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Abstract

In the real world, the execution of the actions planned for
an agent is never guaranteed to succeed, as they can fail in
a number of unexpected ways that are not explicitly captured
in the planning model. Based on these observations, we intro-
duce the task of finding plans for classical planning that are5

resilient to action execution failures. We refer to this problem
as Resilient Planning and to its solutions as K-resilient plans;
such plans guarantee that an agent will always be able to
reach its goals (possibly by replanning alternative sequences
of actions) as long as no more than K failures occur along10

the way. We also present RESPLAN, a new algorithm for Re-
silient Planning, and we compare its performance to methods
based on compiling Resilient Planning to Fully-Observable-
Non-Deterministic (FOND) planning.

Introduction15

A solution to a classical planning problem is a plan of ac-
tions that when executed from the problem initial state is
expected to reach a final state where the problem goal holds
(Geffner and Bonet 2013; Ghallab, Nau, and Traverso 2016).
Solution plans can be proven correct with respect to an ab-20

stract model of the world given in some planning formalism
(Howey, Long, and Fox 2004). However, because planning
is done at an abstract level, when actions do get executed in
the real world they can still fail in unexpected ways. These
unforeseen action failures may depend on a number of rea-25

sons, such as a deranging exogenous event, a malfunction
of the necessary equipment, the lack of a resource that was
assumed to be available, or an incomplete/incorrect abstract
model of the action preconditions. An example is an action
moving a vehicle between two connected locations across30

some road that, at execution time, cannot be performed be-
cause the connecting road is temporarily blocked by a car
accident or some (unknown) road maintenance. Another ex-
ample is a refuel action at a certain gas station that, during
plan execution, we discover to be not operational (e.g., for35

lack of gasoline or interruption of the ATM payment service)
only when we are at the gas station.

In the propositional setting of classical planning models,
these kind of action failures leave the current state unaltered,
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since none of the effects in the model of the failed action 40

occur. Moreover, anticipating such possible failures at plan-
ning time by means of more detailed planning models can
hardly capture all possible situations in which a planned ac-
tion is unexecutable, or can make the state/action models
much more complex (e.g., we need to model the status of 45

the ATM service at each gas station). On the other hand, one
could reasonably expect that a rational plan-based agent in-
curs into action failures at most a bounded number of times
along the way to reach its goal (e.g., we don’t encounter
many car accidents or non-operational gas stations during 50

the same trip.)
In automated planning, a typical way to handle action

failures is interleaving plan execution and replanning from
the state where a failure occurs (Ghallab, Nau, and Traverso
2016), possibly by repairing the current plan instead of re- 55

planning from scratch (e.g., (Babli, Sapena, and Onaindia
2023; Fox et al. 2006; Gerevini and Serina 2010; Yoon, Fern,
and Givan 2007a)). However, this online approach does not
always guarantee that the plan under execution can be fixed
achieving the original problem goal. For instance, consider 60

a robotic domain involving path planning on a map of loca-
tions modelled by a directed graph. A valid plan going from
the current location to the goal location involves executing
a path of moves on such a graph connecting the source and
target locations. Suppose that, at execution time, one of the 65

plan moves is blocked by some unforeseen event or obstacle,
leaving the robot at the same location. If from such a loca-
tion there is no alternative path to reach the target location,
then the original plan cannot be repaired.

In this paper, we propose a complementary method aimed 70

at generating plans that have repair guarantees in case ac-
tion failures will happen at execution time. We introduce the
task of finding solutions to classical planning that are re-
silient to action failures. We refer to this problem as Resilient
Planning and to its solution plans as K-resilient plans. Such 75

plans guarantee that an agent will always be able to reach
its goal (possibly by replanning online alternative sequences
of actions) as long as no more than K action failures occur
along the way to the goal. If more than K action failures oc-
cur when executing a K-resilient plan, any successive fail- 80

ure can still be handled by the execution-and-plan-repair ap-
proach but, at this point in the execution, without any guar-
antee that a state satisfying the problem goal can be reached.



While in general an action failure can be modeled in dif-
ferent ways, here we assume that it does not modify the cur-85

rent (abstract) state of the world. Moreover, in this work we
consider stronger resilience guarantees by imposing that if
an action fails, it cannot be re-applied again. We propose
a new algorithm for action-failure resilient planning, called
RESPLAN, that works under these assumptions. RESPLAN90

generates plans for classical (propositional) planning prob-
lems that are resilient to a bounded number of action ex-
ecution failures. The algorithm exploits a new notion of
bounded resilient states, and searches for solution plans that
are constrained to cross only such states.95

As we show in the paper, an instance of resilient planning
can be reformulated as a particular instance of fully observ-
able nondeterministic (FOND) planning (Cimatti et al. 2003;
Cimatti, Roveri, and Traverso 1998; Geffner and Bonet
2013). In this compilation, the effects of any action are ei-100

ther the set of all its nominal effects (i.e., those of the clas-
sical planning model) or the empty set (modeling the action
failure). In addition, the models of the states and action pre-
conditions/effects are revised using additional fluents to take
account of the assumption that at most K action failures can105

occur.
Resilient Planning resembles Fault Tolerant (FT) planning

(Domshlak 2013; Jensen, Veloso, and Bryant 2004), which
can be reformulated as another special variant of FOND
Planning. FT planning models and handles action failures110

differently from us, and our RESPLAN algorithm substan-
tially differs from existing techniques for FT planning.

