
Guiding Hierarchical Reinforcement Learning in Partially Observable
Environments with AI Planning

Brandon Rozek1, Junkyu Lee2, Harsha Kokel2, Michael Katz2, Shirin Sohrabi2

1Rensselaer Polytechnic Institute
2IBM Research AI

rozekb@rpi.edu, {Junkyu.Lee,harsha.kokel,michael.katz1}@ibm.com, ssohrab@us.ibm.com

Abstract

Partially observable Markov decision processes challenge re-
inforcement learning agents since observations provide an
limited view of the environment. This often requires an agent
to explore collecting observations to form the necessary state
information to complete the task. Even assuming knowledge
is monotonic, it is difficult to know when to stop exploration.
We integrate AI planning within hierarchical reinforcement
learning to aide in the exploration of partially observable en-
vironments. Given a set of unknown state variables, their po-
tential valuations, along with which abstract operators may
discover them, we create an abstract fully-observable non-
deterministic planning problem which captures the agent’s
abstract belief state. This decomposes the POMDP into a tree
of semi-POMDPs based on sensing outcomes. We evaluate
our agent’s performance on a MiniGrid domain and show
how guided exploration may improve agent performance.

Introduction
Observations from an agent’s sensors may be noisy or in-
complete. Within sequential decision making, this may be
represented as a partially observable Markov decision pro-
cess (POMDP). This has been studied, for the most part,
independently in the reinforcement learning (RL) and AI
planning (AIP) communities. Within the former, algorithms
approximate the Markovian state by introducing some form
of memory. For example, providing sequential observations
into function approximators (Singh, Jaakkola, and Jordan
1994) and using recurrent function approximators (Bakker
2001). Model-free methods are then used without prior
knowledge of transition dynamics to learn the task; mainly
at the cost of environment samples. In AI planning, transi-
tion dynamics and uncertainty has to be exhaustively mod-
eled in the initial belief state. Contingent planners then finds
exact solutions without the need of any samples (Bonet and
Geffner 2000). Crafting the initial belief state, however, is
often difficult due to complex interactions between unknown
state variables. Also, the model may be incomplete when
there are exogenous actions. In this paper, we aim to incor-
porate the advantages of AIP to alleviate the sample com-
plexity of HRL within partially observable environments by
decomposing the POMDP into a tree of semi-POMDPs.

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Environment where it’s unnecessary to enter the
top left room for the needed yellow key.

Assuming that uncertainty in the POMDP is monotonic,
one strategy is to explore the environment until the prob-
lem becomes fully-observable with respect to the agent’s
memory. This approach, however, has two issues: irrele-
vant unknown state variables with respect to the task leads
to wasted exploration; and environment deadends aren’t
guarded against. To alleviate these concerns, we make use of
AIP through a fully-observable non-deterministic (FOND)
model to guide discovery of relevant state variables for a
given goal. For example, consider an environment where an
agent navigates through rooms with locked doors as shown
in Figure 1. To reach the bottom-left goal, shown in green,
the agent needs the yellow key in the top-right room. An
agent motivated to fully explore would first enter all the
rooms and then enter the goal location. In contrast, an AIP
guided agent, would only explore until it finds the yellow
key. By capturing the goal, possible valuations of unknown
state variables, and some high-level transition dynamics, an
AIP model can provide a plan for discovering only the nec-
essary information, hence reducing exploration efforts.

Background
We address a sparse-reward, goal oriented POMDP M =
⟨S,A, T,R,O, s0, G⟩, with state space S, action space A,
transition function T : S × A × S 7→ [0, 1], sparse reward
function R : S × A × S 7→ R, observation space O, initial
state so, and goal condition G. The objective is to find the
optimal policy π∗ which maximizes the expected cumulative

discounted reward. POMDPs model time with actions only
persisting for a single discrete step, while semi-POMDPs in-
troduce temporally extended actions of various lengths. The
Options framework (Sutton, Precup, and Singh 1998) is a
HRL approach for modeling temporally extended actions
known as options. An option is defined as p = ⟨Ip, βp, πp⟩
with the set of option initiation states Ip, the set of option
termination states βp, and the option policy πp.

