
Analyzing Launch Operations using the Spaceport Throughput Analysis Resource
(STAR)

Richard Levinson1, Jeffrey Brink2, Jeremy Frank3

1 KBR, Intelligent Systems Division, NASA Ames Research Center
2Spaceport Management and Integration, NASA Kennedy Space Center

3Intelligent Systems Division, NASA Ames Research Center
Authors listed in alphabetical order.

Abstract

We describe the development of the Spaceport Throughput
Analysis Resource (STAR), which evaluates Kennedy Space
Center spaceport launch throughput. STAR integrates simu-
lation and limited rescheduling, using a constraint program-
ming model to check constraints and reschedule events. The
results of STAR are constraint violations leading to delays
that can be used to make investments to reduce future delays.
We describe the modeling, rescheduling problem formulation
and algorithm development, and testing of STAR.

1 Introduction
NASA’s Kennedy Space Center (KSC) and Cape Canaveral
Space Force Station (CCSFS) are the world’s preeminent
multi-user spaceport, providing facilities and launch capa-
bilities to the agency, NASA’s commercial partners, and
other government agencies. KSC works to ensure an envi-
ronment in which NASA’s programs and other users can
safely and effectively carry out their operations. Approxi-
mately 100 launches are expected to take place in 2024 1.

KSC meets the needs of customers who request launches
based on their own schedules, but who may not be aware
of KSC-wide resource limitations and external constraints
on launch operations. KSC-wide resources include telecom-
munications, tracking, commodities such as Helium and Ni-
trogen, and special equipment needed to support launches.
Constraints include seasonal operations limitations. Since
space vehicles are complex and launch operations are uncer-
tain, unexpected events can also cause delays in operations.

The Spaceport Throughput Analysis Resource (STAR) as-
sesses whether a set proposed launches and associated ac-
tivities can be performed given the resources KSC currently
has available, and external constraints imposed on KSC op-
erations. STAR integrates short-horizon scheduling and sim-
ulation of launches using a monte-carlo approach driven by
configurable probabilities of different classes of event out-
comes, including delays and worst-case use of resources.
The results of STAR are the constraint violations leading
to delays, inform stakeholders of key constraints prevent-
ing customers from being able to perform their missions

1https://www.nasa.gov/centers-and-
facilities/kennedy/kennedy-space-center-looks-ahead-busy-2024/

as desired, and give insight into how to improve spaceport
throughput. STAR has been deployed at KSC.

The rest of the paper is organized as follows. In Section 2
we give an overview of KSC spaceport operations. In Sec-
tion 3 we formally describe the scheduling problem ingre-
dients. In Section 4 we describe how manifests are simu-
lated. In Section 5 we describe the constraints problem that
is solved when rescheduling. In Section 6 we describe the
specific problem solved for KSC. In Section 7 we describe
the challenges of knowledge engineering for STAR.

2 Overview
We begin with describing KSC spaceport operations, and
the problem STAR is intended to address. A manifest, or
launch manifest, consists of a set of launches of different
vehicles. Each launch may have an associated supporting
event preceding the launch. We refer to launches and sup-
porting events collectively as events. An initial manifest as-
signs launches to notional launch dates and times. A sup-
porting event always precedes the launch event by some
minimum duration based on the launch vehicle type. These
initial manifests are desired launch dates generated by cus-
tomers, and represent the ability of a customer to launch
their own vehicles according to their internal scheduling
constraints, as opposed to those imposed by KSC. Events
use different resources, and are subject to a variety of addi-
tional constraints, which will typically require rescheduling
the launches to resolve conflicts in the initial manifest, and
as a result of delays due to unexpected events.

