
Monte Carlo Tree Search for Integrated Planning, Learning, and Execution
in Nondeterministic Python

Richard Levinson
rich.levinson@nasa.gov

Intelligent Systems Division
NASA Ames Research Center

Abstract

We present a novel use of Monte Carlo Tree Search (MCTS),
adapted to explore a search space produced by choice points
embedded in Python code. The choice points are nonde-
terministic assignment statements and subroutine calls. We
present MCTS extensions required for doing tree search in
this context which includes control constructs like hierar-
chical decomposition (subroutine calls), iterative while loops
and conditional statements. We demonstrate how the system
provides integrated planning, learning and execution in a sim-
ulated rideshare scenario in a city setting, and present prelim-
inary experiments as a proof of concept. We also briefly de-
scribe a real-world NASA climate science application which
involves planning only (no execution) and includes MCTS
parallelization to exploit multiple CPU cores.

1 Motivation
This work is motivated by a long-term interest in the po-
tential benefits of using a general programming language
such as Python as the action representation for unified plan-
ning and execution models, to address problems with hy-
brid approaches where the planner and execution system use
different models. Procedural models include control flow
constructs like while loops and if statements (conditionals)
which are essential for reactive execution. In the standard
approach, a planner using a declarative model is connected
to a reactive execution system through an intermediate lan-
guage such as ROSplan (Cashmore et al. 2015).

The need to translate between planning and execution
models, and to maintain two different behavior models in-
creases complexity. In such hybrid systems, the planner
can’t help when execution strays outside of the planner’s
model. There is a hard division between the planning and
execution action models which can be difficult to change. A
unified action model for planning and reactive execution fa-
cilitates exploring various blends of reactive execution and
planning because there is no hard boundary between them.

This work is also motivated by a practical problem we
needed to solve more immediately. A prior attempt at
planning for nondeterministic Python suffered performance
problems and did not scale. It used Python’s fork method
to split Python processes into parallel processes for each
node in the search space, which consumed all space on
the computer (Levinson 2020). The new approach presented

here replaces that performance killing overhead with Monte
Carlo Tree Search (MCTS), which uses only a single process
per planning trajectory.

A second practical motivation was to address a scaling
problem in a real-world NASA application for planning
satellite observations and data downlinks called D-SHIELD
(Levinson et al., 2022; 2021). This application produces a
coordinated plan for a swarm of satellites. D-SHIELD uses
MCTS in a non-standard way to generate a full plan without
any execution or exogenous events, so it is not the primary
example in this paper, which aims to demonstrate integrated
planning and execution. However it was a key driver for in-
tegrating MCTS into non-deterministic Python, and demon-
strates scaling on a very large real-world problem which is
quite different from our running example. The underlying
MCTS code is the same as that presented in this paper.

This paper aims to present the new system and demon-
strate how MCTS is used to integrate planning, learning
and execution in nondeterministic Python. It focuses on ex-
plaining how MCTS is integrated into Python code extended
with choice points, presents MCTS extensions required, and
demonstrates two working examples.

2 Related Work
2.1 Integrated Planning and Execution
We present a new version of The Program Planning and Exe-
cution Language (PROPEL). Propel supports planning with
a general programming language extended with nondeter-
ministic choice points. Initially, LISP was the programming
language (Levinson 1995), then C++ (Levinson 2005), and
recently Python (Levinson 2020). This version integrates
nondeterministic Python with Monte Carlo Tree Search
(MTCS). Nondeterministic choice points (assignment state-
ments and subroutine calls) may be embedded anywhere in
Python. MCTS is the search engine that searches through the
space of program variations defined by those choices. Propel
is related to systems designed for tightly integrated planning
and reactive execution including IDEA (Muscettola et al.,
2000; 2002) and KIRK/RMPL (Kim, et al. 2001).

Reaction First Search (RFS) (Drummond et al., 1993) was
a direct predecessor to Propel. RFS integrated a planner with
a reactive executive which shared the same action model.
The executive could operate without the planner by falling



back on a default reaction policy, called a reactive compe-
tence. If time is available, the planner can look ahead for po-
tential problems or improvements. RFS demonstrated ben-
efits of having the planner search the reaction trajectories
first before branching out to explore non-default behaviors.
RFS used a STRIPS-like declarative action representation.
PROPEL continues that line of research using a general pro-
gramming language as the action representation.

