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Abstract
This paper considers a trajectory planning problem for a
robot navigating complex terrains, which arises in applica-
tions ranging from autonomous mining vehicles to planetary
rovers. The problem seeks to find a low-cost dynamically fea-
sible trajectory for the robot. The problem is challenging as
it requires solving a non-linear optimization problem that of-
ten has many local minima due to the complex terrain. To
address the challenge, we propose a method called Pareto-
optimal Warm-started Trajectory Optimization (PWTO) that
attempts to combine the benefits of graph search and trajec-
tory optimization, two very different approaches to planning.
PWTO first creates a state lattice using simplified dynam-
ics of the robot and leverages a multi-objective graph search
method to obtain a set of paths. Each of the paths is then used
to warm-start a local trajectory optimization process, so that
different local minima are explored to find a globally low-cost
solution. In our tests, the solution cost computed by PWTO
is often less than half of the costs computed by the baselines.
In addition, we verify the trajectories generated by PWTO in
Gazebo simulation in complex terrains with both wheeled and
quadruped robots. The code of this paper is open sourced and
can be found at https://github.com/rap-lab-org/public pwto.

1 Introduction
Optimal trajectory planning in complex terrains is of fun-
damental importance in robotics. This problem arises in ap-
plications ranging from planetary rovers (Strader, Otsu, and
Agha-mohammadi 2020), exploration (Fan et al. 2021) to
autonomous mining (Berglund et al. 2009). The problem is
challenging as it requires solving a non-linear optimization
problem to find a low-cost trajectory in complex terrains
while ensuring dynamic-feasibility along the trajectory. A
common approach to solve this problem is to first generate
a geometric path free of kinematic and dynamic constraints,
and then use that path to warm-start a trajectory optimiza-
tion process which ultimately respects the dynamics of the
robot (Andreasson et al. 2015; Fan et al. 2021). This type
of approach has two major limitations: first, it can lead to a
highly sub-optimal solution that converges to a local mini-
mum; second, the local trajectory optimization may require
many iterations to converge due to the complicated objective
function and the dynamic constraints of the robot.
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Figure 1: Overview of proposed Pareto-optimal Warm-
started Trajectory Optimization method for robot trajec-
tory planning to navigate complex terrains. (a-b) A contin-
uous traversability cost field and its corresponding terrain
map. (c) A set of Pareto-optimal paths obtained from multi-
objective graph search in the state lattice. (d) Trajectories
reported by PWTO in a round-robin fashion. (e) Visualiza-
tion of the trajectories for robot to track on rough terrain.

This paper develops a new heuristic approach to han-
dle the problem by combining graph search and trajectory
optimization. By using concepts such as Pareto-optimality
from multi-objective optimization, we propose a method
called Pareto-optimal Warm-started Trajectory Optimization
(PWTO). PWTO (Fig. 1) first creates a state lattice embed-
ded in a low-dimensional state space by using simplified dy-
namics of the robot, and leverages a multi-objective graph
search method to obtain a set of Pareto-optimal paths in the
lattice.1 Each of the paths then seeds a local trajectory opti-

1A solution path is Pareto-optimal if there exists no other solu-
tion that will yield an improvement in one objective without caus-
ing a deterioration in at least one of the other objectives.



mization process, which explores different local minima and
is more likely to find a globally low-cost solution. PWTO
runs these optimization processes in a round-robin fashion
and reports the converged solution in an anytime fashion.
The converged trajectory solutions allow the robot to track
them and navigate through complex terrains.

We evaluate PWTO in various terrains, against baselines
where different types of initial guesses are used. Although
PWTO has no solution optimality guarantees in theory, the
results show that, in practice, PWTO often computes solu-
tions with less than half of the cost of the baselines, and is
able to avoid being trapped in an optimization process that
requires many iterations to converge. Our Gazebo simula-
tion verifies that the planned trajectory can be executed in
several different terrains.

2 Related Work
2.1 Terrain Traversability
Robot navigation in complex terrains is an important re-
search topic that involves traversability analysis, trajectory
planning, etc. Terrain traversability is a broad concept with
varying meaning in different applications (Papadakis 2013).
Building a traversability map is out of the scope of this arti-
cle, and we limit our focus to a trajectory planning problem
for a dynamic robot within a 2D cost field that indicates the
terrain traversal cost. Different from a discrete occupancy
grid that is commonly used to describe obstacles for con-
ventional mobile robot planning, the cost field in this work
is continuous, and often involves many local minima, which
makes the trajectory optimization a challenging problem.

