are executed as early as possible.
Definition 2. Let O be a set of operators, s0 a state and
Φ = ⟨L0, . . . , Lt−1⟩ a sequence of sets of operators, Li ⊆
O; Φ is a process plan for O and s0 if it is a ∀-step plan for
O and s0 such that there is no i ∈ {1, . . . , t−1} and o ∈ Li

so that ⟨L0, . . . , Li−1 ∪{o}, Li \ {o}, . . . , Lt−1⟩ is a ∀-step
plan for O and s0 with the execution ⟨s′0, . . . , s′t⟩ such that
sj = s′j for all j ∈ {0, . . . , i− 1, i+ 1, . . . , t}.

A process plan is a unique ∀-step plan that executes every
operator as early as possible so it can be seen as a canonical
form for ∀-step plans.

Given a planning problem P = ⟨F,O, I,G⟩, a ∀-step
plan Φ = ⟨L0, . . . , Lt−1⟩, Li ⊆ O, with execution
⟨so, . . . , st⟩, is valid for P if exeΦ(I) = st is a terminal
state for P .

Markov Decision Process
A deterministic goal-oriented MDP (Haddawy and Hanks
1998; Geffner and Bonet 2013b) with finite horizon is de-
fined as M = ⟨S, A,R, T, s0,SG, H⟩, where S is a set of
states; A is a set of deterministic actions; R : S × A → R
is a reward function; T : S × A → S is a transition func-
tion; s0 ∈ S is an initial state of the MDP; SG ⊆ S is a set
of goal states and H is the horizon. H is defined to avoid
endless loops.

At each time step 0 ≤ t ≤ H , an agent takes an action
at ∈ A in state st among all available actions following a
policy π that maps states into a probability distribution over
actions. In our work, π(a|s) is an stationary stochastic policy
π : S×A → [0, 1].

For a state st, the policy π outputs an action at with proba-
bility π(at|st), which applied to st returns T (st, at) = st+1

with reward R(st, at) = rt. The objective is to learn an op-
timal policy π∗ that maximizes the expected cumulative dis-
counted reward (formally shown in Equation (1)) where s0
is the initial state and γ ∈ [0, 1] is the discount factor used
to weight future rewards.

π∗ = argmax
π

Eπ

 H∑
t≥0

γtrt | s0

 (1)

Modeling process semantics in an MDP
This work aims to design a Markov Decision Process M for
a given planning problem P such that every policy for M
produces a ∀-step plan for problem P , and the optimal pol-
icy π∗ for M produces a process plan for P . The idea is to
link a planning problem P to a deterministic goal-oriented
MDP M with a finite horizon by viewing the execution of
parallel operators in the problem-solving of P as encapsu-
lated states of M . Before formally defining the mapping P -
M , we introduce a series of intermediate concepts, which we
label as process, that will help us to establish the mapping.

Definition 3. (Process state) Let P = ⟨F,O, I,G⟩ be a
planning problem and S the set of all states of P . Given a
planning state s ∈ S, a process state for P is an extension
of s denoted as sL, where L ⊆ O is an executable set of
operators in s; i.e., exeL(s) is defined.

The notion of process state extends the concept of plan-
ning state by considering a candidate set of operators to be
executed in state s.

Definition 4. (Process action) Let P = ⟨F,O, I,G⟩ be a
planning problem, we define two types of process actions for
P : (1) (add o), for every o ∈ O; and (2) (timestep).

For a process state sL, actions of type (add o) represent
the inclusion of a new operator o ∈ O in the set L; and the
action (timestep) represents the execution of L in s.

The two above definitions are used to formally establish
the mapping between a planning problem P and the model
we aim to define, which is a process MDP.

Definition 5. (Process MDP) Given a positive integer k,
a process MDP for a planning problem P = ⟨F,O, I,G⟩,
with S as the set of all states of P , is a goal-oriented MDP
MP

k = ⟨S, A,R, T, s0,SG, H⟩ such that:

• S = {sL : s ∈ S, L ⊆ O, and exeL(s) is defined}; i.e.,
the set of all process states for P

• A = {(add o) : o ∈ O} ∪ {(timestep)}; i.e., the set of
all process actions for P

• s0 = I∅ (L = ∅ for the initial process state)
• SG = {s∅ : s ∈ S and G ⊆ s}
• T : S×A → S such that:

1. T (sL, (add o)) = sL∪{o}, if exeo(s) and exeL∪{o}(s)
are defined and L∪{o} follows condition 2 of Theorem
1 (that is, there is no fluent in o that is negated in L,
and there is no fluent in L that is negated in o)

2. T (sL, (timestep)) = exeL(s)
∅, if L ̸= ∅; exeL(s)

is uniquely defined by condition 1 of Theorem 1 (the
successor process state is the result of executing the
set of operators L in the planning state s)

• R = RP
k , where

RP
k (s

L, a) =

0 a ̸= (timestep)

|L|
k

a = (timestep), T (sL, a) ̸∈ SG

1 +
|L|
k

a = (timestep), T (sL, a) ∈ SG

(2)
and k is an integer to bound the reward function for con-
vergence purposes.