(Neufeld 2020) presents integrated planning and reac-
tive execution for video games in dynamic environments.
Neufeld describes a hybrid system where a long-term HTN
planner is integrated with a reactive executive, comparing
two reactive systems: MCTS vs. Behavior Trees (a relative
of the behavior-based robotics like the subsumption archi-
tecture (Brooks 1991)). Here MCTS was used for the reac-
tive executive, integrated with a slower HTN planner. In con-
trast, MCTS is our slower planner, integrated with a faster
reactive default policy.

The Operational Models (Patra et al., 2021) share sim-
ilar motivations with Propel for planning with a procedural
model. They present UCT for Operational Models (UPOM),
which uses a specialized reactive execution system called
RAE (Ghallab et al, 2016) which is related to the Proce-
dural Reasoning System (PRS) (Ingrand et al, 1996). Pro-
cedures can be defined with choice points for subroutine
calls, but nondeterministic assignment statements are not
supported. UPOM requires knowledge to use a specialized
AI language and reactive execution system, RAE, as their
procedural modelling language, compared to using Python.

2.2 Monte Carlo Tree Search (MCTS)
MCTS was introduced by (Coulom 2006) and was the key
innovation in the first computer program to beat the world’s
best human ‘go’ player. MCTS typically uses a domain-
independent heuristic called Upper Confidence Bound for
Trees (UCT) (Kocsis Szepesva ri, 2006) to control the
bias (preference) between exploring new areas of the search
space vs. exploiting choices which worked well before.

MCTS is designed to be interleaved with execution, so
it focuses search on the current state and the most immedi-
ate choices and returns the single next step to be executed.
Before executing each action, MCTS is called to perform
Monte Carlo simulations and determine the best action to
execute. After the best action is executed, the “opponent” (if
it’s a board game) or the environment (if it’s the real world)
makes exogenous state changes (transitions to a new state).
Then MCTS starts again from the new current state. Each
trajectory from the root to a terminal state is called a rollout.
One child is added to the tree on each rollout. MCTS incre-
mentally grows the action-value table as the tree grows.

Figure 1 shows how MCTS works for an example where
the agent repeatedly chooses to move North, South, East or
West. Nodes (in yellow) represent states and edges are ac-
tion choices. MCTS tracks the number of visits to each node
and the total reward received for all paths through the node.

Every rollout follows a sequence of four stages: Select,
Expand, Simulate, Update. In the Select stage, a leaf in the
tree is selected to be expanded using a tree policy to guide
action selection based on learning statistics. This tree pol-

Figure 1: MCTS tree for our application

icy uses UCT to balance between exploring new choices
and exploiting successful prior choices. In the Expand stage,
the selected node is expanded by adding a new child to the
tree, for an unexplored action (node s7). In the Simulation
stage, a sequence of actions is followed until a terminal state
is reached. Action selection in the expand and simulation
stages is guided by a default policy. Rollouts are terminated
when a success or failure state is reached or when a time
limit is reached. When a rollout terminates, the MCTS up-
date stage begins. This is when the reward for that rollout is
backpropagated to update the tree statistics. The number of
visits and total reward is updated for each node in the tree
back to the root. The action-value table estimates are stored
only for states close to the current state (the tree), and not for
the intermediate states produced during the simulate stage.

MCTS and Reinforcement Learning (RL) are strongly re-
lated. As explained by (Vodpivec et al., 2017) and by (Sut-
ton and Barto, 2018), planning and learning both update an
action-value function based on experience. MCTS imple-
ments a form of General Policy Iteration (GPI) which is at
the core of RL. MCTS iterates between policy improvement
and policy evaluation. In MCTS, the policy being improved
and evaluated is the Tree policy. In the select stage, MCTS
samples from the tree policy to select actions based on prior
estimates. In the update (backpropagation) stage, feedback
from new trajectories is used to update the action-value ta-
ble. MCTS focuses on states near the current state and does
not attempt to create a general policy to use in all future sit-
uations. It is a form of situated reinforcement learning.

3 Propel
The Program Planning and Execution Language (PROPEL)
is Python with nondeterministic choice points. This is the
action representation used for both planning and execution
and now integrated with learning in the form of MCTS. Our
definition of nondeterministic programming is the same as
this from Wikipedia:

“A nondeterministic programming language is a
language which can specify, at certain points in the
program (called choice points), various alternatives
for program flow. Unlike an if-then statement, the
method of choice between these alternatives is not



Figure 2: Propel’s three process levels

directly specified by the programmer; the program
must decide at run time between the alternatives.”