We experimentally evaluate RESPLAN on a set of known
domains for classical planning, and we compare it with
a compilation-based approach using two state-of-the-art115

FOND planners (Mattmüller et al. 2010; Geffner and
Geffner 2018).

In the remainder of the paper, after a formal description of
Resilient Planning, we present our algorithm and the results
of the experimental evaluation. Then we discuss the related120

work in more detail and give the conclusions.

Background
A classical planning problem is a tuple Π = ⟨F,A, s0, G⟩
whose components are defined as follows. F is a finite set
of literals inducing a set S of states. A state s ∈ S is a125

subset of F . If an element f ∈ F is in a state s then f
is true in s; otherwise f is false in s by the closed world
assumption. s0 is the initial state. G ⊆ F is the problem goal
denoting the literals that should hold in any goal state. A is
a set of actions; each action a ∈ A is specified by the pair130

a = ⟨pre(a), eff(a)⟩ where pre(a) ⊆ F is the precondition
of a, and eff(a) the effect of a formed by subsets of positive
and negative literals over F , that are denoted with eff(a)+

and eff(a)−, respectively. An action a is applicable in state
s iff pre(a) ⊆ s, and we denote the set of actions applicable135

in state s with A(s). The application of an action a ∈ A(s)
in s generates a state s′ = s[a] such that, for every fluent
f ∈ F , f is in s′ iff f ∈ (s \ eff(a)−) ∪ eff(a)+.

A plan π is a sequence of actions in A, i.e., π =
(a1, . . . , an). Given a planning problem Π = ⟨F,A, s0, G⟩,140

τ = (s0, s1, · · · , sn) is the trajectory of states induced by

applying π in s0, i.e., si = si−1[ai] for i = 1, · · · , n. A plan
π = (a1, . . . , an) is a solution for Π = ⟨F,A, s0, G⟩ iff the
induced trajectory of states τ = (s0, s1, · · · , sn) is such that
for all i ∈ [1, n] it holds that pre(ai) ⊆ si−1 and G ⊆ sn. 145

FOND planning is an extension of classical planning
where an action can have multiple alternative effect, and the
state generated by its execution depends on the triggered ef-
fect. A solution to a FOND planning problem is a strong
(possibly cyclic) policy that guarantees reaching the goal no 150

matter the outcome of an action execution.

Planning for Resilient Solutions
Resilient planning aims at generating plans that are robust
up to a given number of failures during execution. The exe-
cution of a generated plan can fail due to the abstract model 155

used to compute the plan not fully capturing the dynamics
of the domain (e.g., incorrect or incomplete action precondi-
tions), outside interventions that impact on the possible ex-
ecution of an action, or simply because an action did not
have the intended outcome. Resilient planning describes the 160

world through a (classical) planning problem but explicitly
considers at planning time that actions can fail at execution
time. As discussed above, we abstract the failure and recov-
ery of actions by assuming that failures do not modify the
state of the world and cannot be reapplied in the same re- 165

silient planning episode.
Our formalisation of resilient planning and its solutions

rely on the following notion of resilient states.

Definition 1 (k-Resilient State). Let Π = ⟨F,A, s0, G⟩ be a
planning problem, S the state space induced by F , and k a 170

non-negative integer.

(i) A state s ∈ S is 0-resilient in Π iff there is a plan from
s that achieves G (i.e., ⟨F,A, s,G⟩ is solvable);

(ii) A state s ∈ S is k-resilient in Π if s |= G;
(iii) A state s ∈ S such that s ̸|= G is k-resilient in Π for 175

k ≥ 1 iff there exists an action a ∈ A(s) such that (1)
s[a] is k-resilient in Π and (2) s is (k − 1)-resilient in
⟨F,A \ {a}, s0, G⟩.

A state s is k-resilient in a planning problem ⟨F,A, s0, G⟩
if the goal G can be achieved from s even after k action 180

failures occur along the way of a plan from s to G. Def. 1
formalizes this notion by considering that the execution of
an action a applicable in s can either succeed or fail. Ac-
tion success is captured by Condition (1) of the case (iii),
stating that the successor state s[a] needs to be k-resilient. 185

Action failure in s is captured by Condition (2) of the case
(iii), requiring that s is (k − 1)-resilient in the same plan-
ning problem but without action a, since after the failure of
a we remain in state s and a should never be retried along
the way from s to G. Notice that condition (iii)-(1) of Def. 1 190

makes the definition recursive, and case (ii) guarantees that
the recursion ends in a state that is k resilient and entails the
problem goals.

Let us illustrate the notion of a resilient state through
the example of Figure 1. This figure presents a navigation 195

problem with seven locations, representing states, and three
types of connections, representing actions. The initial state
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Figure 1: Navigation problem with seven locations (squares)
and three types of connections: road (solid), railway
(dashed), and flight (dotted).

of the problem is location A and the goal is to reach loca-
tion G. Following Def. 1, we have that states A, B, D and
G are 2-resilient, states C and E are 1-resilient, and state F200

is 0-resilient. To see this we can reason backwards starting
from the goal state G, which is resilient for any value of k
by definition. For example, consider state F. We can use
train(F,G) to move to G but, if this action fails, there is
no other way to reach the goal which makes F a 0-resilient205

state. Next, let us consider state D. This state is 2-resilient
because we can move from D to G using car(D,G), if
car(D,G) fails we can use train(D,G) and finally, if
both car(D,G) and train(D,G) fail, we still can travel
through F.210

We can see that the definition of k-resilient state implies
that there exists a trajectory from the state to the goal where
all states are k-resilient. This observation takes us to our next
definition.
Definition 2 (k-Resilient Plan). Given a planning problem215

Π = ⟨F,A, s0, G⟩, a solution plan for Π that induces a state
trajectory (s0, s1, . . . , sn) is k-resilient for Π if, for all 0 ≤
i < n, it holds that si is k-resilient in Π.