• H ∈ N

Definition 5 establishes a 1-to-many correspondence be-
tween S (planning states) and S (process states). A single
planing state s is mapped to the set of all sL, with L a set
of planning operators for which exeL(s) is defined. More-
over, a planning operator o is directly mapped to a process
action (add o), and the set O is mapped to A plus the ex-
tra action (timestep). Semantically speaking, every itera-
tion starts with the initial planning state, denoted as the pro-
cess state I∅, and the set of operators to be executed in s is
built iteratively by adding a single operator o each time. The
state I∅ is semantically defined as “no operator is yet to be
executed to the planning state I”. Given a state sL, the appli-
cation of (add o) generates a new process state that includes
o in the set of operators to be executed in s: sL∪{o}. Also,
the application of action (timestep) to a process state sL

represents the execution of L to the corresponding planning
state s and, as a result, the current time step moves from t to
t+ 1.

The reward definition encourages the early application of
operators, as we will demonstrate later. Intuitively, it is bet-
ter to include actions as early as possible because we re-
inforce the maximum insertion of operators at early points
of execution. As other goal-oriented MDP approaches, our
reward function is goal-conditioned determining whether a
goal state of SG is reached or not (Zhu et al. 2021). The ∀-
step plan is a sequence of sets of operators where each set
Li is retrieved when executing Li to si, that is, when ap-
plying (timestep) to sLi

i , thus generating the process state
si+1

∅. The horizon H ensures that reaching the goal would
be preferred over executing (timestep) actions indefinitely.

Plans produced by a process MDP can be easily trans-
lated to the usual syntax for representing parallel plans
in PDDL. For example, for a planning problem P =
⟨F,O, I,G⟩ and a valid ∀-step plan Φ = ⟨L0, L1, L2⟩,
such that L0 = {o1, o3}, L1 = {o2}, L2 =
{o1, o4}, the corresponding process MDP sequentialization
⟨add o1, add o3, timestep, add o2, timestep, add o1,
add o4, timestep⟩ can be translated to:

[0] o1
[0] o3
[1] o2
[2] o1
[2] o4

Following with the example, Figure 1 shows different se-
quences of process actions with which a process MDP M for

Figure 1: For a planning problem P = ⟨F,O, I,G⟩ let us assume that a valid ∀-step plan exists: Φ = ⟨L0, L1, L2⟩ with
execution ⟨s0, s1, s2, s3⟩, s0 = I , such that G ⊆ s3 and L0 = {o1, o3}, L1 = {o2}, L2 = {o1, o4}. The graph shows four
different ways to sequentially produce Φ using actions from the correspondent process MDP, with nodes/edges denoting MDP
states/actions: ⟨add o1, add o3, timestep, add o2, timestep, add o1, add o4, timestep⟩, ⟨add o3, add o1, timestep,
add o2, timestep, add o1, add o4, timestep⟩, ⟨add o1, add o3, timestep, add o2, timestep, add o4, add o1, timestep⟩
and ⟨add o3, add o1, timestep, add o2, timestep, add o4, add o1, timestep⟩.

problem P would find the plan Φ. We represent all the pos-
sible sequences that lead to Φ as an acyclic-directed graph,
where nodes represent process states of M and edges rep-
resent process actions of M . The figure enhances the way
a process MDP produces ∀-step plans for a given planning
problem P , which consists of inserting one action at a time
and executing all of the actions in a state when needed. The
figure reflects that there are several different ways to make
sequential decisions to produce the same ∀-step Φ.

We note that Definition 5 assumes there cannot be a situa-
tion in which a process state s of the MDP has no applicable
actions. That is, we are assuming that an executable operator
can always be added to the set L. However, this might not be
the case in planning domains that feature dead-ends. Extend-
ing the state space to account for situations with dead-ends
has been addressed in the literature of MDPs and Automa-
ton Theory (Kolobov, Mausam, and Weld 2012; Björklund,
Björklund, and Zechner 2014). This situation can be mod-
eled with an extra failure state in the MDP that is reached
when no operator is applicable in a state plus a transition
from a dead-end state to that failure state.

Properties of process MDPs
In this section, we prove that a learned policy for a process
MDP M adheres to the ∀-step plan semantics, and that the
optimal policy of M guarantees that the plans follow the
process plan semantics. Proofs for the case of encountering
dead-end process states in M are not included but can be
easily deduced from the theoretical properties presented in
this section.