2.2 Dynamically Feasible Trajectory Planning
Planning dynamically feasible trajectories for a mobile robot
has been widely studied. Sampling-based methods (e.g.
(Karaman and Frazzoli 2011)) can quickly return a dynami-
cally feasible trajectory and keep refining the solution qual-
ity thereafter. However, the solution obtained is often far
away from the optimum and the refinement may converge
slowly without domain-specific fine tuning. Search-based
methods such as (Pivtoraiko and Kelly 2011) can provide
high-quality solutions with global theoretic guarantees by
using a set of pre-computed dynamically feasible motion
primitives. However, to ensure the dynamic feasibility, a
high-dimensional search space that captures the full state of
the robot is often required, and search-based methods are
hard to scale to high-dimensional search spaces in general.
In contrast, optimization-based methods such as (Zucker
et al. 2013) scale well in high-dimensional state space by it-
eratively running local optimization but often rely on a good
initial guess to warm-start the optimization in order to by-
pass local minima.

Hybrid approaches that combine the benefits of sampling,
search and optimization have also been investigated, and
this paper focuses on methods that combine search and opti-
mization. There are mainly two strategies to combine search
and optimization. First, optimization can be embedded into
an A*-like search as a procedure to generate motion primi-
tives (i.e., a short dynamically feasible trajectory that con-

nect two adjacent states of A* search). Existing methods
that follow this strategy (such as (Natarajan, Choset, and
Likhachev 2021)) typically consider a binary representation
of the workspace (i.e., either free or occupied by obstacles)
and is thus different from the continuous cost field consid-
ered in this work. The second strategy is to use an A* search
to find a path in a graph that is embedded in some low-
dimensional space, and then use the path to seed the tra-
jectory optimization. Methods following this strategy (An-
dreasson et al. 2015; Fan et al. 2021) have been applied to
similar problems and our approach belongs to this category.

2.3 Multi-Objective Path Planning (MOPP)
This paper is also inspired by the recent advance in MOPP.
Given a graph where each edge is associated with a non-
negative cost vector (where each component of the vec-
tor corresponds to an objective), MOPP aims to find a set
of Pareto-optimal (also called non-dominated) paths con-
necting the given start and destination vertex in the graph.
MOPP has been studied for decades (Loui 1983) and re-
mains an active research area (Ren et al. 2022c; Hernández
et al. 2023; Ren et al. 2022a,b). Conventionally, this prob-
lem has been regarded as computationally expensive espe-
cially when there are many Pareto-optimal paths. The re-
cent advances in Multi-Objective A* (MOA*) search (Ren
et al. 2022c; Hernández et al. 2023) expedite the search and
make it possible to employ MOA* as a sub-routine to solve
more challenging planning problems. This work is an at-
tempt along this direction.

3 Problem Description
Let W ⊂ SE(2) denote a bounded workspace. In this
paper, we use three real numbers px, py, θ to represent
SE(2). Let C : W → R denote a twice differentiable
potential field defined over the workspace. Let ẋ(t) =
f(x(t),u(t)), t ≥ 0 denote the dynamics of the robot, where
x is a n-dimensional state (n ≥ 2) of the robot and u is a m-
dimensional control of the robot. For any state x, let xp ∈ W
denote the pose of the robot contained in state x.

For x(t),u(t), let

J(x(t),u(t), T ) =

∫ T

t=0

C (xp(t)) + u(t)TRu(t)dt (1)

denote the cost of the trajectory, where R is a positive semi-
definite matrix. Intuitively, J is the sum of both the cost in-
curred by the potential field and the control effort within the
horizon of the trajectory. This paper considers the following
trajectory optimization problem:

minx(t),u(t),T J(x(t),u(t), T ) (2)
s.t. ẋ(t) = f(x(t),u(t), T ), t ≥ 0 (3)

x(0) = xinit, x(T ) = xgoal, x(t) ∈ X , u(t) ∈ U (4)

where X and U denote the eligible set of states and controls
of the robot respectively at any time during the robot mo-
tion, xinit and xgoal denote the initial and goal states of the
robot respectively. In other words, the problem seeks to find
a dynamically feasible trajectory from xinit to xgoal, while
the trajectory cost J is minimized.