Our nondeterministic programming language is Python
extended with two types of choice points: chooseValue
(nondeterministic assignment statement) and chooseTask
(nondeterministic subroutine call). Each choice point adds
a new degree of freedom to the Python code which may
be helpful when operating in uncertain and changing envi-
ronments. MCTS automatically chooses which value to as-
sign, or which subroutine to call, rather than a programmer
making that choice in advance or relying solely on a pre-
viously learned policy. MCTS searches through the space
of program variations defined by choice points to maximize
context-aware goal-driven rewards.

3.1 Propel Architecture: Three process levels
Figure 2 shows Propel’s three levels of computational pro-
cesses: Executive, Supervisor and Application.

Executive Process: The top-level executive process coor-
dinates global strategy for integrated planning and execu-
tion. It starts, stops, and communicates with the planning
and execution supervisor processes, called the Planner and
Controller, respectively. The Executive may implement var-
ious integrated planning and execution strategies.

Supervisor Processes: There are two supervisor level pro-
cesses. The Controller supervises execution of the ap-
plication code. It starts and monitors execution of the
Application-level code in the real world. The Planner su-
pervises planning of the same Application-level code, using
MCTS to simulate many variations (MCTS rollouts). The
Controller and Planner processes can start and stop their re-
spective application processes, and receive messages from
them and from the Executive.

Application Processes: All application specific code and

Figure 3: City Delivery initial state

state data are defined and managed by the application level
code. The Supervisor and Executive levels are generic Pro-
pel infrastructure which know nothing about any specific ap-
plication. Identical application code is running in Execution
and Planning mode. A single process runs it in execution
mode. In planning mode, it runs in a separate process for
each rollout.

3.2 Application/Propel API
The Application creates a subclass of Propel to inherit
choice point methods and message API methods. Within
each rollout, all MCTS stages (Figure 1) are run in the Ap-
plication processes, except update which is run by the Plan-
ner. The application provides an objective function method
to calculate the plan score after each rollout, which is used to
update the MCTS tree statistics. A state object is constructed
and maintained by application code to track the agent and
environment state. The application passes the state to the
planner to be used in the objective function for the MCTS
update stage. A message API allows Application processes
to inform their supervisors (planner or controller) about
application events. The Application process sends Success
messages tell the planner to terminate the current rollout,
calculate the plan score and update the MCTS tree. Fail-
ure messages tell the planner to terminate the rollout with a
score of 0, then update the tree. The Executive process re-
lays messages between the Planner and Controller, enabling
communication between them.

4 Demonstration Scenario: City Delivery
Figure 3 shows a rideshare scenario. The agent picks up
and delivers passengers in a city with obstacles, one-way
streets and moving traffic. There are also 2 highways which
cross over city streets which avoid traffic and move faster
than streets. One-way streets run North and South every
other street. Triangles represent traffic on one-way streets
and point in the direction of movement. Traffic is distributed



Figure 4: Application setup and top level loop

based on a traffic probability parameter. When a car in traf-
fic drives off the board, it’s replaced by another car entering
the other end of the street, to maintain the traffic probability.
Obstacles (black squares) are distributed between one-way
streets based on an obstacle probability parameter.

The agent is the blue circle at cell (18,10). It receives re-
quests to pickup and deliver passengers at random locations,
and searches for paths to those locations. The first pickup
location is the green dot at (14,11) and the dropoff location
is the red dot at (4,6). Highways are shown as green dashed
boxes (eastbound highway on row 15 and westbound high-
way on row 5). Green squares are highway entrances and red
squares are exits. On streets, the agent can move one step in
any direction, which isn’t blocked by another car or an ob-
stacle, and is in-bounds. The agent checks sensors for traffic
when entering or crossing one-way streets and waits for it to
clear if necessary. The agent and traffic move 1 cell per tick,
except on the highway the agent moves 3 cells per tick.

Objective (plan score): The agent’s objective is to max-
imize profit. profit = revenue - cost. This is the plan score
calculated at the end of each rollout and used to update the
MCTS tree action-value table. revenue = sum of all deliv-
ery fees. The delivery fee equals 5 times the distance be-
tween the pickup and dropoff locations. cost = driveDistance
+ driveTime (for the whole day, including between deliver-
ies and going home). Drive time depends on traffic.

4.1 City Delivery Action Model
Figures 4, 5 and 6 show examples of the procedural action
model used in our demo. The application methods explained
below are highlighted in blue bold. Methods inherited from
Propel are in black bold. Procedural control constructs (like
while loops and conditionals), challenging to implement in
declarative models, are highlighted in red.

