
Planning with Language Models Through The Lens of Efficiency

Michael Katz, Harsha Kokel, Kavitha Srinivas, Shirin Sohrabi
IBM Research

Abstract

We analyse the cost of using LLMs for planning and highlight
that recent trends are profoundly uneconomical. We propose a
significantly more efficient approach and argue for a respon-
sible use of compute resources; urging research community
to investigate LLM-based approaches that upholds efficiency.

Introduction
Recent work has addressed the issue of planning in LLMs,
spurred by their abilities in natural language tasks. The ap-
proaches vary widely from giving a planning problem to an
LLM and asking it to output an entire sequence of actions,
to asking an LLM to plan step by step, including backtrack-
ing. The purpose of our work is to examine the complex-
ity of existing LLM based approaches applied to planning
and search, because from a pragmatic perspective, the cost
of LLM evaluations is significant, either in terms of GPU
resources, or expensive API calls to hosted LLMs. In all ex-
plored cases, a proposed solution to the planning or search
problem is neither sound nor complete when LLMs are in-
volved, so the expense is an even bigger factor. Because
LLMs are also non-deterministic, a key part of finding a so-
lution involves different rollouts at each step, which further
add to the inefficiency. We include this in our analysis of
complexity, when it is built into the algorithm.

Having explored the existing approaches, we propose an al-
ternative, an approach that exploits the strengths of LLM,
while mitigates the weaknesses of the existing approaches,
doing so in an efficient manner. We propose using the
language models for deriving the symbolically represented
search components that allow for performing the search it-
self without calling LLMs. That way, the search space cor-
rectness can be checked before the search is performed, al-
lowing for soundness and completeness of the search algo-
rithms imply these properties of the overall solution.

Complexity of Planning using LLM
We look at various approaches proposed for planning using
LLMs and present their LM Evaluation Complexity; quantify
the number of LLM requests required by that approach.

IO The Input-Output (IO) prompting is the straightfor-
ward use of LLMs to generate an output for a given input.

Here, the model is usually evaluated once, generating an out-
put that may include a sequence of steps, making the com-
plexity of this approach O(1).

CoT The Chain-of-Thought approach (Wei et al. 2022)
prompts the model with a predefined example of a chain
of steps (thoughts) to resolve the question, in an attempt to
make the model generate similar chains in its output. Here,
still the model is evaluated once, so the complexity is O(1).

ReAct The ReAct approach (Yao et al. 2023b) aimed at
interleaving CoT with acting steps. Each acting step may
result in a separate evaluation of the language model. There-
fore, the number of evaluations is worst case linear in the
number of steps n in the expected output, O(n). This ap-
proach is akin to re-planning at each step; or treating LLM
as a policy, referenced for each state in the trajectory.

ReWOO ReWOO (Xu et al. 2023) aims at tackling the in-
efficiency in the number of LLM evaluations, requesting the
first model evaluation to plan all future steps, then each step
is executed without model evaluation if possible (and with,
if not), finalizing by a model evaluation with the concate-
nated output of previous states as the input. The best case
complexity is therefore O(1), with only two evaluations per-
formed. The worst case complexity is however still O(n),
since each of the n external tool calls can be to an LLM.

RAP Reasoning via Planning (RAP) approach performs a
search (e.g., MCTS) using the LLM for expansion (generate
successors) and for heuristic or reward prediction of a state
(Hao et al. 2023). Here, the complexity is the worst among
the approaches explored so far, being linear in the size of the
search space. MCTS is an incomplete algorithm, where the
search tree size can be controlled by bounding the number
of successors generated per state d, number of rollouts N ,
and their depth L. The overall complexity is O(N × d×L).

ToT Tree of Thoughts (Yao et al. 2023a) approach is simi-
lar to that of RAP, where the “thought generator” is expand-
ing a state by calling an LLM and the state evaluator is eval-
uating the k generated nodes. The evaluation can be done per
state (one call per state), or across states (one call across all
the current generated nodes). Then, a search is performed on
the search tree. The worse case overall complexity is O(N),
where N is the number of nodes generated by the search
algorithm. The authors use bounded incomplete versions of

the well-known BFS and DFS algorithms, with the depth
bound T , branching bound k, and beam size b, restricting
the complexity to O(b× k × T).

GoT Graph of Thoughts (GoT) (Besta et al. 2024) is sim-
ilar to tree of thought, except that it can connect the thought
nodes in the tree above into a graph for more flexible rep-
resentations through (a) aggregation of thoughts a, (b) im-
provement of a thought to refine it further i, (c) generation
of a thought based on existing ones g. In GoT, in addition,
repeat operation k defines how often a particular operation
is repeated. The complexity is similar to that of the ToT,
O(N), where N is the number of nodes generated which
are governed by k, a, i and g operations.