Proposition 1. Given a positive integer k and a planning
problem P = ⟨F,O, I,G⟩, a policy π for a process MDP
MP

k = ⟨S, A,R, T, s0,SG, H⟩ defines a ∀-step plan Φ for
O and I .

Proof. Starting from state s0 = I∅, the set of available ac-
tions is {(add o) : o ∈ O is executable in I}. Let (add oi) be

the chosen action to apply from the distribution of the pol-
icy, π(·|s0). The application of (add oi) in I∅ leads to the
process state I{oi}. Subsequently, there are two alternatives:

• The action chosen by the policy is (add oj), with oj ∈ O,
oi ̸= oj , which leads to the process state I{oi,oj}. In this
case, the set {oi, oj} follows condition 2 of Theorem 1 by
definition of the transition function T of a process MDP
for add actions.

• The action chosen by the policy is (timestep), which
leads to the process state s∅1, s1 = (exe{oi}(I)). In this
case, by definition of the transition function T of a pro-
cess MDP for a (timestep) action, s1 is a well-defined
planning state compliant with condition 1 of Theorem 1.

The successive application of the actions chosen by the
policy π will lead to a sequence Φ = ⟨L0, . . . , Lt−1⟩ of sets
of operators (the ones built with (add o) actions) and to a
sequence of states ⟨s0, . . . , st⟩ (resulting from the execution
of (timestep)), which will be the result of the successive
execution of the sets of the sequence Φ, starting from s0 =
I . Therefore, sequence Φ is, by definition and application of
Theorem 1, a ∀-step plan for O and I.

Once proved that a policy for a process MDP yields a ∀-
step plan starting from an initial state, we are now left to
prove that the optimal policy π∗ produces a valid process
plan; that is, a ∀-step plan that reaches the goal and that
follows the process plan semantics.
Theorem 2. Given a sufficiently large positive integer k and
a planning problem P = ⟨F,O, I,G⟩, the optimal policy π∗

for MP
k yields valid plans for P that follow the process plan

semantics.

Proof. The proof is divided in two parts. We will prove,
firstly, that the optimal policy leads to a valid ∀-step plan
(a ∀-step plan that reaches the goal) and, secondly, that the
optimal policy leads to a ∀-step plan in which actions are

inserted at their earliest time point, that is to say, a process
plan. By proving these two statements, we will have proven
that the optimal policy leads to a valid process plan.

From Proposition 1, any policy for a process MDP yields
a ∀-step plan for O and I . We want to prove that the plan
from the optimal policy is also valid for P , i.e., that it
reaches the goal. By definition, an optimal policy maximizes
the expected reward value from the initial state following
the policy distribution. This means that more probability is
given to the situations that return higher reward (see Equa-
tion 1). Restricting γ to the (open) interval (0, 1) without
loss of generality, we will demonstrate that the reward of the
trajectories that do not reach a goal state is dominated by the
reward of those that do reach a goal state.

We can characterize the reward of an arbitrary trajectory
T that does not reach a goal state as:

rT =

|L0|︷ ︸︸ ︷
0 + · · ·+ 0+γ|L0| · |L0|

k
+

+

|L1|︷ ︸︸ ︷
0 + · · ·+ 0+γ(|L0|+|L1|+1) · |L1|

k
+ . . .

· · ·+
|Li|︷ ︸︸ ︷

0 + · · ·+ 0+γ(
∑i

t=0 |Lt|+i) |Li|
k

(3)

As we can see in Formula 3, among the trajectories that
do not reach a goal state, we focus on those whose last action
is timestep as these trajectories receive the highest reward
according to Equation 2 (otherwise the trajectory would end
with an add action that would yield a reward of 0).

Observe that in T , |L0| add actions are executed, and then
timestep, then |L1| actions, and then timestep, and so on
until |Li| actions, and then timestep, but the resulting state
is not a goal state (we would have added 1 to the sum other-
wise). In this case,

∑i
t=0 |Lt|+ i = H . Compactly:

rT =
1

k

 i∑
j=0

γ(
∑j

t=0 |Lt|+i)|Li|

We must guarantee that the reward signal rT is dominated

by the reward of a trajectory that does reach the goal. For that
purpose, we will prove that rT is dominated by the reward
of reaching a goal state, using a suitable k. Then, a trajec-
tory that reaches the goal would get more reward than any
trajectory that does not.

The worst situation that can happen is that a goal state is
reached at the last time step H . By forcing rT < 1 · γH ,
which can trivially hold as k is a sufficiently large integer
value, we have that rT < (1 + |L|

k) · γH , so the reward
of a non-goal trajectory can be dominated by the reward of
reaching the goal (third row of Equation 2) using a suitable
k value. This needs to hold for all possible non-goal trajec-
tory T . As we have a finite number of steps H , the set of
trajectories is finite, so we can define k∗ as the maximum
k for every non-goal trajectory. With this, we assure the re-
ward from trajectories that do not reach the goal to be always
dominated by the reward of reaching the goal. Thus, trajec-
tories that reach a goal state will have more reward than tra-
jectories that do not, as its reward would include the goal re-
ward. That is why the optimal policy will always converge to

a trajectory where the goal is reached, yielding then a valid
∀-step plan, i.e., a plan that reaches the goal, q.e.d.