Algorithm 1: PWTO

1: (G, c⃗, vinit, vgoal)← GenerateMOPP()
2: Π∗← SolveMOPP(G, c⃗, vinit, vgoal)
3: Π′← Filter(Π∗)
4: P ← InitOptProcesses(Π′) ▷ A set of optimization processes
5: nepisode← 0, Cmin←∞
6: while nepisode < Nepisode do
7: for all p ∈ P do
8: run p for K iterations
9: if p converges then

10: remove p from P
11: if p.cost < Cmin then
12: Cmin ← p.cost
13: report p
14: nepisode ← nepisode + 1

15: return

4 Method
4.1 Overview
Our method PWTO is shown in Alg. 1, which consists of
two parts. Part I (Lines 1-3) relaxes the original trajectory
optimization problem into a multi-objective path planning
(MOPP) problem over a graph by simplifying the dynam-
ics of the robot. The multi-objective is formulated based
on the following observations: (i) the original optimization
problem (1) inherently involves optimizing multiple criteria,
such as the trajectory horizon T , the cost incurred by the po-
tential field, etc, where each criterion affects the objective
J ; (ii) by discretizing the state and control spaces using sim-
plified dynamics, a corresponding MOPP problem can be
formulated and efficiently solved by leveraging the recent
MOPP algorithms to obtain a set of Pareto-optimal paths.

Part II (Lines 4-14) uses each of the Pareto-optimal paths
computed in the first part to seed a corresponding trajec-
tory optimization process, which is hereafter referred to as
a process to simplify the presentation. Due to the compli-
cated cost field C, it is often hard to predict how many
iterations each process takes before convergence. If these
processes were optimized till convergence one after another
(i.e., in a sequential manner), the method could return the
first solution trajectory after many optimization iterations,
since the first process may take a huge number of iterations
to converge. To bypass this issue, PWTO chooses to opti-
mize these processes in a round-robin (i.e. episodic) manner,
where each process is optimized for K (i.e., a user-defined
constant) iterations within an episode. PWTO terminates af-
ter a maximum number of episodes (denoted as Nepisode)
defined by the user. This yields an anytime algorithm that
can potentially output the first solution quickly during the
computation, and as the runtime increases, more processes
may converge and the min-cost solution is reported during
the computation.

4.2 Part I: Multi-Objective Path Planning
State and Action Spaces The state space X of the robot
is 5-dimensional. Instead of directly running graph search
in X , PWTO first considers only the pose of the robot in
the workspace and ignores the linear and angular velocities

by searching in a low-dimensional state space. Specifically,
PWTO discretizes the workspace W into a state lattice G =
(V,E), where each vertex v ∈ V represents a possible pose
of the robot in SE(2), and each edge e ∈ E in the lattice
corresponds to a pre-computed motion primitive that moves
the robot from one vertex to another. To compute the motion
primitives, a simplified dynamics (i.e., first-order dynam-
ics) of the robot (ṗx, ṗy, θ̇) = (v cos(θ), v sin(θ), ω),u =
[v, ω]T is used. For each state x ∈ X , let v(x) denote
a unique nearest vertex to xp in the lattice using an arbi-
trary measure in SE(2). Ties can be broken by choosing
the vertex with the smallest coordinates. Additionally, let
vinit := v(xinit,p) and vgoal := v(xgoal,p).

Vector-cost Edges For each edge e ∈ E, a non-negative
cost vector c⃗(e) is assigned to represent the cost with respect
to different criteria. We consider the following two types of
cost for each edge. The first cost (i.e., c1(e)) is the traversal
time of the motion primitives. The second cost is incurred
by the cost field C, and for each edge e = (u, v), the sec-
ond cost is the integral of the corresponding motion prim-
itive trajectory in the cost field. Each edge e ∈ E is now
associated with a two-dimensional non-negative cost vector
c⃗(e) = (c1(e), c2(e)). Note that, other choices of edge costs
are also possible to be used within PWTO.

Non-nominated Paths Let π(v1, vℓ) = (v1, v2, . . . , vℓ)
denote a path of length ℓ, which is a sequence of vertices
in V where any pair of adjacent vertices (vk, vk+1), k =
1, 2, . . . ℓ − 1 are connected by an edge in E. The cost of
π(v1, vℓ) is the sum of edge costs that are present in the path
(i.e., c⃗(π(v1, vℓ)) :=

∑ℓ−1
k=1 c⃗(vk, vk+1)). To compare two

paths, their corresponding cost vectors are compared using
the dominance relation (Ehrgott 2005).