Policy generation with LLMs Another work takes a dif-
ferent approach. Focusing on problems where a general pol-
icy (or a generalized plan) that does not require any search
exist, the authors propose querying LLMs to provide a pol-
icy implementation in python directly (Silver et al. 2024).
The policy is then checked on a few held out problem in-
stances from the domain, providing a feedback on problems
that are not solved by the policy. The number of calls to the
LLM is therefore O(1) per domain, and the result can be
amortised among all the problem instances of that domain.

Proposed Approach
We argue for an efficient and responsible use of compute
resources, pleading for efficient use of LLMs. Instead of us-
ing an LLM at each expansion and evaluation, one could
use it to derive a mechanism that allows performing search
efficiently. This can be a symbolic model, like STRIPS or
PDDL, from which all the search components can be com-
puted, as is done by classical planners that perform heuristic
search (Helmert 2006). This can also be directly producing
the search components: a successor function, a goal test, and
even a heuristic function (Hart et al. 1968).

While the former has been explored in the literature (Guan
et al. 2023; Oswald et al. 2024), here we exemplify the latter
approach with the 24 game (Yao et al. 2023a). The 24 game
takes 4 integers as an input that can be manipulated through
the four most common arithmetic operations: addition, sub-
traction, multiplication, and division. The goal of the game
is to produce a formula (also representable by a sequence of
operations) that evaluates to 24, if one exists. As mentioned
before, Yao et al. (2023a) achieve that with an incomplete al-
gorithm that expands 15 and generates 45 nodes in the worst
case (k = 3, b = 5, and T = 3), and therefore calls the LLM
60 times per input. We propose instead to use the LLM to
produce the code for two functions: successor function and
goal test. We leave the heuristic function to future work, not-
ing that even without it, the search space of the 24 game is
rather small, up to 1 + 36 + 648 + 3888 = 4573 states.

Listing 1 describes an example correspondence with the
DeepSeek-Coder-33B model V20240126.0 (Guo
et al. 2024), in a chat mode. We have conducted the exper-
iment for the successor function 5 times, observing that the
model required 2 interactions on average. We see that, with

Listing 1: 24 game example
User: The 24 Game is a mathematical card game in which the objective is to find a way to manip-
ulate four integers so that the end result is 24. The game is played with a list of four numbers, and
the player must use all four numbers exactly once, using any combination of addition, subtraction,
multiplication, or division, to arrive at the number 24. If a state is defined by a list of numbers, how
are successor states defined?

Response: In the context of the 24 Game, a successor state is a state that can be reached from the
current state by applying one of the four basic arithmetic operations (addition, subtraction, multipli-
cation, division) to any two numbers in the current state.
Here is a Python implementation of the successor states definition:
import itertools
def successor_states(state):

Generate all possible pairs of numbers in the state
pairs = list(itertools.combinations(range(len(state)), 2))
successors = []

For each pair, apply each operation to generate a successor state
for pair in pairs:

i, j = pair
a, b = state[i], state[j]
Addition
successor=state[:i] + state[i+1:j] + state[j+1:] + [a+b]
successors.append(successor)
Subtraction (both orders)
successor=state[:i] + state[i+1:j] + state[j+1:] + [a-b]
successors.append(successor)
successor=state[:i] + state[i+1:j] + state[j+1:] + [b-a]
successors.append(successor)
Multiplication
successor=state[:i] + state[i+1:j] + state[j+1:] + [a*b]
successors.append(successor)
Division (both orders)
if b != 0:

successor=state[:i]+state[i+1:j] + state[j+1:] + [a/b]
successors.append(successor)

if a != 0:
successor=state[:i]+state[i+1:j] + state[j+1:] + [b/a]
successors.append(successor)

return successors

User: How do you test if a state is a goal state? Please implement in python

Response: In the context of the 24 Game, a goal state is a state where all four numbers have been
used exactly once and the result of the arithmetic operations is 24. To check if a state is a goal state,
we can simply check if the result of the arithmetic operations is 24.
Here’s a Python function that checks if a state is a goal state:
def is_goal_state(state):

Check if the result of the arithmetic operations is 24
return abs(state[0] - 24) < 0.001

User: If the number of elements in a state decrease with each successor state, how many elements
are in the goal state?