The second part that needs to be proven is that, knowing
that the optimal policy yields a valid plan, whether this plan
follows the process semantics or not. The proof is as simple
as observing that earlier insertions for a particular action, a,
yield more reward. Assuming that the action a can happen
in two different steps i, j, with i < j, and knowing that the
reward without a would be as follows:

|L0|︷ ︸︸ ︷
0 + · · · + 0+γ

|L0| ·
|L0|
k

+

+

|L1|︷ ︸︸ ︷
0 + · · · + 0+γ

(|L0|+|L1|+1) ·
|L1|
k

+ . . .

· · · +
|Li|, here is i︷ ︸︸ ︷
0 + · · · + 0+γ

(
∑i

t=0 |Lt|+i) |Li|
k

+ . . .

· · · +

|Lj |, here is j︷ ︸︸ ︷
0 + · · · + 0+γ

(
∑j

t=0 |Lt|+j) |Lj |
k

+ . . .

Having a in i would change the reward of time step i to
γ(

∑i
t=0 |Lt|+i+1) |Li|+1

k , while having a in j would change
the reward of time step j to γ(

∑j
t=0 |Lt|+j+1) |Lj |+1

k . We can
assume that inserting a results in only a single element dif-
ference for readability purposes, so what is left to prove is
that the first reward dominates the second. As i < j, then

A =

i∑
t=0

|Lt|+ i+ 1 <

j∑
t=0

|Lt|+ j + 1 = B

because
∑j

t=0 |Lt| =
∑i

t=0 |Lt|+
∑j

t=i+1 |Lt|. And then,
γA > γB , because γ ∈ (0, 1). Thus, γA · 1

k > γB · 1
k ,

q.e.d. The insertion of a in i yields more reward than in j,
and as i < j, the optimal policy will insert actions as early
as possible.

Experimental evaluation
This section presents the experimental evaluation to calcu-
late an optimal policy π∗ for a process MDP and analyze
whether the resulting plans adhere to the process seman-
tics. To this end, we defined a process MDP for a set of
planning problems from several IPC domains (see subsec-
tion Domains) and solved the MDPs with a model-based
heuristic-search algorithm. For each problem, we also tested
a model-free learning approach to approximate the optimal
policy as well as a planner compliant with the process se-
mantics:

(1) SAT-based planner. We solved the planning prob-
lems with the state-of-the-art SAT planner Madagascar1

(Rintanen 2014), which enforces the earliest-time seman-
tics in the search space of the problem defined through the
PDDL domain model. We used two configurations of the
Madgascar planner, Mp and MpC; Mp is more robust than
MpC but often behaves poorly in small but hard combina-
torial instances. In general, as no version is superior to the
other, we opted for solving the problems with both of them.

1https://research.ics.aalto.fi/software/sat/madagascar/

(2) Heuristic search to solve the MDP. We solved the
MDP using a model-based, dynamic programming algo-
rithm called Labeled Real Time Dynamic Programming
(LRTDP), a heuristic-search DP algorithm for solving
MDPs with full observability (Bonet and Geffner 2003). The
policy returned by LRTDP for each problem is then used to
obtain the plan that solves the problem.

(3) Learning an approximated policy. We learned a pol-
icy assuming the transition model of the underlying pro-
cess MDP of the problems is unknown. To do so, we used
a model-free state-of-the-art Reinforcement Learning (RL)
algorithm, called Proximal Policy Optimization (Schulman
et al. 2017) (PPO), an algorithm that constrains policy up-
dates by clipping a surrogate objective function in the train-
ing phase. PPO approximates the problem policy following
the reward function defined in Eq. 2.

Ultimately, the purpose of this experimentation is to eval-
uate the approximation of the parallel-plan policy obtained
by RLTDP and PPO algorithms and compare the quality of
the obtained plans with the plans returned by a SAT-based
planner that complies with the earliest semantics.

This section is structured as follows; in the next subsec-
tion we present details of the domains and problems used
in the experimentation; the next subsection explains our im-
plementation of both RLTDP and PPO; subsection Results
presents the obtained results and, finally, we discuss some
relevant aspects of the experiments.

Domains

Domain # Objects # Instances
Multi-blocksworld 4-9 50

Depots 13-21 64
Elevators 8-15 48
Floortile 7-11 56

Free-openstacks 7-19 35
Transport 6-15 64

Openstacks 7-19 35
Rovers 3-9 60

Table 1: Number of objects present in the generated in-
stances for each domain, and number of instances.