Figure 4 shows the setup method. First, two Python
methods are declared which achieve the goal pattern
atLocation. Then startPropel starts the processes
for integrated planning, learning and execution. This line
specifies: the entry point into the application (the app-
Method) is deliverUntilDone, the objective func-
tion to be called after each rollout is the Python method
updatePlanScore, and the rollout count is 100.
deliverUntilDone iteratively delivers 5 passen-

gers. After receiving the pickup and dropoff locations,

Figure 5: Two methods for going to a location

chooseTask is called to choose a method for going to
the pickup location. chooseTask is a choice point (non-
deterministic subroutine call) inherited from Propel. It will
choose one of the two methods previously declared for
going to a location. The agent can choose between (a)
taking the streets the whole way, or (b) taking a high-
way to cross town (avoiding one-way streets and traffic),
then taking streets for the last mile. choosetask pa-
rameters are a goal pattern (atLocation) and parame-
ter pickupLoc. After arriving at the pickup location, a
primitive action pickupCmd is called, where the customer
gets into the car. Then chooseTask is called again to
go to the dropoff location. After completing all 5 deliver-
ies, the agent calls chooseTask a final time to go home.
deliverUntilDone is executed once in the real world,
but simulated once per rollout by MCTS.

Figure 5 shows the two methods previously de-
clared to achieve the goal pattern atLocation.
streetsToLocation is the main subroutine that
generates choice points in our search space. It repeatedly
calls chooseValue to select a valid direction (not blocked
by an obstacle, and in-bounds), and then executes the prim-
itive action moveCmd, until it arrives at the goal location.
The choice points use a heuristic, sortByDistance,
which sorts choices to prefer moves that get closer to the
current goal. This heuristic defines a default policy which is
what the agent would do without the planner. It’s the agent’s
reactive competence. It’s also the first trajectory explored
by MCTS providing in a form of reaction first search (RFS).

Integrated Goal Reasoning and MCTS: Propel uses
Python’s context manager feature to manage a goal stack.
Goals are used to control MCTS rollout depth and to provide
goal-aware behavior. streetsToLocation starts by cre-
ating a Goal context. The with statement creates a context
(code block) for a goal object, similar to the way Python’s
with open(file) works. When the with block is
entered, a Goal specifying the goal location is created
and pushed onto a goalstack. chooseValue’s heuristic,
sortByDistance, calculates the resulting distance to the



Figure 6: moveCmd is a primitive action

goalLoc for each choice. When streetsToLocation
exits, the goal context also ends. This triggers the Goal
context manager to pop the goal the from the goalstack
and to send a success message from the application to the
planner which includes the current state (agent and car
locations). The planner then terminates the rollout, calls the
objective method updatePlanScore to calculate the
plan score for that rollout, and updates the MCTS tree with
the rollout score. This is a novel method for terminating
rollouts when intermediate goals are achieved (e.g., arriving
at a pickup location).

Loop detection: streetsToLocation implements
loop detection to terminate rollouts if the agent is driving in
circles. If the agent chose purely random directions, it would
never get to the goal, so this is necessary. As the tree grows,
UCT selects random choices and the agent may explore cir-
cuitous routes. To prune these plans, we calculate the ini-
tial distance between the current location and the goal, then
track of how many steps we’ve taken in the while loop. If the
agent moves more than 3 times the initial distance, then this
application method sends a failure message to the planner,
which terminates the rollout with a score of 0 .

The second method shown in Figure 5 illustrates Hierar-
chical Task Decomposition. highwayToLocation calls
streetsToLocation as a subroutine twice, first to go to
the highway entrance, and then again after exiting the high-
way to go “the final mile” to the goal location. After entering
the highway, driveHighwayToExit moves in the high-
way direction until it arrives at the exit. The agent moves 3
steps per tick on the highway, but only one step per tick on
streets. If the goal is strictly North or South, then the high-
ways are ignored and streetsToLocation is called im-
mediately. This shows how Python subroutines are used to
model conditional hierarchical task decomposition.

Primitive actions (commands) interface with real world
sensors and actuators during execution, or with simulators
during planning. Figure 6 shows the main primitive ac-
tion in our demo, moveCmd, where reactive execution is
implemented. If traffic is blocking the entrance to a one-
way street, the agent cannot move until traffic clears. Traf-
fic is modeled differently by planning and execution. The
method isExecution is inherited by the Application, en-

abling it to behave differently for planning and execution.
isExecution is called to detect if moveCmd is running
in execution or planning mode. In execution mode, it uses
real-world sensors and actuators. When entering a one-way
street, the agent updates its sensor readings to see if traffic
is blocking the street. It waits for traffic to clear before exe-
cuting the move. During execution the actuators are called,
which consumes tickDuration seconds. In planning mode it
uses a stochastic estimate to determine if a car is blocking
entrance to the one-way street. trafficIsExpected re-
turns True based on the trafficProbability parameter.