By the previous definitions, a k-resilient plan π has
the property that, if during the execution of π any action220

a fails in a state s, it will still be possible to achieve
the problem goal from s by an alternative plan π′ that
does not use a and is resilient to k − 1 failures. In our
example of Figure 1, we have two 2-resilient plans.
Both plans follow the path A-B-D-G and only differ in225

whether we use car(D,G) or train(D,G) to move
from D to G. There are also several 1-resilient plans
like (plane(A,C),car(C,E),plane(E,G)) and
(car(A,B),car(B,C),car(C,D),train(D,G))
and, of course, any path from A to G corresponds to a230

0-resilient plan.
Definition 3 (Resilient Planning). Given a planning prob-
lem Π and an integer K ≥ 0, Resilient Planning is the com-
putational problem of finding a K-resilient plan for Π, if one
exists, and returning “unsolvable” otherwise.235

A resilient planning problem is a pair ⟨Π,K⟩ where Π is
a planning problem and K is an non-negative integer (clas-

sical planning is a special case of resilient planning with
K = 0). A solution for ⟨Π,K⟩ is a K-resilient plan for Π.

The next theorem states a property about the resilience 240

of the problem initial state that is exploited by our planning
algorithm presented in the next section.

Theorem 1. Let ⟨⟨F,A, s0, G⟩,K⟩ be a resilient planning
problem. State s0 is K-resilient for ⟨F,A, s0, G⟩ if and only
if there exists a solution for ⟨⟨F,A, s0, G⟩,K⟩. 245

Proof. By Definitions 2-3, if ⟨⟨F,A, s0, G⟩,K⟩ is solvable,
then s0 must be K-resilient for ⟨F,A, s0, G⟩. Def. 1 guaran-
tees that s0 is k-resilient only if there exists a plan from s0
that reaches the goal G and generates a trajectory of states
that are all k resilient, i.e., only if ⟨⟨F,A, s0, G⟩,K⟩ has a 250

solution.

An Algorithm for Resilient Planning
This section proposes a novel algorithm for Resilient Plan-
ning called RESPLAN. Intuitively, RESPLAN computes re-
silient plans for classical planning problems by iteratively 255

using a classical planner to prove whether the initial state of
the problem is resilient or not.

The RESPLAN Algorithm
RESPLAN takes as input a resilient planning problem
⟨⟨F,A, s0, G⟩,K⟩, and outputs a K-resilient plan πK 260

for ⟨F,A, s0, G⟩ if it exists and unsolvable otherwise.
RESPLAN leverages the theoretical result of Theorem 1 to
pose the problem of finding the solution K-resilient plan
as the problem of proving that the initial state s0 is K-
resilient. The recursive nature of the definition of k-resilient 265

state means that, in order to achieve this, we will have to
prove the resilience of many other states. That is, to prove
that a state s is k-resilient, we need to find a successor state
s′ = s[a] that is also k-resilient, and we also need to show
that s is still (k − 1)-resilient without using action a. The 270

RESPLAN algorithm does this by performing a search for
resilient states over an augmented state space that combines
to the classical state with the number of failures detected so
far and the faulty actions. Nodes in this augmented space are
tuples of the form ⟨s, k, V ⟩ where s is a state, 0 ≤ k ≤ K, 275

and V ⊆ A are faulty actions that cannot be used again. Im-
plicitly, a node ⟨s, k, V ⟩ represents the problem of deciding
whether s is a k-resilient state in ⟨F,A \ V, s0, G⟩.

The pseudocode of RESPLAN is reported in Algorithm
1, which we describe in the following. RESPLAN maintains 280

a Last-In-First-Out (LIFO) list Open and two sets, R↑ and
R↓, all containing nodes ⟨s, k, V ⟩. The Open list stores all
nodes that still need to be evaluated. Each of these nodes
will be either moved to R↑, if proven resilient, or to R↓ if
proven non-resilient. Notice that R↑ and R↓ are comple- 285

mentary sets that can be understood as a sort of closed list
in our algorithm. Since the aim is to prove the initial state
K-resilient, we initialize Open with ⟨s0,K, ∅⟩.

Main loop (lines 2-20): In each iteration, the main loop
pops a node ⟨s, k, V ⟩ from Open (line 3) and determines 290

whether it belongs to either R↑ or R↓ already. RESPLAN
first checks if the node can already be proven k-resilient by



Algorithm 1: RESPLAN

Input Resilient Planning problem ⟨Π = ⟨F,A, s0, G⟩,K⟩
Output K-resilient plan πK if it exists; unsolvable, otherwise

1: Open := {⟨s0,K, ∅⟩}; R↑ := ∅; R↓ := ∅;
2: while Open ̸= ∅ do
3: ⟨s, k, V ⟩ := Open.pop()
4: if ⟨s, k, V ⟩ ̸∈ R↑ ∪R↓ then
5: if RCheck(s, k, V,A,G,R↑) then
6: R↑.add(s, k, V )
7: else
8: Π′ := ⟨F,A \ V, s,G⟩
9: S↓ := {s′ | ⟨s′, k, V ⟩ ∈ R↓}