We generated a variety of medium-size problems for eight
different domains from the International Planning Competi-
tion (IPC): multi-blocksworld (a blocksworld domain with
several arms), depots, elevators, floortile, openstacks, free-
openstacks (a special case of openstacks in which there is no
restriction on the number of stacks), transport and rovers.
Table 1 shows the number of instances tested for each do-
main and the range of the problem sizes as a function of the
number of objects.

Heuristic search vs Reinforcement learning
LRTDP is an improved version of Real Time Dynamic Pro-
gramming (RTDP) (Bonet and Geffner 2000). As stated in
(Bonet and Geffner 2003), RTDP involves simulated greedy
searches in which the heuristic values of the visited states are
updated in a DP fashion, making them consistent with the

Figure 2: In these two graphs, we depict the total number
of time steps taken by PPO to converge and the total train-
ing time on the x-axis, while on the y-axis, we represent the
overall percentage of problems solved for each scenario, for
every analyzed domain.

heuristic values of their possible successor states. LRTDP
includes a labeling process that keeps track of the states for
which the value function has already converged, which im-
proves overall performance. Note that, in our case, we use
LRTDP to solve a deterministic MDP, which can be regarded
as a special case and a subset of non-deterministic MDPs.

We implemented the original algorithm of (Bonet and
Geffner 2003), incorporating some of the adjustments ex-
posed in the authors’ Github repository2, including adapta-
tions for finite-horizon MDPs and permitting cycles in the
search. We conducted LRTDP iterations for each problem
with the hmin heuristic defined in the original paper, and
ϵ = 10−4. Heuristic (hmin) calculations turned out to be
computationally very expensive for large instances (this is-
sue is also discussed in the original paper), so we finally
opted for using h = 0 for retrieving the optimal policies.
By using h = 0, every policy was retrieved in less than 10
seconds.

PPO is a state-of-the-art actor-critic RL algorithm to opti-
mize policy functions by iteratively updating them and lim-
iting changes to a given range, ensuring stable and efficient
learning in complex environments, with the use of a clipped
objective function. We note that PPO is used to learn the
MDP process of one particular problem. PPO was run up to
600,000 time steps, 500 time steps per episode, 3,000 time

2https://github.com/bonetblai/mdp-engine

steps per batch, 5 updates per iteration, a 0.2 epsilon value,
a discount factor of 0.99, and an entropy regularization co-
efficient of 0.01. We used full batch updates and single ad-
vantage estimation. We also included an early stopping to
finish the training if the difference between the makespan of
the plans was less than 0.05 for 10 complete and terminating
episodes. Calculations were optimized using Pytorch Geo-
metric library (Fey and Lenssen 2019). The reward function
was defined with k = 1000 and the horizon H = 500. The
value of k is empirically selected.

We used one-hot encoded vector representations for both
states and actions. Using fancier vectorial planning state rep-
resentations like those in (Dong et al. 2019; Gehring et al.
2022; Zhou et al. 2020) is beyond the scope of this work and
we intend to investigate this issue in future work. Experi-
ments were conducted on a machine with a Nvidia GeForce
RTX 3090 GPU, a 12th Gen Intel(R) Core(TM) i9-12900KF
CPU and Ubuntu 22.04 LTS operating system.

As PPO calculations are computationally far more expen-
sive than LRTDP, we conducted an experiment to analyze
the PPO training statistics. The upper plot of Figure 2 shows
total training times of PPO. Each training lasted approxi-
mately between 20 seconds and 30 minutes, with an aver-
age of 396.15 secs. The lower plot of the figure shows the
total number of time steps taken by PPO to converge. Re-
sults show that percentiles 50, 75 and 90 of the number of
time steps for all the domains stand respectively in 123,038,
196,275 and 432,146 time steps (e.g., percentile 50 indicates
that half of the MDP trainings were completed in fewer than
123,038 time steps).

Results
Madagascar is a state-of-the-art SAT planner that yields
plans compliant with the process semantics definition (Rin-
tanen 2014). For this reason, we set Madagascar plans as the
ground-truth for process plans. We run both Mp and MpC
configurations of Madagascar (Rintanen 2014); according to
the planner documentation, either version may work better
than the other depending on the domain.

In inference, we rolled out the policy obtained with
LRTDP and PPO to solve the problems, until reaching the
goal (or up to a horizon of H = 500 steps). Addition-
ally, we implemented an algorithm that transforms a plan
Φ = ⟨L0, . . . , Lt−1⟩ into another one that contains the same
actions and complies with the process semantics. This pro-
prietary software (attached in the supplementary material)
validates the plan Φ and searches the earliest schedule for
each operator o ∈ Li, determining whether t = i is the ear-
liest time at which o can be scheduled or otherwise o could
be executed earlier. The problem of finding a process plan
given an arbitrary ∀-step plan is a non-trivial and compu-
tationally expensive task as it involves finding the earliest
insertion of every operator in the ∀-step plan. We will refer
to this software as process checker.