Definition 1 (Dominance) Given two vectors a⃗ and b⃗ of
length M , a⃗ dominates b⃗ (denoted as a⃗ ⪰ b⃗) if and only
if a⃗(m) ≤ b⃗(m), ∀m ∈ {1, 2, . . . ,M}, and a⃗(m) < b⃗(m),
∃m ∈ {1, 2, . . . ,M}.

Any two paths π1(u, v), π2(u, v) that connect two vertices
u, v ∈ V are non-dominated by each other, if the corre-
sponding cost vectors do not dominate each other. Among
all possible paths from vinit to vgoal, the set of non-
dominated paths is called the Pareto-optimal set, whose cor-
responding cost vectors are called the Pareto-optimal front.

MOA* Search Given the aforementioned state lattice G,
the edge cost vectors c⃗, and the initial and goal vertices
vinit, vgoal, the set of Pareto-optimal paths can be found
by using MOA* algorithms.2 This paper uses our prior En-
hanced Multi-Objective A* (EMOA*) (Ren et al. 2022c) al-
gorithm to find the entire Pareto-optimal front as well as a
corresponding set of cost-unique Pareto-optimal paths Π∗.

2The MOA* algorithm used in this work finds a set of “cost-
unique” Pareto-optimal paths. In other words, if two paths have the
same cost vector, only one of them is found. MOA* algorithms that
can find all Pareto-optimal paths can also be used within the PWTO
approach (Line 2 in Alg. 1).



Filtering Paths Using Hausdorff Distance The solution
path set Π∗ may contain many Pareto-optimal paths, and us-
ing all of them to seed the trajectory optimization can lead
to a large number of processes. Many paths in Π∗ have sim-
ilar shapes to each other, although they have different cost
vectors. We thus introduce another comparison method to
post-process (i.e., filter) Π∗ in order to obtain a subset of
paths that have different shapes from each other.

We treat each path π ∈ Π∗ as a set of points in R2 and
compare two paths using the Hausdorff distance (Schutze
et al. 2012). Here, Hausdorff distance is just one way to com-
pare the similarity of two paths, and other approaches (such
as homotopy classes) can also be used.

Definition 2 (Hausdorff Distance) Given any two paths π1

and π2 in G, the Hausdorff distance is

dH(π1, π2) := max{ sup
v1∈π1

dπ(v1, π2), sup
v2∈π2

dπ(v2, π1)},

where dπ(v, π) := infv′∈π d(v, v
′) and d(v, v′) is the Eu-

clidean distance between points v, v′. Intuitively, a large
dH(π1, π2) indicates that π1, π2 are distinct from each other.

To filter paths in Π∗, we introduce a hyper-parameter
dH,thres > 0, and iterate all pairs of distinct paths π1, π2 ∈
Π∗ to compute a subset of paths Π′ such that the Haus-
dorff distance between any pair of paths in Π′ is greater than
dH,thres (i.e., dH(πi, πj) > dH,thres∀πi, πj ∈ Π′, i ̸= j).
Note that Π′ is not unique, and here we find an arbitrary Π′.
Then, the filtered path set Π′ will be used to warm-start the
trajectory optimization. Here, parameter dH,thres is speci-
fied by the user before the computation starts, and a larger
dH,thres leads to a smaller set Π′.

4.3 Part II: Trajectory Optimization
The goal of the trajectory optimization is to find a low-cost
dynamically feasible trajectory near the initial guess. Since
the dynamics of the robot is simplified in the previous graph
search step, the returned paths in Π′ are dynamically infea-
sible in general with respect to the original problem. There-
fore, the trajectory optimization method is required to be
able to start the optimization from some dynamically infea-
sible initial guess, and we use the direct collocation (DirCol)
algorithm (Hargraves and Paris 1987; Tedrake 2022), a tra-
jectory optimization method that accepts dynamically infea-
sible initial guesses. Note that other methods that accept
dynamically infeasible initial guesses can also be used in
PWTO (line 8 in Alg. 1).