10: π, τ := ComputeP lan(Π′, S↓)
11: if π = null then
12: UpdateNonResilient(s, k, V,R↓)
13: else if k ≥ 1 then
14: for i = 1 to i = |π| do
15: Open.push(τi−1, k, V )
16: Open.push(τi−1, k − 1, V ∪ {πi})
17: R↑.add(τ|τ |, k, V )
18: else
19: for i = 1 to i = |π|+ 1 do
20: R↑.add(τi−1, 0, V )

21: if ⟨s0,K, ∅⟩ ∈ R↑ then
22: πK := ExtractSolution(Π,K,R↑)
23: return πK

24: else
25: return unsolvable
26:
27: function RCheck(s, k, V,A,R↑)
28: for a ∈ A(s) \ V do
29: if (⟨s[a], k, V ⟩ ∈ R↑∧⟨s, k−1, V ∪{a}⟩ ∈ R↑ then
30: return True
31: return False
32:
33: function ExtractSolution(⟨F,A, s0, G⟩,K,R↑)
34: s := s0
35: πK := ()
36: while s ̸|= G do
37: for a ∈ A(s) do
38: if ⟨s[a],K, ∅⟩ ∈ R↑ then
39: s := s[a]
40: πK .append(a)
41: break
42: return πK

calling the RCheck function which verifies that case (iii)
of Def. 1 is satisfied. If RCheck returns True, the node is
added to R↑ (line 6). Otherwise, RESPLAN needs to find295

additional resilient states (through which we can reach the
goal) in order to prove that s is k-resilient. This is done
by generating a planning problem Π′ = ⟨F,A \ V, s,G⟩
and calling ComputeP lan to solve it. The ComputeP lan
function encapsulates a classical planner and returns a plan300

π and the corresponding induced state trajectory τ that
solves Π′ without visiting any state that is already known
to not be k-resilient in Π′. There are three possible out-
comes at this point. First (lines 11–12), no plan is re-
turned by ComputeP lan, which means that s is not k-305

resilient in ⟨F,A \ V, s0, G⟩. When this happens, we call

the UpdateNonResilient procedure to add ⟨s, k, V ⟩ to R↓.
The second possibility, lines 13 to 17, is that ComputeP lan
did return a plan and k ≥ 1 so, following case (iii) of Def.
1, every state traversed by τ needs to be proven k-resilient 310

as well as (k−1)-resilient without the executed action. This
is captured in the algorithm by pushing new nodes into the
Open list in lines 15 and 16. Note that we push first node
⟨τi−1, k, V ⟩ and then node ⟨τi−1, k − 1, V ∪ πi⟩ from the
beginning to the end of trajectory τ , and recall that Open is 315

structured as an LIFO list. This means that RESPLAN starts
proving the resilience of the generated states from the back
of the plan and for lower values of k first, implementing a
sort of depth-first search. The last case is when k = 0 (lines
18–20), so finding a plan already proved every state in τ to 320

be 0-resilient; consequently, we can add every state in τ to
the R↑. The algorithm terminates once Open is empty, at
which point ⟨s0,K, ∅⟩ will either be in R↑, if a K-resilient
plan exists, or in R↓, otherwise. Note that ⟨s0,K, ∅⟩ will
always occupy the first position in Open and, therefore, be 325

the last one to be popped. It is worth noticing that, at line
15, we are pushing a state from which we already have a
plan to reach the goal. This node will eventually be popped
from the open list again and if the RCheck returns True, this
state will be deemed resilient. Otherwise, the algorithm will 330

attempt a new plan from this state.
Handling non-resilient states: As said above, a non-

resilient state ⟨s, k, V ⟩ is identified when no plan is returned
by the function ComputeP lan, which means that we have
exhausted all possible ways to prove the k-resilience of s in 335

Π′ without succeeding. What we omitted to say is that just
adding ⟨s, k, V ⟩ to R↓ is not enough to prevent the node
⟨s, k, V ⟩ from being generated again. Note that the set S↓
that RESPLAN generates in line 9 contains the states that are
known to not be k-resilient and will prevent the algorithm 340

from pushing them into Open in line 15 (the plans generated
at line 10 cannot cross such states). On the other hand, if we
are in an iteration where the popped node is ⟨s′, k + 1, V ′⟩
with V ′ ⊂ V (|V ′| = |V | − 1) and the plan from s′ returned
by ComputeP lan visits s, node ⟨s, k, V ⟩ will be pushed 345

again into the Open list in line 16. To avoid this situation,
we propagate non-resilient states found for lower values of
resilience to higher values. This is formalised by the follow-
ing proposition derived from Def. 1.

Proposition 1. Let Π = ⟨F,A, s0, G⟩ be a planning prob- 350

lem, V a subset of A, and s a state of Π. If s is not k-
resilient in ⟨F,A\V, s0, G⟩, then s is also not k′-resilient in
⟨F,A \ V ′, s0, G⟩ for any V ′ ⊆ V and k′ = k + |V \ V ′|.