This work extends the Planning annotated Reinforcement
Learning (PaRL) framework defined in Lee et al. (2022). A
PaRL task E is the triple ⟨M,Π, L⟩ where M is a goal-
oriented MDP, Π is a SAS+ planning task, and L is a sur-
jective function mapping MDP states S to planning states
S ′. An operator o ∈ O within Π is the tuple ⟨pre,eff⟩
where the state variables within pre denote the precondi-
tions of o while eff are the state variables assigned after
o is applied. The prevail of an operator prv(o) is the sub-
set of variables in pre(o) that do not appear in eff(o).
The PaRL task is solved by decomposing the MDP M into
semi-MDPs through the planning task Π. For every opera-
tor o ∈ O within Π there is a corresponding operator option
Oo := ⟨Io, πo, βo⟩ with Io := {s ∈ S | L(s) |= pre(o)}
and βo := {s ∈ S | L(s) |= (prv(o) ∪ eff(o))}. Addi-
tionally, a single goal option is defined with the initiation set
IG = {s ∈ S | L(s) ⊨ G′} where G′ is the goal in Π, and
the option terminates when the MDP goal G is met.

Instead of using a classical SAS+ planning task, we model
the abstract belief state of the agent through a FOND plan-
ning model. A FOND planning task is defined as Π =
⟨V,O, s′0, s

′
∗⟩, with the finite set of state variables V , fi-

nite set of operators O, initial state s′0, and partial state
representing the goal s′∗. A planning state s′ is a partial
state over V . An operator o ∈ O consist of preconditions
(pre(o)) and a list of deterministic effects expressed as
eff(o) = oneof (eo,1 , . . . , eo,n). An operator o is applica-
ble at state s′t iff s′t |= pre(o). After executing o at state s′t,
the effect eo,i is non-determistically chosen for the next state
s′t+1. Each eo,i is a set of conditional effects ⟨c, l⟩ where
the effect-literals l are applied to a state if the conditional-
literals c are satisfied. That is, s′t |= c =⇒ s′t+1 |= l.

Related Work
Reward Machines (RMs) in Icarte et al. (2022) is a HRL
approach which represents the reward function as a finite
state automata (FSA). The FSA is then used to automati-
cally create subproblems for offline learning. A closer look
at RMs under partial observability was presented in Icarte
et al. (2023). Within it, they define a perfect reward machine
which is a RM whose state combined with an environment
observation turns the POMDP Markovian. When defining an
RM, the user needs to provide a labeling function L which
takes an observation and detects the presence of proposi-
tional symbols. Their algorithm takes L and traces from the
environment to automatically find a RM which captures the
necessary (but not sufficient) conditions for being perfect if
one exists. In our work, the user provides high-level transi-
tion dynamics via a FOND model. This defines the condi-
tions in which operators are applicable, and the effects of
executing operators on an abstract planning state. While our

approach does not guarantee a memoryless decomposition,
we do not place any additional restrictions on the FOND
model nor require samples to learn an ideal representation.

Similar to our work, Gordon, Fox, and Farhadi (2019)
provide a HRL approach that uses AIP. They have a hier-
archical meta-controller which chooses between direct con-
trollers such as the planner, stopper, explorer, navigator, and
scanner. While their work was tested under partially observ-
able environments, their planner controller treats the prob-
lem as fully-observable and relies on replanning which does
not account for deadends in the environment.

The following related work only consider the fully-
observable case. The Logical Options framework (Araki
et al. 2021) is a HRL framework that uses Linear Tempo-
ral Logic (LTL) to automatically create subproblems from
the MDP. It does this by partitioning the propositions within
the LTL specification into subgoals, safety propositions, and
event propositions. The subgoals are then used to derive the
options. There is a strong line of research in goal-augmented
MDPs (Qiu, Mao, and Zhu 2023; Kantaros 2022; Kalagarla
et al. 2022) where the objective is to satisfy some LTL for-
mula at the goal condition with a high probability. Lastly,
other research using AIP within HRL under fully observ-
able settings include (Lyu et al. 2019; Illanes et al. 2020;
Yang et al. 2018; Kokel et al. 2023).

Approach
Adapting the PaRL framework to handle partial observabil-
ity, we define a PO-PaRL task. We’ll discuss how the user
encodes uncertainty within the AIP annotation, and from
that how options will be derived for use in HRL.

Modeling Uncertainty We do not need to model the en-
tire POMDP within the FOND planning model. Instead, we
seek to capture some high-level dynamics, the agents knowl-
edge on a set of relevant unknown state variables, and how
it might discover these variables valuation.