A video demo of City Delivery with a rollout count of 3
can be found at: https://youtu.be/Sc0-1RXgNBA.

5 Python/MCTS Integration
Figure 7 shows how Python choice points are integrated
into MCTS. chooseTask implements a nondeterministic
subroutine call. It looks up the list of tasks declared for
a goal pattern (Figure 4), calls chooseValue to choose
one of the tasks with MCTS, then calls the chosen task.
chooseValue implements the core of Python/MCTS in-
tegration and also and the interleaved planning and ex-
ecution. chooseValue is a generator function which
yields one next choice on each call. chooseTask and
chooseValue always run in an Application level process.

When chooseValue is called in execution mode, the
Application sends a planRequest message to the Controller,
then waits for Planner to return a choice. The Executive
relays that message to the Planner, which initiates a new
round of MCTS. When chooseValue is called in plan-
ning mode, it steps through the MCTS stages Select, Ex-
pand and Simulate (Figure 1). The update stage occurs later
when rollouts are terminated. After the planner completes
all rollouts, it returns the choice which led to the most vis-
ited child of the tree root. The Planner sends a planner-
Choice message to the Executive containing the planner’s
choice for the next move to execute (Figure 2). The Execu-
tive relays that message to the Controller, which relays it to
the Application process that was waiting for this response.
The paused application resumes execution using the Plan-
ner’s choice, then continues execution until it reaches an-
other choice point, which starts the cycle again with a new
plan request. chooseValue takes an optional heuristic pa-
rameter to sort the choices. If no heuristic is specified, then
choices are chosen randomly.

MCTS Extensions: Integrating MCTS with our procedu-
ral action model required two new MCTS stages: execution-
Replay, and planReplay. Each rollout starts at the beginning
of deliverUntilDone, but the current plan request may
be for a choice point buried deep in iteration context (it may
be halfway through the 3rd delivery). These new stages are
used to wind up the Planner’s computational context from
the start of the method to the current choice point.

executionReplay is used to wind up Planner’s program
control stack for new MCTS tree at the beginning of each
planRequest. When the Planner receives a new planRequest,
the MCTS stage is initialized to executionReplay, so the new
MCTS tree can catch up to the procedural state of execution.
planRequest messages include a list of execution choices



Figure 7: chooseTask and chooseValue implement
the Python/MCTS API

which are the previously executed choices, for the planner
to trace (replay) the controller’s choices up to the current
choice point before moving to the select stage.

planReplay is required to recreate the choices from the
tree root to the selected leaf. When the MCTS select stage
chooses a node which is not the root, the stage is set to
planReplay. The plan choices from root to the selected leaf
are collected, and replayed before moving to expand stage.
These stages were necessary but inefficient. Future work will
explore more efficient methods.

Rollouts are terminated (a) when the planner receives a
success or failure message from the application, or (b) when
the Application code exits, or (c) when an optional time-
out occurs, or (d) when the application code throws an un-
caught exception. Success messages are sent automatically
when a goal is popped from the goalstack (when a with
Goal code block exits). When the planner receives a suc-
cess message, it terminates the rollout, calculates the plan
score, and updates the MCTS tree (the action-value table).
Applications can also send failure messages whenever they
detect a state which is not worth pursuing. When a rollout
fails, the the tree (action-value table) is updated with a plan
score of 0. Software exceptions in the application process
are caught by the planner and treated as if a failure message
was received.

6 Earth Observing Satellite Application
The core integration of MCTS into chooseValue (Figure
7) was initially developed to solve a performance problem
in a NASA application. D-SHIELD aims to improve mod-

Figure 8: The Choice File defines discrete decision variables

Figure 9: Sequential decision procedure with choice points

els of soil moisture and wildfire danger (Levinson et al.,
2022; 2021). Like the City Delivery application, D-SHIELD
includes chooseValue statements embedded in Python.
Previously, we used a search engine which maintained a
complete search space of all explored states to support back-
tracking, but this failed to scale beyond small data sets. Re-
placing that search engine with parallel MCTS resolved that
prior performance problem, because MCTS only maintains
state for a small subset of the search space nodes.