This proposition says that a state that is not k-resilient will
never become (k + n)-resilient by allowing n more actions 355

in the planning problem. To understand this let us revisit our
example of Figure 1. The state F is 0-resilient but not 1-
resilient. Proposition 1 states that if we add another action,
say that we add car(F,G) through a new road, the state F
will not be 2-resilient (although it becomes 1-resilient) and 360

generalizes this idea for any number of added actions.
Going back to our algorithm, we apply this result in proce-

dure UpdateNonResilient to update R↓ with ⟨s, k, V ⟩ and
all other non-resilient states that can be derived by Proposi-



tion 1. In this way, given a node ⟨s, k, V ⟩, this procedure365

will add to R↓ all nodes ⟨s, k′, V ′⟩ where V ′ ⊆ V and
k′ = K − |V ′|. Note also that the number of added nodes is
always 2|V |. Ultimately, by leveraging this proposition, we
prevent RESPLAN from pushing ⟨s, k, V ⟩ into Open again
if it has been previously proven that s is not k-resilient be-370

cause S↓ will contain s.
Extracting a solution: The RESPLAN algorithm does not

store explicitly the solution K-resilient plan. Instead, the so-
lution can be computed from R↑ following a simple pro-
cedure depicted in the ExtractSolution function. To ex-375

tract the K-resilient plan we can greedily take any action
a ∈ A(s) (starting with s = s0) that takes us to another
K-resilient state until we reach the goal.

Example of RESPLAN Execution
Now that we have explained the algorithm, let us give a380

quick walk-through of what could be a possible execution
of RESPLAN. We consider as inputs the problem of Figure 1
and K = 2, so the Open list will be initialized with ⟨A, 2, ∅⟩.
Assume that, in the first iteration, ComputeP lan returns
the plan (car(A,B),train(B,F),train(F,G)) so,385

after pushing the generated nodes, ⟨F, 1, {train(F,G)}⟩
will occupy the last position in Open. In the next iter-
ation, RESPLAN will pop ⟨F, 1, {train(F,G)}⟩ and it
will find out that F is not 1-resilient, since ComputeP lan
will not be able to find a plan from F to G that does not390

use train(F,G). It will then call UpdateNonResilient
and add ⟨F, 1, {train(F,G)}⟩ to R↓ alongside ⟨F, 2, ∅⟩,
which is derived from Proposition 1. At this point, the
plan (car(A,B),train(B,F),train(F,G)) is not 2-
resilient since F is not 2-resilient, and this will be re-395

flected in the algorithm by failing the RCheck after it pops
⟨B, 2, ∅⟩. RESPLAN will then try to compute a plan to the
goal starting from B. Recall that ⟨F, 2, ∅⟩ belongs to R↓
and, therefore, S↓ contains F which will be in turn not
visited by ComputeP lan. Let us assume that the com-400

puted plan is (car(B,D),car(D,G)) It is worth notic-
ing that, at this stage, the algorithm discarded the suffix
(train(B,F),train(F,G)) of the first computed plan
(car(A,B),train(B,F),train(F,G)), and is now
considering (car(A,B),car(B,D),car(D,G)). Next,405

RESPLAN will pop ⟨D, 1, {car(D,G)}⟩ and compute a
plan from D to G without using car(D,G). One possi-
bility is to use train(D,G) instead, so, in the next it-
eration, it will pop ⟨D, 0, {car(D,G),train(D,G)}⟩.
At this point it will once again compute a plan from410

D to G, but this time without using neither car(D,G)
nor train(D,G), and the only solution here will be
(car(D,F),train(F,G)). Since we are at k =
0, the nodes ⟨D, 0, {car(D,G),train(D,G)}⟩ and
⟨F, 0, {car(D,G),train(D,G)}⟩ will be directly added415

to R↑. In the next two iteration, RESPLAN will pop first
⟨D, 1, {car(D,G)}⟩ and then ⟨D, 2, ∅}⟩, and both times
the RCheck will return True; so these nodes will be
moved to R↑. At this point, RESPLAN has proven that
D is 2-resilient. The following iterations, all the way to420

the end of the algorithm, will follow a pattern similar to
the one described for D but for states B and A. Once

RESPLAN terminates, it will return the 2-resilient plan
(car(A,B),car(B,D),car(D,G)).

Theoretical Properties 425

This section discusses the theoretical properties of
RESPLAN. Note that in proving these properties we assume
that the classical planner used by the ComputeP lan func-
tion is both sound and complete.
Theorem 2. Given a Resilient Planning problem 430

⟨⟨F,A, s0, G⟩,K⟩, RESPLAN returns a solution iff
⟨F,A, s0, G⟩ is solvable, and “unsolvable”, otherwise.
Proof sketch. First, we show that the algorithm always ter-
minates in a finite number of steps. Indeed, the set of nodes
⟨s, k, V ⟩ that can be pushed into Open is finite as all three 435

components can take a finite number of different values,
and for any node ⟨s, k, V ⟩ that is added to the Open list,
RESPLAN will eventually prove or disprove the k-resilience
of s. That is, it cannot remain unknown. To see why this
is true, observe that when we pop a node from Open, this 440

node will be either (1) added to the R↑ set (if function
RCheck returns true), (2) added to the R↓ set in line 12,
or (3) pushed again into the Open list in the first iteration
of line 15, after having computed a plan from s avoiding
states S↓ through the ComputeP lan function. Case (3) hap- 445

pens when RESPLAN searches for alternative plans because
some state traversed by the previously generated plan from
s was found to be non-resilient. Every time this happens R↓
is then populated with new nodes, which are a finite num-
ber. It follows that the same node can re-enter into Open a 450

finite number of times, with the worst case when R↓ even-
tually saturates. At that point, no solution will be found by
ComputeP lan, and the node will be moved to R↓.