Response: If the number of elements in a state decreases with each successor state, the goal state will
have a single element, which is the result of the arithmetic operations. This means that the goal state
will have one number, and that number will be 24.
Here’s a Python function that checks if a state is a goal state:
def is_goal_state(state):

Check if the state is a list with a single element that is 24
return len(state) == 1 and abs(state[0] - 24) < 0.001

a minor help from a user, the model is able to produce cor-
rect successor and goal test functions. We further tested all 5
successor functions and goal test within a simple BFS imple-
mentation on a suite of 1362 instances from ToT. The total
time to solve all 1362 problems varies over these 5 cases
from 3.6s to 6.9s in our naive implementation, hinting that
some successor functions can be more efficient than other.
This is comparable to a single LLM evaluation time; which
is ≈ 7s for GPT-4 Chat (OpenAI Dev. Forum 2024). For
each of the 5 tested successor functions, BFS found a so-
lution in the 1361 cases where a solution exists and report
that no solution exists in the only one unsolvable case, while
ToT reports success rate of 45% and 75% (breadth 1 and
5, respectively) on a subset of 100 medium difficulty prob-
lems. The significant differences in the use of computational
resource and the performance measures clearly demonstrate
that LLMs can be effectively employed for planning pur-
poses without compromising on the efficiency or accuracy.
We urge the research community to focus their efforts on
such approaches.

References
Besta, M.; Blach, N.; Kubicek, A.; Gerstenberger, R.; Podstawski,
M.; Gianinazzi, L.; Gajda, J.; Lehmann, T.; Niewiadomski, H.; Ny-
czyk, P.; and Hoefler, T. 2024. Graph of Thoughts: Solving Elab-
orate Problems with Large Language Models. In AAAI, 17682–
17690. AAAI Press.
Guan, L.; Valmeekam, K.; Sreedharan, S.; and Kambhampati, S.
2023. Leveraging Pre-trained Large Language Models to Con-
struct and Utilize World Models for Model-based Task Planning.
In Proceedings of the Thirty-Seventh Annual Conference on Neu-
ral Information Processing Systems (NeurIPS 2023).
Guo, D.; Zhu, Q.; Yang, D.; Xie, Z.; Dong, K.; Zhang, W.; Chen,
G.; Bi, X.; Wu, Y.; Li, Y. K.; Luo, F.; Xiong, Y.; and Liang, W.
2024. DeepSeek-Coder: When the Large Language Model Meets
Programming – The Rise of Code Intelligence. arXiv:2401.14196
[cs.SE].
Hao, S.; Gu, Y.; Ma, H.; Hong, J.; Wang, Z.; Wang, D.; and Hu,
Z. 2023. Reasoning with Language Model is Planning with World
Model. In Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP 2023).
Hart, P. E.; et al. 1968. A Formal Basis for the Heuristic Deter-
mination of Minimum Cost Paths. IEEE Transactions on Systems
Science and Cybernetics, 4(2): 100–107.
Helmert, M. 2006. The Fast Downward Planning System. 26: 191–
246.
OpenAI Dev. Forum. 2024. Performance analysis of Assis-
tants versus Chat completion. https://community.openai.com/
t/performance-analysis-of-assistants-versus-chat-completion-
chat-completion-seems-somewhat-faster-for-complete-message-
generation-streaming-taken-into-account/628368.
Oswald, J.; Srinivas, K.; Kokel, H.; Lee, J.; Katz, M.; and Sohrabi,
S. 2024. Large Language Models as Planning Domain Genera-
tors. In Bernardini, S.; and Muise, C., eds., Proceedings of the
Thirty-Fourth International Conference on Automated Planning
and Scheduling (ICAPS 2024). AAAI Press.
Silver, T.; Dan, S.; Srinivas, K.; Tenenbaum, J.; Pack Kaelbling,
L.; and Katz, M. 2024. Generalized Planning in PDDL Domains
with Pretrained Large Language Models. In Dy, J.; and Natara-
jan, S., eds., Proceedings of the Thirty-Eighth AAAI Conference on
Artificial Intelligence (AAAI 2024). AAAI Press.
Wei, J.; Wang, X.; Schuurmans, D.; Bosma, M.; Ichter, B.; Xia,
F.; Chi, E. H.; Le, Q. V.; and Zhou, D. 2022. Chain-of-thought
prompting elicits reasoning in large language models. In Proceed-
ings of the Thirty-Sixth Annual Conference on Neural Information
Processing Systems (NeurIPS 2022), 24824–24837.
Xu, B.; Peng, Z.; Lei, B.; Mukherjee, S.; Liu, Y.; and Xu, D. 2023.
Rewoo: Decoupling reasoning from observations for efficient aug-
mented language models. arXiv:2305.18323 [cs.CL].
Yao, S.; Yu, D.; Zhao, J.; Shafran, I.; Griffiths, T.; Cao, Y.; and
Narasimhan, K. 2023a. Tree of thoughts: Deliberate problem solv-
ing with large language models. In Proceedings of the Thirty-
Seventh Annual Conference on Neural Information Processing Sys-
tems (NeurIPS 2023).
Yao, S.; Zhao, J.; Yu, D.; Du, N.; Shafran, I.; Narasimhan, K.;
and Cao, Y. 2023b. ReAct: Synergizing Reasoning and Acting in
Language Models. In Proceedings of the Eleventh International
Conference on Learning Representations (ICLR 2023). OpenRe-
view.net.