Contingent planning takes an incomplete initial state,
along with sensing operators which reveal a previously un-
known state variable, and produces a branching plan which
splits based on the outcome of sensing. A line of research
shows how to compile a contingent problem into a FOND
problem (Albore, Palacios, and Geffner 2009; Bonet and
Geffner 2011; Muise, Belle, and McIlraith 2014). In these
works, sensing outcomes are always assumed to succeed.
The agent is guaranteed to know the valuation of a previ-
ously unknown state variable. However in our work sens-
ing outcomes may fail as the planning model may be in-
complete with respect to the POMDP. Therefore, we present
an alternative encoding which uses the discovery set D
to augment deterministic operators with discovery effects.
These effects capture the potential non-deterministic assign-
ment of unknown state variables. For example, returning to
the maze environment in Figure 1, consider the operator
(move-room r1 r2). When an agent moves between
rooms, it may discover in the new room that (1) a yellow key
exists, (2) a purple key exists, or (3) nothing. These potential
discoveries are then encoded as non-deterministic effects for
the augmented operator.

The intuition behind using a FOND planning model is
that the agent’s knowledge of unknown state variables are
fully observable. In other words, the agent knows what it
does not know. One approach to encoding an agent’s knowl-
edge of a state variable’s v assignment to l is to create two
new ground atomic formulae Kvl and K¬vl which repre-
sents whether the agent knows that the assignment to l is
true or false respectively. For simplicity, we rely on an alter-
nate encoding. For each variable v ∈ V , we say that it’s
assignment vl is true in the initial abstract belief state if
s′0 |= vl. Otherwise it’s assignment is either false or un-
known. To disambiguate between false and unknown, we
make use of discovery predicates. These special predicates
are defined for every unknown state variable. The discov-
ery predicate for a given state variable is marked as true
if the agent has discovered the valuation of that state vari-
able. For example, let’s consider the color of the key k1.
In our example this is initially unknown, so the discov-
ery predicate (discovered-color k1) is created and within
the initial state s′0 |= ¬(discovered-color k1). Addition-
ally given the potential colors of yellow and purple, s′0 |=
¬(color k1 yellow) ∧ ¬(color k1 purple). Now let’s
say that the agent discovers that k1 is yellow at the abstract
planning state s′t. Then, s′t |= (discovered-color k1) ∧
(color k1 yellow) ∧ ¬(color k1 purple).

Let us formalize the discovery set D as the set of discov-
ery tuples d = ⟨o, Vo, Fo⟩ where o is the operator to be aug-
mented, Vo is the tuple of discoverable state variables after
executing o, and Fo is the set of potential assignments for
each v ∈ Vo. As an example, consider o = (move-room
r1 r2), Vo = {k1-color, k1-loc}, and Fo = {(yellow, r2),
(purple, r2), (,)}. This means that after executing the o op-
erator, the agent may discover that k1 is yellow and at room
r2, k1 is purple and at room r2, or discover no new infor-
mation. From our discovery set D, we augment operators o
within the discovery tuples with discovery effects. Let eo,∗
be the deterministic effects of an operator o ∈ ⟨o, Vo, Fo⟩
before encoding discovery. In our example, after executing
(move-room r1 r2) the agent is no longer at r1, and is
at r2. That is, eo,∗ = {¬(at-agent r1), (at-agent r2)}.
The discovery augmented operator od ∈ Π will then
have eff (od) = oneof(eo,1, . . . , eo,n) where eo,∗ ⊂ eo,i.
Each discovery effect eo,i is a conditional effect ⟨c, l⟩
that corresponds to a set of potential valuations f within
Fo. The effect-literals l make true the valuations in f as
well as any discovery predicates corresponding to a non-
empty assignment of a state variable v ∈ Vo within f .
For example, let eo,1 be the discovery effect that captures
finding that k1 is yellow and is within room r2. Then,
l |= (at k1 r2) ∧ (color k1 yellow). Additionally, since
the k1’s location and color have a nonempty assignment
l |= (discovered-loc k1) ∧ (discovered-color k1).
The conditional-literals c must ensure the following two re-
strictions. First, a discovery tuple may only have one of
its corresponding discovery effects fired. This is to pre-
vent cyclic policies in an attempt to obtain a desired non-
deterministic effect. In practice, we create a new ground
atomic formula co,f which we add to the l-literals of ev-
ery eo,i and we require that co,f is false for all c-literals