Results of the experimental evaluation are shown in Table
2. The top table depicts the average makespan of the solution
plans for all the problems by domain and the bottom table
the average process deviation of the plans w.r.t. the earliest-
time semantic plan calculated by the process checker. Let

us assume an operator o is scheduled at time t in a plan Φ
and that the process checker returns that the earliest time
for o is t′ < t. The process deviation is the sum of the devia-
tions t− t′ for each operator of the plan. An earlier insertion
of an operator in Φ does not necessarily imply a makespan
deviation, but it sure implies a process deviation. The aver-
age values are shown along with their corresponding 95%
confidence interval.

In the top part of Table 2, it is evident that LRTDP
demonstrates poor performance in terms of plan makespan.
It is noticeable that planners Mp and MpC, serving as
baseline for this analysis, deliver much better results than
the model-based approach. Moreover, PPO slightly outper-
forms both Mp and MpC in all the domains except de-
pots, in which it only surpasses Mp and practically matches
MpC. In summary, PPO achieves much better-quality plans
than LRTDP when approximating the process semantics,
even surpassing in most cases the baseline.

In the lower section of Table 2 we can notice that LRTDP
column is empty. This is due to scalability issues, the pro-
cess checker was unable to find a process plan for LRTDP
because of the excessive length of its plans. It is also notice-
able that PPO adheres very well to the semantics, showing
an upper bound of process deviation of less than 1.25 ac-
tions and almost zero for the majority of domains, and com-
pared to Mp and MpC, in which the process deviation is 0
in all domains except in the rovers domain. This indicates
that PPO inserts actions in the plans as early as possible in
the vast majority of cases.

Additionally to the process deviation, we also analyzed
whether earliest-time insertions of plan operators lead to a
shortening in the plan makespan. Results for LRTDP are not
applicable either due to the search complexity of the process
checker. For PPO, there is an average makespan reduction
of 0 time steps for every domain but floortile and depots,
in which it is less than 0.14 time steps. This shows that al-
though there may be actions that can be applied earlier, the
quality of the analyzed plans in terms of makespan is opti-
mal or very close to optimal in every case.

We can conclude that PPO adequately approximates pro-
cess semantics in almost all our experiments. We also em-
pirically demonstrated that Reinforcement Learning outper-
forms model-based approximations, such as LRTDP, for this
type of problems, which makes sense due to the increas-
ing complexity of parallel planning compared to sequential
planning.

Discussion
Several aspects of the experiments are worth discussing.
First of all, it is observed that enforcing the process seman-
tics in the reward function positively favors the RL model
in some cases. The reason for this may be found in the very
nature of some domains such as Free-openstacks, Transport
or Rovers, where there is hardly restrictions for the simul-
taneous application of planning operators. The application
of the earliest-time semantics in this type of domains favor-
ably impacts the exploration of the RL algorithm and deal-
ing with the exponential growth of states and actions in high
dimensional spaces. However, there is also a counterpart to

Avg. makespan LRTDP Mp MpC PPO
Multi-blocksworld 112± 31.24 4.66± 0.87 4.39± 0.79 3.57± 0.60

Floortile 241.61± 11.53 5.16± 0.65 4.64± 1.53 4.56± 0.62
Transport 178.05± 41.58 4.64± 0.31 4.58± 0.28 4.04± 0.40

Openstacks n/a 13.63± 1.37 14.03± 1.45 12.23± 1.40
Free-openstacks 16.00± 2.34 6.71± 0.32 6.71± 0.32 6.71± 0.32

Rovers 42.24± 23.62 4.52± 0.52 4.52± 0.52 4.06± 0.45
Elevators 195.52± 27.79 5.38± 0.94 4.86± 0.77 4.64± 0.77
Depots 247.75± 2.60 6.20± 0.70 6.07± 0.67 6.16± 0.77

Process avg. dev. LRTDP Mp MpC PPO
Multi-blocksworld n/a 0.00± 0.00 0.00± 0.00 0.02± 0.03

Floortile n/a 0.00± 0.00 0.00± 0.00 1.25± 1.01
Transport n/a 0.00± 0.00 0.00± 0.00 0.10± 0.16

Openstacks n/a 0.00± 0.00 0.00± 0.00 0.17± 0.24
Free-openstacks n/a 0.00± 0.00 0.00± 0.00 0.14± 0.16

Rovers n/a 0.50± 0.29 0.50± 0.29 0.08± 0.07
Elevators n/a 0.00± 0.00 0.00± 0.00 0.47± 0.85
Depots n/a 0.00± 0.00 0.00± 0.00 1.05± 0.82

Table 2: Average makespan of solution plans (top table) and process deviation of the plans (bottom table). LRTDP: Labeled
Real-Time Dynamic Programming; Mp and MpC: Madagascar planner configurations; PPO: Proximal Policy Optimization

this situation; in other domains such as Depots or Floortile
with more relations or restrictions between actions, forcing
the execution of actions as soon as possible may result in
the introduction of useless actions entangling what is truly
important and resulting in an impairment of the algorithm
convergence. This situation could explain the slightly worse
performance in those domains.