D-SHIELD now uses both nondeterministic Python and
MCTS, but there is no plan execution and there are no ex-
ogenous events. It generates a full plan rather than planning
one step at a time. Thus, this degenerate use of MCTS was
not suitable to demonstrate integrated planning and execu-
tion, which is typical of both MCTS and Propel. Detailed
discussion of D-SHIELD is outside the scope of this paper,
but we summarize it here as a second example of how MCTS
and nondeterministic Python are integrated. D-SHIELD uses
only the Planner and Application processes shown in Fig-
ure 2. The underlying implementation of chooseValue
as shown in Figure 7 is the same in both D-SHIELD and the
City Driver applications.

This planner generates a coordinated 24-hour plan for a
swarm of 8 satellites, to select and observe ground targets
which maximize science model improvement, and to down-
link data when passing over ground stations. There are too
many targets to observe them all, and each target is asso-
ciated with a science value. Storage capacity is limited and
observations cannot be made when storage is full.

Figure 8 shows the primary planner input, the Choice File.
It specifies discrete decision variables with their domains,
defining the MCTS search space. For this application, each
variable specifies command choices for a given satellite at a
given time. It specifies that satellite 2 has a choice of observ-
ing a target or remaining idle at time 28, and satellite 3 has
a choice of downlinking data or remaining idle at time 42.

With 8 satellites and a 24-hour plan horizon, there are
92,283 binary choice points defined in the Choice File, when
a satellite faces a choice to (a) make an observation or re-
main idle, or (b) downlink data or remain idle. This means
the number of unique states in the search space of plans
is 292,283. For practical purposes, an infinite search space.
Our temporal granularity is 1 second, the duration of each
command, but we only create decision variables for times



Figure 10: D-SHIELD MCTS results

when there is a choice to make. The planner’s job is to max-
imize the aggregate science reward for the whole swarm,
by choosing to observe as many high-value targets as pos-
sible, without exceeding storage capacity constraints. Each
satellite can store only 60 images, so downlinking data is re-
quired to free up storage. Swarm coordination is achieved
by ensuring no duplicate observations.

Figure 9 shows the method createSwarmPlan which
produces a coordinated swarm plan. First, it reads the
Choice File, defining the decision variables which are
sorted chronologically, so decisions are made in chrono-
logical order. It repeatedly pops the next variable and calls
chooseValue with the variable’s choices. After each
choice, the state is updated to reflect data storage and en-
ergy changes. Finally, the method propagateChoice
uses forward checking (Levinson et al., 2022; Levinson et
al., 2021) to enforce constraints on future choice points. This
prunes future choices which are inconsistent with the cur-
rent choice. This is a very general framework. The choices
file may contain any set of discrete command choices, and
nearly any constraint can be enforced via forward checking
in the method propagateChoice.

D-SHIELD uses Root Parallelization, where parallel pro-
cesses manage independent MCTS trees (Steinmetz and
Gini, 2021). The best plan (highest objective) among all roll-
outs from all parallel MCTS tree searches is selected. This
differs from the standard MCTS method of selecting the sin-
gle next action which was visited on the most rollouts. Fu-
ture work will integrate MCTS paralellization into Propel’s
more general interleaved planning and execution context.

7 Evaluation
All experiments ran on a 2023 MacBook Pro, M2 Pro chip,
32 GB, with 12 CPU cores, using Python 3.8.

Figure 10 summarizes our D-SHIELD MCTS results,
showing how the objective score improves with more roll-
outs. The roullout count equals the number of MCTS nodes
tree, equals the number of RL training samples. Figure 11
shows our Parallel MCTS results, comparing the time and
objective for doing a total of 10,000 rollouts with 1 vs. 10
vs. 20 parallel processes. This shows good speed improve-
ment up to 10 processes (∼ the number of CPUs on the lap-

Figure 11: D-SHIELD Parallel MCTS results

top). However, the objective decreases with more processes
because each MCTS tree has fewer training examples. This
demonstrates the benefit of learning. The objective mono-
tonically decreases as the number training cases (rollouts)
decreases.

Figures 12 through 15 show results from the City Deliv-
ery application. All experiments use this same configuration:
Obstacle Probability = 20 % means when the state is initial-
ized, there is a 20% probability that an obstacle is in any
given location. Traffic Probability = 50 % means when the
state is initialized, there is a 50 % probability of a car in any
given location on the one-way streets. Traffic Probability is
also used during planning to estimate the probability of a
traffic delay entering one-way streets. There is no variance
because we use a random seed so test results are repeatable
(with a single MCTS process).