Direct Collocation We use each path in the filtered path
set Π′ to seed a trajectory optimization process and there are
total |Π′| number of processes (line 4 in Alg. 1). Specifi-
cally, we first convert a path π ∈ Π′ into a state-control tra-
jectory x0(t),u0(t) by (i) interpolating between each pair
of adjacent vertices in π and (ii) taking finite differences to
compute the additional terms in the states and controls (i.e.,
velocities and accelerations). Then, x0(t),u0(t) are used as
the initial guess to warm-start a DirCol process. In short,
DirCol parameterizes the state trajectory and control trajec-
tory as polynomials for each pair of adjacent time steps and
transcribes the original continuous problem into a non-linear

programming problem (NLP). Moreover, the robot dynam-
ics is enforced as equality constraints at the middle point
(i.e., collocation points) between each pair of adjacent time
steps. The resulting NLP is then solved by the existing NLP
solver. At convergence (when the change in J ′ is smaller
than a certain threshold), the resulting trajectory is dynam-
ically feasible and the objective function is (locally) mini-
mized.3

Reference Tracking Cost Due to the non-linearity of the
NLP and the dynamically infeasible initial guess, using
DirCol to directly optimize the J in (1) may lead to trajec-
tories that are trapped in local minima while going through
high cost regions. In other words, although the initial guess
x0(t),u0(t) avoids the high cost region in C, during the op-
timization of the NLP, to ensure the dynamic constraints, the
trajectory may deviate a lot from the initial guess, go through
high cost regions, and get trapped in a highly sub-optimal lo-
cal minimum.

To avoid this, we introduce an additional reference track-
ing cost (which is commonly used in optimal control to track
a given reference) into the objective function of the NLP.
The intuition is to make the optimized trajectory stay close
to the given initial guess, since the initial guess bypasses
high cost regions in the cost field C. Formally, let J ′ denote
the objective of the NLP problem, which differs from the
original objective function defined in the problem statement
by adding an additional term:

J ′ := J +

∫ T

t=0

(x(t)− x0(t))
TQ(x(t)− x0(t))dt (5)

where J is defined in (1), Q is a positive semi-definite ma-
trix, and the added term helps the trajectory to stay close to
the initial guess when the dynamic constraints are enforced
during the optimization.

Round-Robin Optimization PWTO runs the optimiza-
tion processes in a round-robin (i.e., episodic) fashion (lines
6-14 in Alg. 1). In each episode, the un-converged processes,
which are stored in a set P , are iterated and each process is
optimized for K iterations. In each episode, the converged
process is removed from P , while the un-converged pro-
cesses stays in P and will be optimized in the next episode.
The converged solutions are reported during the PWTO.
This episodic optimization allows PWTO to run in an any-
time fashion in a sense that: the first feasible solution can be
obtained quickly while better solutions can be obtained as
the runtime increases.

5 Numerical Results
5.1 Implementation and Test Settings
Implementation and Baselines We implement our
PWTO (Alg. 1) in Python, while leveraging a C++ im-
plementation of EMOA* (Ren et al. 2022c) (Line 2 in

3DirCol computes the gradient and the Hessian matrix of the
objective function with respect to the x and u. This paper thus re-
quires that the cost field C is twice differentiable in Sec. 3, so that
the Hessian matrix can be computed for DirCol optimization. This
twice differentiable requirement can be discarded if the trajectory
optimizer does not require Hessian.



Table 1: Comparison between the solution costs of 10 instances computed by PWTO and the baselines in various maps. Com-
parison is evaluated as the solution cost computed by the baseline divided by the solution cost computed by PWTO.