(:action move-room
:parameters (?d - door ?r1 - room ?r2 - room)
:precondition (and (at-agent ?r1) (unlocked ?d) (

CONNECTED-ROOMS ?r1 ?r2) (LINK ?d ?r1 ?r2))
:effect (and

(not (at-agent ?r1)) (at-agent ?r2)
(forall (?k -key)
(when (not (entered-room ?r2))
(when (not (discovered-loc ?k))
(when (not (discovered-color ?k))
(oneof

; Yellow Key Present
(and (at ?k ?r2) (color ?k yellow) (discovered-loc ?k) (

discovered-color ?k) (entered-room ?r2))
; Purple Key Present
(and (at ?k ?r2) (color ?k purple) (discovered-loc ?k) (

discovered-color ?k) (entered-room ?r2))
; Key not present
(entered-room ?r2)

))))))

Figure 2: PDDL with discovery effects

in eo,i that have a non-empty assignment. For our example,
co,f = (entered-room r2). Secondly, every state variable
within l must be unknown in the current state when the con-
ditional effect fires to prevent inconsistencies in the planning
state. This means that the current planning state cannot make
true any discovery predicates corresponding to the state vari-
ables within Vo. The corresponding PDDL encoding for our
example is shown in Figure 2.

Definition 1 A PO-PaRL task E is the triple ⟨M,Π, L,D⟩
with POMDP M, FOND planning task Π, surjective func-
tion mapping history of observations to an abstract planning
state L, and discovery set D.

Deriving Options Given a FOND planning task Π =
⟨V,O, s′0, s

′
∗⟩ within the PO-PaRL task E = ⟨M,Π, L,D⟩,

we derive the options used within our HRL algorithm. Let
h be a history, a sequence of observations, in M. With a
slight abuse of notation, we use h ∈ S to represent the
state after said sequence of observations. As is the case in
PaRL, we define a goal option pg with the initiation set
Ig = {h ∈ S | L(h) |= s′∗}. The option pg termi-
nates when the POMDP goal G is reached. Additionally
for each operator o ∈ O, there is a corresponding opera-
tor option po = ⟨Io, πo, βo⟩. The initiation set is defined
as Io := {h ∈ S | L(h) |= pre(o)}. If the operator is
not augmented with discovery effects, then it will have a
deterministic effect. The termination set for such an oper-
ator is βo = {h ∈ S | L(h) |= (prv(o) ∪ eff(o))}.
On the other hand if an operator o is augmented with dis-
covery effects, then it will have a non-deterministic effect.
To account for this, our current approach is to terminate the
option when it encounters one of the deterministic effects
eo,i within oneof(eo,1, . . . , eo,n). That is, βo = {h ∈ S |
L(h) |=

∨
i(prv(o) ∪ eo,i)}. Recall that since the planning

model may be incomplete with respect to the POMDP that
sensing may fail. A discovery effect eo,f which captures this
will have effect-literals that lead to no new information gain.
This means that the effect-literals only contains co,f and the
literals from the original deterministic effect eo,∗. A conse-
quence is that an operator may terminate prematurely since
eo,f is a subset of all other discovery effects eo,i. For exam-

Figure 3: Environment where the agent may prematurely ter-
minate the option concluding that no unknown state vari-
ables were discovered.

ple in Figure 3, the agent walks into a room and a key exists
in that room; however, the key is not within it’s field of view.
With our current option termination approach, the agent will
conclude that there is not a key in that room, and proceed
onto the next option within the HRL algorithm.

There are two alternatives to the termination set of
discovery-augmented operator options that are worth inves-
tigating. The first is to include in the mapping function L a
mechanism that guarantees given a history of observations
that some state variable would not be exogenously discov-
ered. For example in our maze problem, we can introduce a
mapping which makes true (fully-explored ?r) so
that the option only terminates after the agent fully explores
the room. This may be difficult for the domain modeler to in-
clude depending on the environment. The second alternative
is to include some number of time steps t that must pass after
satisfying the other conditions in order for the option to ter-
minate. This does not guarantee that the agent wouldn’t later
exogenously discover the state variable, however, it may be
beneficial empirically.