The Baseline scenario follows the greedy default policy,
but this greedy policy limits the diversity of MCTS training
samples. Using random choices provides a wider range of
training experiences for MCTS but it is not practical in this
application. The agent can drive in circles without making
any progress towards the goal location unless a heuristic bi-
ases direction choices towards the goal.

Figure 12 shows how planning time scales linearly with
rollout count. It takes 51 minutes to do 100 rollouts, and 508
minutes for 1000 rollouts. This confirms that MCTS solved
our most immediate motivating goal, to fix the performance
problem with the prior version of Propel which scaled expo-
nentially. Planning time scales linearly with rollouts because
it takes constant time to simulate deliverUntilDone.
We saw similar linear scaling with D-SHIELD.

Figure 13 shows how the plan score depends on rollout
count. This is the score for moveCmds which were executed
(not simulated plan steps). The baseline case (a single roll-
out) produces a negative plan score: -11. The cost (drive time
+ distance) exceeded the revenue from deliveries. With only
one rollout, the agent strictly follows the same greedy de-
fault policy it would execute without the planner. This is the
agent’s reactive competence, what it would do if there was
no planner to call for advice. Figure 12 shows a quick rise
from the negative baseline to a high score of 71 after 100
rollouts, and then a dip before plateauing at 63.



Figure 12: Planning time scales linearly with Rollout count

Figure 13: Plan score vs. Rollout count

Figure 14 shows the score’s cost components: drive time
and distance. These are the times and distances for moves
which were executed (not planned moves). Drive distance
monotonically decreases with more rollouts. However drive
time increases after 300 rolls. Our hypothesis is drive time
does not monotonically improve because the stochastic traf-
fic estimate diverges from the execution environment. It usu-
ally takes 1 tick to move 1 step, but traffic and highway travel
change that. Time may be more than distance due to traffic,
or less than distance because the highway is faster. The base-
line case (1 rollout) has drive time (183), less than distance
(198). This means the default policy used the highway, but
still drove farther than other cases.

8 Conclusion
Contributions include two new novel MCTS stages (execu-
tionReplay and planReplay) and novel rollout termination
methods (popping a goalstack when a Goal code block exits,
and when uncaught software exceptions occur). We are un-
aware of other work using code blocks to scope rollout depth
and terminate rollouts when intermediate goals are achieved.

Figure 15 returns to our long-term motivation. Why do
we want a procedural action model shared by planning and
execution? The answer is: to study complex trades between
planning time and execution time, like that shown in Fig-
ure 15. This is difficult to study in hybrid systems with rigid
boundaries between planning and execution action models.
These experiments require a fluid boundary, where the con-

Figure 14: Drive time and distance vs. Rollout count

Figure 15: Total time = Planning Time + Execution Time

troller has a default policy (reactive competence) to rely on,
but can also call the planner in an anytime manner to ver-
ify the default policy works in the current situation, and to
possibly improve the policy to better fit the situation.

Execution time is the time required to execute all plan
steps (all moveCmds). Each step takes an amount of time
called the tick duration. ExecutionT ime = driveT ime ∗
tickDuration. Drive time is the number of ticks in the exe-
cuted plan. Tick duration is a parameter which specifies how
long physical actions take to execute in the real world.

In Figure 15, tick duration is set to 1 minute instead of
the default 0.1 seconds. Planning time is independent from
the tick duration. The baseline case takes 183 minutes to
execute because drive time = 183 ticks and tickDuration =
1 min. Plus another 2 mins of planning time to simulate it
with a single rollout, for a total time = 185 mins. After 25
rollouts (13 minutes of planning), that total time decreases
to 166 mins (19 minutes less than baseline). Additional time
spent planning only increases that total time, although it re-
mains less than baseline case until about 60 rollouts. Figure
15 shows planning can provide a net benefit. What do these
trades look like for different applications? These are broader
research questions that motivate this work.

9 Acknowledgments
D-SHIELD is supported by NASA’s Earth Science Tech-
nology Office through the Advanced Information Systems
Technology and the FireSense Technology programs.



References
Brooks, R (1991), “Intelligence Without Reason”, in Pro-

ceedings of the 1991 International Joint Conference on Ar-
tificial Intelligence, pp. 569–595.

Cashmore, M., Fox, M., Long, D., Magazzeni, D., Rid-
der, B., Carrera, A., Palomeras, N., Hurtos, N., Carreras, M..
2015. Rosplan: Planning in the robot operating system. Pro-
ceedings International Conference on Automated Planning
and Scheduling, ICAPS. 2015.

Coulom, R. 2006. Efficient Selectivity and Backup Oper-
ators in Monte-Carlo Tree Search. 5th International Confer-
ence on Computer and Games, May 2006, Turin, Italy.