Algorithms such as LRTDP fail to adequately approx-
imate an optimal policy in parallel planning wherein the
state space grows considerably. Model-based algorithms
have proven useful to learn parallel plans in small problems
and specific situations, such as in (Aberdeen, Thiébaux, and
Zhang 2004), where the action space is defined as the power
set of planning operators. This consideration has been per-
ceived as a coarse approximation for approaching parallel
planning in works such as (Aso-Mollar and Onaindia 2024);
i.e., generating all possible combinations of operators ex-
plicitly defined in the action space makes this type of ap-
proximations not scalable at all. The novel MDP definition
of this work equals the MDP action space to the planning
action space plus one extra action, which makes it compa-
rable to the current sequential plan learning models in terms
of complexity. This mapping could be reduced even further
by applying specific techniques aimed at the reduction of the
action space in planning (Kokel et al. 2023).

We believe that this new way of learning to solve plan-
ning problems can be used in more complex techniques. The
encoding of the proposed RL model in complex systems is
almost immediate, since the action space of the MDP is fully
equated (plus one action) to the grounded operator space
of planning, as in the majority of sequential approaches.
By shifting the issue of action-space explosion to the state
space, the use of model-free methods enables more scala-
bility. We believe that considering a parallel planning model
can be an improvement in tasks that use sequential models
trained with model-free methods.

Conclusions and Future Work
This paper represents a first attempt in learning to plan in
parallel using a sequential decision-making scheme. We es-
tablished a mapping of a planning problem to a process
MDP that models parallel plans and rewards executing ac-
tions as earliest as possible. We trained a policy for a vari-
ety of problems using several model-free and model-based
learning methods, and the results confirm that the model-
free (RL) policies adhere to the behavior of SAT planners
such as Madagascar.

A key strength of our approach is that the inclusion of
parallel operators largely improves the model as there exist
now different trajectories that lead to the same sequence of
sets of operators. In addition, the inclusion of parallel exe-
cution of actions in the states themselves allows the problem
to be treated as if it were a sequential resolution scheme,
which is beneficial with respect to other approaches (Ab-
erdeen, Thiébaux, and Zhang 2004; Aso-Mollar and On-
aindia 2024). We acknowledge though that the approach is
problem-dependent and not yet fully scalable due to the lim-
itations of RL for approximating optimal policies. All in all,
we believe it is a promising approach that is worth further
investigation.

For future work, we aim to extend the model with partial-
order plan (POP) semantics. We are also interested in in-
vestigating the application of process MDPs to Generalized
Planning so as to alleviate the problem dependency and learn
policies that generalize to large size problems. To this end,
we intend to explore ways of representing process states in a
vectorial form. All in all, this work represents a first step in
the direction of non-sequential planning learning.

Acknowledgments
This work is supported by the Spanish AEI PID2021-
127647NB-C22 project and Ángel Aso-Mollar is partially
supported by the FPU21/04273.