Collecting Rollouts We start by calling a FOND planner
over Π within the PO-PARL task E. In our experiments, we
use the planner from Muise, McIlraith, and Belle (2014).
From the generated policy, we create an option for every
operator listed. We additionally create the goal option pg .
These options are trained online. If the agent is not already
within an option, then given the current history h, the ab-
stract belief state L(h) determines the next option. This re-
sults in four cases. (1) The FOND planner fails to generate
an abstract policy. This may be due to observability dead-
ends which arise from incomplete discovery models or pre-
mature option termination. From here, a random primitive
action a ∈ A is selected. (2) The planning goal is satisfied
from the current abstract belief state. From here, the goal op-
tion pg is initiated. (3) The current abstract belief state has
a corresponding operator po within the FOND policy. This
initiates the option po. (4) The current abstract belief state
is not captured within the FOND policy. This may be due
to state variables being exogenously discovered. From here,
we call the FOND planner setting the initial belief state to
the current abstract belief state.

Within an option, each step outside of option termination

Figure 4: Success rate (y-axis) over training samples (x-axis)
for HFondPlan, PPO, A2C (top to bottom)

has zero reward. When an option terminates, if the option
is pg , then the reward is the environment reward. Otherwise,
the terminating reward includes a positive reward modulated
by the number of steps taken in addition to a negative reward
if the prevail isn’t maintained. We store the transitions from
each option in their corresponding buffers for use in training
and repeat until the size matches the rollout length.

Preliminary Evaluations and Conclusion
We evaluate our agent HFondPlan on an instance of the Min-
iGrid environment shown in Figure 1. The agent only sees
a 3x3 window ahead of it and the key locations and colors
are initially unknown. We use the stable-baselines3 library
by Raffin et al. (2021) as the basis for HFondPlan in which
the underlying PPO implementation is used to train each of
the options. We also use the reinforcement learning agents
PPO and A2C from the library for our empirical evaluation
while keeping the default hyperparameters for each. For all
agents, we pass in a stack of the last ten observations and set
the horizon H to 2048. For our agent, we provide a −0.9 re-
ward on terminal option states which violate the prevail, and
a reward of 1−0.4∗ (t0/H) on option success with to being
the number of steps taken within that option. We generate
4000 environmental seeds for each run, with 3900 for train-
ing and 100 for evaluation. We perform ten runs with dif-
ferent starting seeds for each agent. Overall our preliminary
results shown in Figure 4 show an improved performance
with the presence of a discovery model.

In this paper we presented the PO-PaRL framework, an
augmentation of the PaRL framework that handles partially
observable tasks. We discussed how the discovery set D cre-
ates a FOND planning task from a set of deterministic opera-
tors, and how our approach can also model incomplete sens-
ing. Future work includes further investigations into han-
dling sensing failures. That is, other alternatives to option
termination, and what policy an agent should follow when it
hits an observability deadend.

References
Albore, A.; Palacios, H.; and Geffner, H. 2009. A
Translation-Based Approach to Contingent Planning. In
Boutilier, C., ed., IJCAI 2009, Proceedings of the 21st