Drummond, M., Bresina, J., Swanson, K., Levinson, R.
1993. Reaction-First Search: Incremental Planning with
Guaranteed Performance Improvement. Proc. of IJCAI-93.
Chambrey, France.

Ghallab, M., Nau, D., Traverso, P. 2016. Automated Plan-
ning and Acting. Cambridge University Press.

Ingrand, F, Chatilla, R. Alami, R, Rober, F. 1996. PRS: a
high level supervision and control language for autonomous
mobile robots. In IEEE Int’l Conf. on Robotics and Automa-
tion.

Kim P., Williams B., Abramson M., 2001. Executing Re-
active, Model-based Programs through Graph-based Tempo-
ral Planning. IJCAI ’01. AAAI Press, Menlo Park, CA.

Kocsis, L., Szepesva ri, C. (2006). Bandit Based Monte-
Carlo Planning. In Fu rnkranz, J., Scheffer, T., Spiliopoulou,
M. (Eds.), Proceedings of the Seventeenth European Con-
ference on Machine Learning, Vol. 4212 of Lecture Notes
in Computer Science, pp. 282–293, Berlin/Heidelberg, Ger-
many. Springer.

Levinson, R., Niemoeller, S., Nag, S., Ravindra, V.
(2022, June). Planning Satellite Swarm Measurements for
Earth Science Models: Comparing Constraint Processing
and MILP Methods. In Proceedings of the International
Conference on Automated Planning and Scheduling (Vol.
32, pp. 471-479).

Levinson, R., Nag, S., and Ravindra, V. 2021. Agile Satel-
lite Planning for Multi-payload Observations for Earth Sci-
ence, Proceedings of the International Workshop on Plan-
ning and Scheduling for Space (IWPSS). 2021.

Levinson, R., 2020. Integrated Planning, Execution and
Goal Reasoning for Python. ICAPS 2020, workshop on In-
tegrated Execution and Goal Reasoning (IntEx/GR).

Levinson R. 2005. Unified Planning and Execu-
tion for Autonomous Software Repair, ICAPS 2005,
Workshop on Plan Execution. https://icaps05.icaps-
conference.org/documents/ws-proceedings/ws7-
allpapers.pdf

Levinson, R. 1995. A General Programming Lan-
guage for Unified Planning and Control. Artificial In-
telligence, Vol. 76. Special Issue on Planning and
Scheduling. https://www.sciencedirect.com/science/ arti-
cle/pii/000437029400075C

Muscettola, N., G. A. Dorais, C. Fry, R. Levinson, and C.
Plaunt, 2002. “IDEA: Planning at the core of autonomous re-
active agents,” in Proc. of the 3rd International NASA Work-
shop on Planning and Scheduling for Space, 2002

Muscettola, N., Dorais G.., Fry,C., Levinson, R., Plaunt,
C. 2000. A Unified Approach to Model-Based Planning and
Execution. The 6th Int’l Conf. on Intelligent Autonomous
Systems. Venice, Italy.

Neufeld, X., 2020. Long-term planning and reac-
tive execution in highly dynamic environments, Dis-
sertation, Otto-von-Guericke-Universität Magdeburg.
http://dx.doi.org/10.25673/35675.

Neufeld, X., Mostaghim, S., Brand, S. (2018). A Hybrid
Approach to Planning and Execution in Dynamic Environ-
ments Through Hierarchical Task Networks and Behavior
Trees. Artificial Intelligence and Interactive Digital Enter-
tainment Conference.

Patra, S., Mason, J., Ghallab, M., Nau, D., Traverso, P.,
2021. Deliberative acting, planning and learning with hier-
archical operational models, Artificial Intelligence, Vol. 299

Patra, S., Ghallab, M., Nau, D., Traverso, P. 2019. Act-
ing and planning using operational models. In AAAI. AAAI
Press.

Steinmetz, E., Gini, M., 2021. “More Trees or Larger
Trees: Parallelizing Monte Carlo Tree Search,” in IEEE
Transactions on Games, vol. 13, no. 3, pp. 315-320, Sept.
2021, doi: 10.1109/TG.2020.3048331

Sutton, R., Barto, A., 2018. Reinforcement Learning: An
Introduction, second edition. MIT Press.

Vodopivec, T., Samothrakis, S., Ster, B., 2017. On Monte
Carlo Tree Search and Reinforcement Learning. Journal of
Artificial Intelligence Research, volume 60. pp 881-936.