Finding a solution implies that the initial state has been
proven is K-resilient. Then, to ensure the correctness of 455

RESPLAN for solvable instances, it suffices to show that for
every node ⟨s, k, V ⟩ in R↑ it holds that s is k-resilient in
⟨F,A \ V, s0, G⟩. This is true by construction, since the set
R↑ is only populated in lines 6, 17, and 20, which corre-
spond, respectively, to cases (iii), (ii) and (i) of Def. 1. 460

We also show that R↓ only contains nodes associ-
ated to non-resilient states. By contradiction, assume that
⟨s, k, V ⟩ belongs to R↓ and s is k-resilient in ⟨F,A \
V, s0, G⟩. Observe that R↓ is only populated in line 12 after
ComputeP lan returns no solution. There are two possibil- 465

ities then. First, ⟨F,A \ V, s0, G⟩ cannot be solved without
visiting a non-resilient state, which contradicts the assump-
tion that s is k-resilient. The second possibility is that it was
added following the generalization of non-resilient states of
Proposition 1, which would contradict the proposition itself. 470

Finally, completeness is proved by observing that
RESPLAN never computes the same plan at line 10 each time
the same node is popped from Open, and that by construc-
tion of R↓ only plans that visit non-resilient states are pruned
(and such plans cannot be solutions). □ 475

Experimental Evaluation
In this section, we analyse the performance of the pre-
sented RESPLAN algorithm to solve Resilient Planning



problems. We implemented RESPLAN starting from the
available code of PRP (Muise, McIlraith, and Beck 2012)480

and used FastDownward (Helmert 2006) with the hFF

heuristic (Hoffmann and Nebel 2001) as the classical plan-
ner of ComputeP lan. The code of the algorithm and the
benchmarks are publicly available1.

Experimental setup485

We evaluated our algorithm on two sets of problems cre-
ated by taking classical planning instances and scaling the
value of K from 1 to 4. For the first set, we took a selection
benchmarks from the previous and past International Plan-
ning Competitions (IPC) where we can expect to find some490

resilient solutions. These are domains that display some re-
dundant components; this is what allows problems to have
alternative ways to achieve the goals. Transportation do-
mains are good candidates since they usually have several
vehicles that can deliver and load, and navigation graphs495

that allow different paths to move among locations. With this
in mind, the domains we selected were Driverlog, Satellite,
Storage and Zenotravel. These four domains, while similar,
present different flavours that are interesting for resilience.
In Driverlog it is necessary to secure drivers and the navi-500

gation graph is not fully-connected, Satellites are equipped
with different (possibly overlapping) collections of instru-
ments required for the tasks, Storage introduces hoists to
move crates around, and in Zenotravel planes can travel at
two speeds and consume fuel.505

In addition, we also created a second benchmark set
where we have manually generated problems to challenge
the approaches to look for solutions for high levels of re-
silience. The domains that make up this benchmark are
BlocksworldMA, Rockets and Logistics. BlocksworldMA is510

the multi-agent variant of the classical Blocksworld domain
that introduces several arms, Rockets is a simple transporta-
tion domain where resilience is strictly related to the num-
ber of rockets, and Logistics is a more involved domain that
considers several cities, each with their own locations and515

vehicles. For each domain, we generated 10 instances by in-
troducing an appropriate number of objects of each type that
allows for high resilience solutions, and increasing their dif-
ficulty by considering more goals.

As baselines for the evaluation, we considered the spe-520

cialized algorithms of (Jensen, Veloso, and Bryant 2004)
and a compilation to FOND planning inspired by this same
work. However, we focus on the compilation approach as
the specialized algorithms only handle problems with K=1,
and could not solve even the smallest instance in our bench-525

marks suite. In the FOND planning problem, we enforce our
semantics in the action models, namely, 1) all actions can
fail and the failure does not modify the state, and 2) actions
that have failed cannot be used again. Assumption (1) can
be encoded by extending all actions with a new secondary530

empty effect. Assumption (2) requires extending the actions
preconditions and the new secondary effect with a proposi-
tion f✓

a that denotes that action a ∈ A has already failed. As
done in (Jensen, Veloso, and Bryant 2004), we limited the

1https://github.com/ale-gaudenzi/resilient-planner

number of faults by introducing a counter in the problem. 535

This counter disables secondary effects once the bound K
is reached. To solve the compiled problems, we use MyND
(with the hFF heuristic) and FOND-SAT, two FOND plan-
ners capable of computing strong policies. All experiments
were run on a Xeon Gold 6140M at 2.3 GHz, with time and 540

memory limits of 1800s and 32GB for each problem.