International Joint Conference on Artificial Intelligence,
Pasadena, California, USA, July 11-17, 2009, 1623–1628.
Araki, B.; Li, X.; Vodrahalli, K.; DeCastro, J. A.; Fry, M. J.;
and Rus, D. 2021. The Logical Options Framework. In
Meila, M.; and Zhang, T., eds., Proceedings of the 38th In-
ternational Conference on Machine Learning, ICML 2021,
18-24 July 2021, Virtual Event, volume 139 of Proceedings
of Machine Learning Research, 307–317. PMLR.
Bakker, B. 2001. Reinforcement Learning with Long Short-
Term Memory. 1475–1482.
Bonet, B.; and Geffner, H. 2000. Planning with Incom-
plete Information as Heuristic Search in Belief Space. In
Chien, S. A.; Kambhampati, S.; and Knoblock, C. A., eds.,
Proceedings of the Fifth International Conference on Artifi-
cial Intelligence Planning Systems, Breckenridge, CO, USA,
April 14-17, 2000, 52–61. AAAI.
Bonet, B.; and Geffner, H. 2011. Planning under Partial
Observability by Classical Replanning: Theory and Exper-
iments. In Walsh, T., ed., IJCAI 2011, Proceedings of
the 22nd International Joint Conference on Artificial In-
telligence, Barcelona, Catalonia, Spain, July 16-22, 2011,
1936–1941. IJCAI/AAAI.
Chevalier-Boisvert, M.; Dai, B.; Towers, M.; Perez-Vicente,
R.; Willems, L.; Lahlou, S.; Pal, S.; Castro, P. S.; and Terry,
J. 2023. Minigrid & Miniworld: Modular & Customizable
Reinforcement Learning Environments for Goal-Oriented
Tasks.
Gordon, D.; Fox, D.; and Farhadi, A. 2019. What Should I
Do Now? Marrying Reinforcement Learning and Symbolic
Planning. CoRR, abs/1901.01492.
Icarte, R. T.; Klassen, T. Q.; Valenzano, R.; Castro, M. P.;
Waldie, E.; and McIlraith, S. A. 2023. Learning reward ma-
chines: A study in partially observable reinforcement learn-
ing. Artif. Intell., 323: 103989.
Icarte, R. T.; Klassen, T. Q.; Valenzano, R. A.; and McIlraith,
S. A. 2022. Reward Machines: Exploiting Reward Function
Structure in Reinforcement Learning. J. Artif. Intell. Res.,
73: 173–208.
Illanes, L.; Yan, X.; Icarte, R. T.; and McIlraith, S. A. 2020.
Symbolic Plans as High-Level Instructions for Reinforce-
ment Learning. In Beck, J. C.; Buffet, O.; Hoffmann, J.;
Karpas, E.; and Sohrabi, S., eds., Proceedings of the Thir-
tieth International Conference on Automated Planning and
Scheduling, Nancy, France, October 26-30, 2020, 540–550.
AAAI Press.
Kalagarla, K. C.; Dhruva, K.; Shen, D.; Jain, R.; Nayyar, A.;
and Nuzzo, P. 2022. Optimal control of partially observable
Markov decision processes with finite linear temporal logic
constraints. In Cussens, J.; and Zhang, K., eds., Proceedings
of the Thirty-Eighth Conference on Uncertainty in Artificial
Intelligence, volume 180 of Proceedings of Machine Learn-
ing Research, 949–958. PMLR.
Kantaros, Y. 2022. Accelerated Reinforcement Learning
for Temporal Logic Control Objectives. In IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems,
IROS 2022, Kyoto, Japan, October 23-27, 2022, 5077–5082.
IEEE.

Kokel, H.; Natarajan, S.; Ravindran, B.; and Tadepalli, P.
2023. RePReL: a unified framework for integrating rela-
tional planning and reinforcement learning for effective ab-
straction in discrete and continuous domains. Neural Com-
put. Appl., 35(23): 16877–16892.
Lee, J.; Katz, M.; Agravante, D. J.; Liu, M.; Tasse,
G. N.; Klinger, T.; and Sohrabi, S. 2022. Hierarchi-
cal Reinforcement Learning with AI Planning Models.
arXiv:2203.00669.
Lyu, D.; Yang, F.; Liu, B.; and Gustafson, S. 2019. SDRL:
Interpretable and Data-Efficient Deep Reinforcement Learn-
ing Leveraging Symbolic Planning. In The Thirty-Third
AAAI Conference on Artificial Intelligence, AAAI 2019, The
Thirty-First Innovative Applications of Artificial Intelligence
Conference, IAAI 2019, The Ninth AAAI Symposium on Ed-
ucational Advances in Artificial Intelligence, EAAI 2019,
Honolulu, Hawaii, USA, January 27 - February 1, 2019,
2970–2977. AAAI Press.
Muise, C.; McIlraith, S. A.; and Belle, V. 2014. Non-
Deterministic Planning With Conditional Effects. In The
24th International Conference on Automated Planning and
Scheduling.
Muise, C. J.; Belle, V.; and McIlraith, S. A. 2014.
Computing Contingent Plans via Fully Observable Non-
Deterministic Planning. In Brodley, C. E.; and Stone, P.,
eds., Proceedings of the Twenty-Eighth AAAI Conference
on Artificial Intelligence, July 27 -31, 2014, Québec City,
Québec, Canada, 2322–2329. AAAI Press.
Qiu, W.; Mao, W.; and Zhu, H. 2023. Instructing Goal-
Conditioned Reinforcement Learning Agents with Tempo-
ral Logic Objectives. In Oh, A.; Naumann, T.; Globerson,
A.; Saenko, K.; Hardt, M.; and Levine, S., eds., Advances
in Neural Information Processing Systems 36: Annual Con-
ference on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023.
Raffin, A.; Hill, A.; Gleave, A.; Kanervisto, A.; Ernestus,
M.; and Dormann, N. 2021. Stable-Baselines3: Reliable
Reinforcement Learning Implementations. J. Mach. Learn.
Res., 22: 268:1–268:8.
Singh, S. P.; Jaakkola, T. S.; and Jordan, M. I. 1994.
Learning Without State-Estimation in Partially Observable
Markovian Decision Processes. In Cohen, W. W.; and Hirsh,
H., eds., Machine Learning, Proceedings of the Eleventh In-
ternational Conference, Rutgers University, New Brunswick,
NJ, USA, July 10-13, 1994, 284–292. Morgan Kaufmann.
Sutton, R. S.; Precup, D.; and Singh, S. 1998. Intra-Option
Learning about Temporally Abstract Actions. In Shavlik,
J. W., ed., Proceedings of the Fifteenth International Confer-
ence on Machine Learning (ICML 1998), Madison, Wiscon-
sin, USA, July 24-27, 1998, 556–564. Morgan Kaufmann.
Yang, F.; Lyu, D.; Liu, B.; and Gustafson, S. 2018. PEORL:
Integrating Symbolic Planning and Hierarchical Reinforce-
ment Learning for Robust Decision-Making. In Lang, J., ed.,
Proceedings of the Twenty-Seventh International Joint Con-
ference on Artificial Intelligence, IJCAI 2018, July 13-19,
2018, Stockholm, Sweden, 4860–4866. ijcai.org.