Index Cost Field
Parameters Line/PWTO Random/PWTO t-RRT/PWTO A*/PWTO Total

σm M >1 >2 Fail >1 >2 Fail >1 >2 Fail >1 >2 Fail >1 >2

1 0.002 15 1.00 0.22 0 0.78 0.33 0 1.00 0.44 0.33 1.00 0.78 0.33 0.94 0.44

2 0.012 20 0.67 0.33 0 0.67 0.22 0 1.00 0.89 0.56 1.00 0.67 0.44 0.83 0.53

3 0.001 30 0.60 0.40 0 0.70 0.50 0 0.90 0.70 0.50 1.00 0.90 0.40 0.80 0.63

4 0.0005 50 1.00 0.44 0 1.00 0.44 0 1.00 0.44 0.67 1.00 0.56 0.33 1.00 0.58

Alg. 1), and a Python implementation of the DirCol (Moore
and van den Bogert 2018) (Line 8 in Alg. 1). This DirCol
implementation uses IPOPT (Wächter and Biegler 2006)
as the NLP solver.4 All baselines warm-starts DirCol using
different initial guesses. The first baseline uses an initial
guess that is a straight line connecting the start and goal
position, and then linearly interpolates the intermediate
states (denoted as “LINE”). The second baseline uses a
randomly generated initial guess (denoted as “RAND”).
The third baseline first leverages A* to find a path in
a graph, and then uses the path to warm-start a DirCol
process (denoted as “A*”). Here, the A* search is con-
ducted in a graph G = (V,E) with edge costs defined as
c(e) := 0.5c1(e) + 0.5c2(e),∀e ∈ E, where c1, c2 are
defined in the Method section. The fourth baseline seeds
DirCol using the path found by T-RRT (Jaillet, Cortés, and
Siméon 2008), a sampling based algorithm that solves a
similar problem to this paper.

Dynamics of the Robot As aforementioned, in all tests,
we use a second-order uni-cycle model. We consider the
following constraints: (x, y) ∈ [0, 1] × [0, 1] (stay in the
workspace), v ∈ [0, 0.05], ω ∈ [−1.57, 1.57] (limits on
linear and angular velocities) and av ∈ [−0.1, 0.1], aw ∈
[−1, 1] (limits on linear and angular acceleration). For nu-
merical computation, the dynamics is integrated using the
forward Euler integration with a time interval of 0.1 sec-
onds.

Cost Field Generation The (px, py) coordinates of the
cost fields are limited to [0, 1]× [0, 1]. We randomly sample
M Gaussian distributions N (µm,Σm),m = 1, 2, . . . ,M ,
where µm is randomly sampled from [0, 1] × [0, 1], and
Σm := [σm, 0; 0, σm] with σm being a positive number ran-
domly sampled from a certain range that is elaborated later.
The cost field is defined as the sum of these M Gaussian dis-
tributions. We generate three different cost fields as shown

4The C++ implementation of EMOA* is at https://github.com/
wonderren/public emoa. The Python implementation of DirCol
is at https://opty.readthedocs.io/en/latest/. The IPOPT solver is at
https://coin-or.github.io/Ipopt/index.html.

in Table 1, where the second row shows the parameters. For
MOPP, we discretize the cost field uniformly into a lattice
of size 200 × 200 × 4 which correspond to the number of
discretized x, y, θ coordinates respectively.

Other Parameters For each cost field, we generate 10 in-
stances (i.e., start-goal pairs). Each baseline is allowed to run
at most 1000 optimization iterations per instance. PWTO
is allowed to run for 10 episodes per instance, where each
episode has 100 optimization iterations. To filter Pareto-
optimal paths, we set dH,thres = 8 for all the tests.

5.2 Trajectory Cost Comparison

We compare the cost of the solutions computed by our
PWTO and the baselines in various maps. Let cost ratio (CR)
denote the solution cost computed by a baseline divided by
the solution cost computed by PWTO. In other words, a CR
that is greater than one indicates PWTO computes a cheaper
solution than the baseline, and PWTO is more advantageous
over the baselines when CR is larger. We conduct numeri-
cal tests with 10 instances (sets of initial and goal state) for
the maps and compute CR only for those instances where
PWTO converges. For each map, there is at most one in-
stance where PWTO fails to converge within the limits of
optimization iterations. As shown in Table 1, PWTO often
computes cheaper trajectories than the baselines for most of
the instances. Additionally, the solution cost of PWTO is
less than half of the solution cost computed by the baselines
(i.e., CR> 2) for some instances.

We then create a more complicated cost field (Fig. 2 (c-
f)) with 10 start-goal pairs and plot the CR of each baseline
against PWTO in Fig. 2 (a). PWTO often computes cheaper
trajectories than the other approaches. We then pick an in-
stance where all approaches successfully find a solution. As
shown in Fig. 2 (b), due to the round-robin optimization,
PWTO can report the computed trajectories in an anytime
fashion, and avoid spending too many iterations in any one
specific optimization process.