Results
In the following, we discuss the obtained results. We start
our commentary by looking at the coverage results over our
two sets of benchmark problems and then move on to the 545

runtime analysis.
Coverage results: Table 1 summarizes the coverage re-

sults. We have aggregated separately the coverage score for
solvable (denoted by an ”S”) and unsolvable instances (de-
noted by a ”U”) to analyze these two cases more in depth. 550

Columns MN and FS correspond to the results of the com-
pilation solved by MyND and FOND-SAT planners, respec-
tively, while RP refers to the results of our algorithm. We
note that FOND-SAT, as a SAT-based planning algorithm, is
unable to prove unsolvability and remark this by using a ”-” 555

in the corresponding table entries. Focusing first on the IPC
benchmark, we observe that K-resilient plans are only found
for K ≤ 2 and problems become unsolvable as we increase
K. We can see that RESPLAN outperforms the baselines in
solvable instances. In particular, RESPLAN is able to find 56 560

solutions for K = 1 and 12 for K = 2, while MyND only
finds 10 and 2 solutions, repectively. FOND-SAT performs
quite poorly in this benchmarks, only finding 2 solutions for
K = 1 and 1 for K = 2. The results for unsolvable in-
stances are more mixed and, interestingly, seem to indicate 565

that MyND scales better with the value of K for these cases.
We attribute this to the way RESPLAN structures the search
in depth-first fashion since, for high values of K, it may run
into situations where it spends the majority of the effort in
proving the resilience of a suffix of a plan that is later found 570

to not be K-resilient.
Moving now to the second benchmark set, we can ob-

serve that we have been able to find that most instances
have 3-resilient plans and some even for 4-resilient plans.
RESPLAN finds solutions to 29 out of the 30 instances for 575

K = 1 and K = 2, while the coverage of the base-
lines is significantly lower. Even for K = 3 and K = 4
where both MyND and FOND-SAT failed to find any solu-
tion, RESPLAN is able to find 21 and 9 solutions, respec-
tively. The results here confirm the efficiency of RESPLAN 580

for solvable instances as it is able to find solutions for very
large planning problems where the other baselines strug-
gled. Interestingly, neither RESPLAN nor MyND are able to
prove unsolvability in this benchmark, possibly because the
state-space is too large in these instances. Overall, the re- 585

sults show that RESPLAN dominates the baselines for solv-
able instances and performs comparatively well in unsolv-
able ones. Nevertheless, these results serve as a stimulus to
explore novel pruning techniques that help detect unsolvable
instances faster. 590

Runtime results: We now evaluate the runtime of our al-
gorithm. Figure 2 presents a runtime comparison between



K = 1 K = 2 K = 3 K = 4
Domain Sol MN FS RP MN FS RP MN FS RP MN FS RP
Driverlog S 2 1 14 0 0 1 0 0 0 0 0 0
(#20) U 0 - 0 0 - 0 0 - 0 1 - 0

Satellite S 1 0 17 1 0 5 0 0 0 0 0 0
(#36) U 1 - 1 0 - 1 0 - 1 0 - 1
Storage S 4 0 10 0 0 3 0 0 0 0 0 0
(#30) U 6 - 5 9 - 7 9 - 5 12 - 6

Zenotravel S 3 1 15 1 1 3 0 0 0 0 0 0
(#20) U 1 - 1 0 - 1 1 - 2 2 - 2

Subtotal-IPC S 10 2 56 2 1 12 0 0 0 0 0 0
(#106) U 8 - 7 9 - 9 10 - 8 15 - 9

BlocksworldMA S 5 6 10 0 2 10 0 0 5 0 0 4
(#10) U 0 - 0 0 - 0 0 - 0 0 - 0

Logistics S 0 1 9 0 0 9 0 0 7 0 0 3
(#10) U 0 - 0 0 - 0 0 - 0 0 - 0
Rocket S 4 4 10 1 0 10 0 0 9 0 0 2
(#10) U 0 - 0 0 - 0 0 - 0 0 - 0

Subtotal-Res S 9 11 29 1 2 29 0 0 21 0 0 9
(#30) U 0 - 0 0 - 0 0 - 0 0 - 0
Total S 19 13 85 3 3 41 0 0 21 0 0 9

(#136) U 8 - 7 9 - 9 10 - 8 15 - 9

Table 1: Coverage results for RESPLAN (RP), compilation into FOND using MyND (MN) or FOND-SAT (FS) across bench-
marks from the IPCs and the newly generated instances (Res)

100 101 102 103
ResPlan

100

101

102

103

M
yN

D

solvable unsolvable

Figure 2: RESPLAN (x-axis) vs compilation solved by
MyND (y-axis). Points represent runtime in seconds over all
instances.

RESPLAN and the compilation solved with MyND across
all benchmarks and resilience values; we exclude FOND-
SAT from this analysis as there are not enough data points595

due to its low overall coverage. We can see that there are
many instances where RESPLAN is able to quickly solve the
problem while MyND runs out of time. This happens often
for solvable instances, as we saw earlier, and highlights the
efficiency of RESPLAN to find K-resilient plans. More in-600

terestingly, the results clearly indicate that the compared ap-
proaches are quite complementary, with MyND performing
generally better than RESPLAN in proving unsovability.

Figure 3 shows the cumulative number of instances solved
over time for RESPLAN and the two baselines. We can ob-605

serve that RESPLAN is able to solve more instances than
MyND and FOND-SAT across all values of K. RESPLAN

completely dominates for K = 1 and K = 2; in particular,
RESPLAN with K = 1 is extremely fast and is able to solve
63 instances (over 85 instances solved) in less than 10 sec- 610

onds, while solving with K = 2 requires much more time
(as expected given the high number of additional states to
examine) but is still very efficient. For K = 3 and K = 4,
we see that MyND is able to solve some instances (by prov-
ing them unsolvable) in a few seconds, but after that it fails 615

to obtain any new solution and is surpassed by RESPLAN.