Figure 5: MiniGrid Experiment Environment

Environment Description
We use the MiniGrid environment from Chevalier-Boisvert
et al. (2023) to design a task where there are four rooms in
a two by two configuration as shown in Figure 5. The ini-
tial state of the environment starts the agent off in the top
left room, and the goal of the POMDP is for the agent to
reach the green square in the bottom left room. In order to
achieve this objective, the agent needs to pick up the yellow
key and use it to open the yellow locked door. In the ini-
tial abstract belief state of the agent, the agent knows that
two keys exist, but not where each of the keys are located
or what their colors are. The observation at a given step is a
3x3 tile view where (from the perspective of the agent) the
tiles two cells ahead are visible as well as one tile on each
side of the agent. A tile is represented as ⟨T,C, S⟩ where
T is the type of object contained in that cell (if any), C is
the object’s color, and S is the MiniGrid specific environ-
ment state of the object at that cell. Hence for an individ-
ual observation, there are 27 dimensions. For each agent, we
stacked the last ten observations for training and evaluation
of the policy functions which give a total of 270 dimensions.
The discrete action space has seven possible actions: left,
right, forward, pickup, drop, toggle, and done. We randomly
sample the agent direction, position, key locations, door lo-
cations, and goal locations when creating the environment.
For our experiments, we generate 4000 environmental seeds,
3900 for training and 100 for testing.

Experimentation
We considered three agents: HFondPlan (ours), PPO, and
A2C using the stable-baselines3 library version 1.2.0. For
every agent, we ran ten experiments each with different start-
ing seeds. The agents in each experiment were evaluated ev-
ery 100,000 training samples testing whether the agent can
reach the goal. The success rate was averaged over a hundred
different testing environments. The agents were trained for
eight million training samples. We use the actor-critic neural
network architecture for each agent. The feature extraction
layer flattens the input, then passes it to the single hidden
layer of size 135, and the output layers compute the policy
and value estimates. We used the default hyperparameters
presented by stable-baselines3 and include them in Table 1
and 2 for posterity.

Rollout Length 9600
Batch Size 64

Discount Factor (γ) 0.99
Entropy Coeficient 0.001
Learning Rate (α) 3e-4

Epochs 10
λGAE 0.99

Clip Range 0.2
Value Coefficient 0.5
Max Grad Norm 0.5

Table 1: Hyperparameters for HFondPlan and PPO

Rollout Length 5
Discount Factor (γ) 0.99
Entropy Coefficient 0.001
Learning Rate (α) 7e-4

λGAE 1
Value Coefficient 0.5
Max Grad Norm 0.5

Table 2: Hyperparameters for A2C