Figure 2: Test results of 10 instances in a more complicated
cost field with σ = 0.0002,M = 133. The starting posi-
tion is indicated as red circle and the goal is indicated as red
star. (a) shows the CR of each baselines with failed instances
excluded. (b-f) show detailed information about an instance
where all approaches successfully solve. In (b), the horizon-
tal axis shows the number of episodes required by PWTO
to find each converged solution trajectory, and the vertical
axis shows the cost ratio of each solution over the cheapest
trajectory cost found by PWTO. (c-f) show the solution tra-
jectories returned by each approach.

5.3 Simulation for Mobile Robots
To verify the dynamic feasibility of the computed trajectory,
we use Gazebo and ROS to simulate the trajectory execution
process of the robot in complex terrains. We first generate
the Gazebo terrain using the gazebo world construction tool
provided in (Abbyasov et al. 2020), which takes in put of
a gray-scale image of the cost field. For visualization pur-
poses, we use the absolute value of the height of the terrain
to indicate the traversal cost. For example, in Fig. 3, flat land
indicates small traversal cost while dents or hills indicate
high traversal cost.5 Then we use the ROSbot (HUSARION)

5We acknowledge that roughness of the terrain is not directly
related to the height of the terrain. Here, we use height for easy
visualization.

Figure 3: Simulation and validation of the PWTO for the
trajectory planning of mobile robots. (a) shows all the trajec-
tories (yellow) reported during the PWTO computation, the
cheapest trajectory (green) that is used as the reference, and
the actual trajectory executed by the robot (red). (b) visu-
alizes the Gazebo simulation. With the closed-loop control,
the robot is able to follow the reference trajectory in com-
plex terrains.

Figure 4: Simulation and validation of the PWTO for a
quadruped robot. (a) shows all the paths (blue) and con-
verged trajectories (red) reported during the PWTO compu-
tation. (b) visualizes the Gazebo simulation of a quadruped
robot following the reference trajectory in complex terrains.

platform to test all the trajectories.

To address the motion disturbance in the Gazebo simula-
tion (e.g. caused by the friction between the wheel and the
ground), we implement a feedback control law as described
in (Kanayama et al. 1990). Specifically, during the execu-
tion, the controller iteratively obtains the actual position of
the robot from Gazebo and computes an error state as well as
the feedback control term ufb. Note that the planned (refer-
ence) trajectory by PWTO is a state-control trajectory which
includes the feedforward terms uff (i.e. the acceleration of
the robot at each time step) for execution. The resulting con-
trol command is u = uff + ufb, which is then bounded
by the control limit of the robot and then send to the robot
for execution. Fig. 3 visualizes the resulting trajectory using
the closed-loop control. We tested the dynamic feasibility
of the planned trajectory for the mobile under two different
terrains with different complexity. More video demonstra-
tion of trajectory following tests can be found in our multi-
media attachment. In short, the robot can follow the planned
trajectory in complex terrains and reach the goal position
successfully.



5.4 Simulation for Quadruped Robots
Finally, we evaluate PWTO with a more complex quadruped
robot. Here, we take a hierarchical approach, where the
center of mass of the quadruped robot is first planned by
PWTO, which finds a trajectory for the robot to follow in the
complex terrain. Then, to track the planned trajectory, we
used an open source controller CHAMP6, which achieves
highly dynamic locomotion utilizing pattern modulation and
impedance control (Lee et al. 2013). By leveraging the
CHAMP controller, we can directly sent the robot linear and
angular velocity (ṗ , ωb) as the command to the quadruped
robot. The foot placement and swing command will be out-
put by the CHAMP controller for low-level joint control.
The cost field here is similar to the aforementioned sum of
Gaussian distributions with M = 10 and σm = 0.003. The
results shows that the proposed PTWO can be applied to var-
ious robot platforms and generate dynamical feasible trajec-
tories for them to travel through the complex terrains. Fur-
ther video demonstrations can be found in the multi-media
attachment.

6 Conclusions and Future Work
This paper considers a trajectory planning problem for a
dynamic mobile robot in complex terrains. We propose a
heuristic method PWTO to solve the problem. PWTO lever-
ages multi-objective search techniques to seed multiple op-
timization processes, so that different local minima are ex-
plored to help find a globally low-cost trajectory. In the
meanwhile, PWTO runs these optimization processes in a
round-robin fashion and is able to report the converged so-
lution in an anytime fashion. Future work includes theoretic
proof on solution quality that guarantees PWTO to be able
to find trajectories with cheaper costs than the baselines.
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