References
Aberdeen, D.; Thiébaux, S.; and Zhang, L. 2004. Decision-
theoretic military operations planning. In Proceedings of the
Fourteenth International Conference on International Con-
ference on Automated Planning and Scheduling, ICAPS’04,
402–411. AAAI Press. ISBN 1577352009.
Aso-Mollar, A.; and Onaindia, E. 2024. Meta-operators
for Enabling Parallel Planning Using Deep Reinforcement
Learning. arXiv:2403.08910.
Björklund, H.; Björklund, J.; and Zechner, N. 2014. Com-
pression of finite-state automata through failure transitions.
Theoretical Computer Science, 557: 87–100.
Blum, A. L.; and Furst, M. L. 1997. Fast planning through
planning graph analysis. Artificial Intelligence, 90(1): 281–
300.
Bonet, B.; and Geffner, H. 2000. Planning with Incomplete
Information as Heuristic Search in Belief Space. In Artificial
Intelligence in Planning Systems (AIPS), 52–61.
Bonet, B.; and Geffner, H. 2003. Labeled RTDP: im-
proving the convergence of real-time dynamic program-
ming. In International Conference on Automated Plan-
ning and Scheduling, ICAPS’03, 12–21. AAAI Press. ISBN
1577351878.
Dong, H.; Mao, J.; Lin, T.; Wang, C.; Li, L.; and Zhou, D.
2019. Neural Logic Machines. CoRR, abs/1904.11694.
Fey, M.; and Lenssen, J. E. 2019. Fast Graph Representation
Learning with PyTorch Geometric. In ICLR Workshop on
Representation Learning on Graphs and Manifolds.
Fikes, R. E.; and Nilsson, N. J. 1971. STRIPS: A new ap-
proach to the application of theorem proving to problem
solving. Artificial intelligence, 2(3-4): 189–208.
Geffner, H.; and Bonet, B. 2013a. A Concise Introduction
to Models and Methods for Automated Planning: Synthesis
Lectures on Artificial Intelligence and Machine Learning,
chapter 6. Morgan & Claypool Publishers, 1st edition. ISBN
1608459691.
Geffner, H.; and Bonet, B. 2013b. MDP Planning: Stochas-
tic Actions and Full Feedback. In A Concise Introduction
to Models and Methods for Automated Planning, Synthesis
Lectures on Artificial Intelligence and Machine Learning,
chapter 6, 79–96. Morgan & Claypool Publishers.
Gehring, C.; Asai, M.; Chitnis, R.; Silver, T.; Kaelbling,
L. P.; Sohrabi, S.; and Katz, M. 2022. Reinforcement Learn-
ing for Classical Planning: Viewing Heuristics as Dense Re-
ward Generators. In ICAPS, 588–596. AAAI Press.
Haddawy, P.; and Hanks, S. 1998. Utility Models for Goal-
Directed, Decision-Theoretic Planners. Computational In-
telligence, 14(3): 392–429.
Hansen, E. A.; and Zilberstein, S. 2001. LAO: A heuristic
search algorithm that finds solutions with loops. Artificial
Intelligence, 129(1): 35–62.
Kautz, H. A.; and Selman, B. 1996. Pushing the Envelope:
Planning, Propositional Logic and Stochastic Search. In
Clancey, W. J.; and Weld, D. S., eds., AAAI 96, IAAI 96,
Volume 2, 1194–1201. AAAI Press / The MIT Press.

Kokel, H.; Lee, J.; Katz, M.; Srinivas, K.; and Sohrabi, S.
2023. Action Space Reduction for Planning Domains.
Kolobov, A.; Mausam; and Weld, D. S. 2012. A Theory of
Goal-Oriented MDPs with Dead Ends. In de Freitas, N.; and
Murphy, K. P., eds., Proceedings of the Twenty-Eighth Con-
ference on Uncertainty in Artificial Intelligence, Catalina Is-
land, CA, USA, August 14-18, 2012, 438–447. AUAI Press.
Rintanen, J. 2014. Madagascar : Scalable Planning with
SAT. https://research.ics.aalto.fi/software/sat/madagascar/.
Rintanen, J.; Heljanko, K.; and Niemelä, I. 2006. Plan-
ning as satisfiability: parallel plans and algorithms for plan
search. Artificial Intelligence, 170(12): 1031–1080.
Rivlin, O.; Hazan, T.; and Karpas, E. 2020. General-
ized Planning With Deep Reinforcement Learning. CoRR,
abs/2005.02305.
Robinson, N.; Gretton, C.; Pham, D. N.; and Sattar, A. 2009.
SAT-Based Parallel Planning Using a Split Representation
of Actions. In ICAPS. AAAI.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal Policy Optimization Algorithms.
arXiv:1707.06347. .
Ståhlberg, S.; Bonet, B.; and Geffner, H. 2023. Learning
General Policies with Policy Gradient Methods. In Marquis,
P.; Son, T. C.; and Kern-Isberner, G., eds., Proceedings of the
20th International Conference on Principles of Knowledge
Representation and Reasoning, KR 2023, Rhodes, Greece,
September 2-8, 2023, 647–657.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang,
L.; Li, C.; and Sun, M. 2020. Graph neural networks: A
review of methods and applications. AI Open, 1: 57–81.
Zhu, M.; Liu, M.; Shen, J.; Zhang, Z.; Chen, S.; Zhang, W.;
Ye, D.; Yu, Y.; Fu, Q.; and Yang, W. 2021. MapGo: Model-
Assisted Policy Optimization for Goal-Oriented Tasks. In
Zhou, Z., ed., Proceedings of the Thirtieth International
Joint Conference on Artificial Intelligence, IJCAI 2021, Vir-
tual Event / Montreal, Canada, 19-27 August 2021, 3484–
3491. ijcai.org.

https://research.ics.aalto.fi/software/sat/madagascar/

	Introduction
	Background
	Classical planning
	Markov Decision Process

	Modeling process semantics in an MDP
	Properties of process MDPs
	Experimental evaluation
	Domains
	Heuristic search vs Reinforcement learning
	Results
	Discussion

	Conclusions and Future Work
	Acknowledgments