Related Work
Resilient planning is related to planning under uncertainty,
a topic of automated planning that has been tackled from a
variety of perspectives (Geffner and Bonet 2013). Here we 620

are interested in the case that deals with uncertainty in the
sense of non-deterministic non-stochastic behaviors, where
a given agent has to anticipate unexpected contingencies at
planning at time, but assume to have full observability of
the world once she applies actions. This is generally re- 625

ferred to as FOND for Full-Observable-Non-Deterministic
planning, which in its general formulation is an EXPTIME-
complete problem (Littman 1997). FOND problems have
been approached via replanning (e.g., (Yoon, Fern, and Gi-
van 2007b; Muise, McIlraith, and Beck 2012)), symbolic 630

methods (e.g., (Cimatti et al. 2003; Geffner and Geffner
2018)) or native methods (e.g., (Hoffmann and Brafman
2005), (Pereira et al. 2022), (Mattmüller et al. 2010)).

Resilient Planning (RP for short), can be formulated as
a specific restriction of FOND planning that has bounded 635

indeterminacy in which we assume that the agent action
can fail producing none of the modeled effects, but failures
can happen only a limited number of times. This restric-
tion is similar to Fault-Tolerant-Planning (FT), a fragment
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Figure 3: Coverage (y-axis) vs runtime (x-axis) for increasing values of K.

of FOND planning initially studied in (Jensen, Veloso, and640

Bryant 2004). In FT, the action model devises primary and
secondary effects. Secondary effects are those that happen
when some unexpected situation which is not under the con-
trol of the agent occurs. The main objective of FT planning
is to generate plans guaranteed to reach a goal state as long645

as no more than a given number k of secondary effects are
triggered during execution. FT planning was later general-
ized and studied in (Domshlak 2013) from a computational
complexity standpoint.

The work in (Jensen, Veloso, and Bryant 2004) proposes650

to solve FT problems by an OBDD based algorithm sup-
plied in different configurations: a blind backward search
and more specialised algorithms for the case where k = 1.
The specialised versions can use different variants of heuris-
tics based on the syntactic structure of the states investigated655

by the OBDD representation. The work in (Domshlak 2013)
focuses on the theoretical aspects of an extended version of
FT having m primary effects; for m = 1, which is the case
studied in (Jensen, Veloso, and Bryant 2004), FT is proved to
be PSPACE-complete and therefore easier than FOND plan-660

ning (assuming PSPACE̸=EXPTIME).
We observe that a RP problem can be cast as a FT problem

with one secondary effect that formalizes the contingency
when the action simply leaves the state unaltered, which in
our semantics corresponds to an action failure. Moreover, we665

need to be sure that the failing action cannot be re-applied (in
the same or successive states); this can be enforced by mak-
ing such an action inapplicable. Because of this, FT can be
seen as a more expressive formalism than RP. Yet, we argue
that RP provides a complementary approach to FT in that it670

allows to model failures in more abstract terms, and the user
is not asked to formulate a non-deterministic model for each
action. Indeed, in RP the non-determinism is implicit in the
semantics of the problem itself.

From the point of view of the solution algorithms, our675

RESPLAN substantially differs from what is presented in
(Jensen, Veloso, and Bryant 2004) for FT, as well from al-
gorithms for FOND planners. In comparison with the algo-
rithm proposed by (Jensen, Veloso, and Bryant 2004), our
algorithm has no restrictions on the input number of allowed680

failures, and exploits classical planners almost off-the-shelf,
leveraging the vast amount of work done in devising in-
formed heuristics from classical planning.

PRP (Muise, McIlraith, and Beck 2012) is a state of the

art planner for FOND planning that has some similarity with 685

RESPLAN. PRP works by iteratively calling a classical plan-
ner to build a strong cyclic policy for the given FOND plan-
ning problem. To improve its performance, PRP collects and
exploits dead-ends during search so that the exploration of
useless states is avoided by the classical planner problem 690

formulated on the fly. Differently from PRP, RP requires so-
lutions to be strong non-cyclic. This is because in our setting
there is no fairness assumption as in PRP, and therefore we
do not assume the case that the nominal effect of an action
will occur in the limit if it is repeatedly applied. 695

Conclusion
We have addressed the problem of generating plans in the
context of classical planning that are robust during execu-
tion. Such plans are required to cross only states that satisfy
a property of bounded resilience introduced in the paper. 700

Our RESPLAN algorithm generates resilient plans that are
guaranteed to be repairable when at most a bounded number
of planned actions cannot be executed or provide no effect,
leaving the current state of the planning model unaltered.

An experimental comparison with an alternative approach 705

based on compilation into strong FOND planning indicates
that, RESPLAN is much more effective in terms of both cov-
erage and run-time over solvable instances, and it is compet-
itive in terms of coverage over unsolvable instances.

In future work, we plan to optimise the performance of 710

RESPLAN in different ways, and in particular by novel prun-
ing techniques that can make RESPLAN more efficient for
unsolvable instances, for instance by exploiting landmarks
(Hoffmann, Porteous, and Sebastia 2004). Moreover, we in-
tend to study alternative notions of resilient states and fur- 715

ther ways to model and handle action failures.
Finally, an interesting possible use of resilient planning

that we have not investigated in this paper concerns the for-
malisation of the planning problem. A real-world planning
problem could be abstractly represented in classical plan- 720

ning by different alternative models (actions with different
preconditions and effects, and states with different fluents).
Resilient planning could be a tool to evaluate the quality of
such models in terms of the degree of resilience they ad-
mit in their plans, preferring models that support higher re- 725

silience. This is another direction for further research.
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