Finding a schedule to resolve constraint violations re-
sembles a Job-Shop Scheduling Problem (Brücker 1998),
a well studied problem in computer science. However, re-
source use and constraints are quite complex, so STAR does
not fit nicely into a single job-shop paradigm. STAR’s job
is to identify KSC infrastructure constraints that lead to de-
lays during the execution of manifests. STAR interleaves the
simulation of scheduled events, potentially resulting in de-
lays of those events, and re-scheduling over a myopic time
horizon to satisfy constraints. We distinguish in STAR be-
tween the manifest and the run, which records events the
day and hour that they occur, along with unexpected events
and constraint violations that cause delays. Delays, reflected
by the dates in the initial manifest not being met, trans-
late to lack of customer satisfaction. Constraints are divided

into customer-centric minimum-spacing constraints, which
are enforced during rescheduling but are not implicated as
causing launch delays, and infrastructure constraints, which
are tracked when they are the primary cause of a launch de-
lay. The key question STAR answers is which KSC-wide
constraints cause rescheduling, and how often.

2.1 Resources
As is typical in scheduling problems, resources come in
many different varieties. Some KSC-wide resources are
reusable; they are used and then returned. An example is
special equipment, available in limited numbers, that must
be used during a launch and subsequently reconfigured be-
tween launches. For instance, there may be 4 pieces of such
equipment, and each piece of equipment may require 4 days
to reconfigure after a launch is successfully completed.

Some resources are consumable; launches use these re-
sources, and they are replenished at a fixed daily rate. For
instance, KSC may have storage for Nitrogen that can be
fully replenished in 5 days, with individual events using be-
tween 20% and 60% of the storage capacity.

Lastly, some resources have rolling limits; that is, they can
be replenished up to a fixed amount over a fixed number of
days. These rolling limits are an abstraction of a maximum
rate of replenishment. For instance, Helium may be resup-
plied at a rate of at most 6 truckloads of Helium every 7
days. All 6 truckloads may be delivered any time (includ-
ing all on the same day!) during the rolling 7 day period.
But once 6 trucks have arrived, no more Helium can be de-
livered until enough time has passed. Multiple rolling limits
may apply to the same resource. For instance, Helium may
be resupplied at a rate of at most 6 trucks every 7 days, and at
most 12 trucks every 20 days. An additional class of rolling
limit constraint describes the maximum number of times a
rolling limit can be reached in a year. An example of this
second class of constraint is that the 12 trucks every 20 days
limit can be reached at most once a year. Once 12 trucks are
required in a 20 day rolling period, at most 11 trucks can be
used in every 20 day period thereafter for the remainder of
the year. We will refer to these as Yearly Rolling Limits

Consider two hypothetical launch vehicles. We assume
events use individual pieces of equipment to support
launches, stored Nitrogen, and truckloads of Helium with
a single rolling limit. One of our launch vehicles is a Go-
Upper-One (GU-I). Each launch consumes 1

5 of the Nitrogen
storage tank capacity and 1 truck worth Helium, and uses 1
piece of supporting equipment. The supporting event uses
2
5 of the Nitrogen storage tank capacity, and 2 trucks worth
Helium, and occurs one day before the launch. The second
vehicle is a a Go-Upper-Five (GU-V)2. The launch uses 2

5
of the Nitrogen tank and 1 truck worth Helium, and 2 pieces
of supporting equipment, and the supporting event occurs 3
days before the launch. The supporting event uses 3

5 of the
Nitrogen tank and 2 trucks worth Helium.

2With love and respect to Randall Munroe’s magnifi-
cent Up-Goer-Five xkcd web comic, which can be found at
https://xkcd.com/1133/

2.2 Scrubs
Due to the uncertainties involved in spaceport operations,
launches or supporting events may be delayed or scrubbed
for numerous reasons. Both launches and supporting events
can be scrubbed. A scrub may use resources; scrubbed
launch and supporting events use the same amount of re-
sources (if any). Scrub resource use is usually higher than
that of either a supporting event or a launch. To continue
with our example, the GU-V launch uses 2

5 of the Nitrogen
tank and 1 truck worth of Helium, and 2 pieces of supporting
equipment. A scrub uses 3

5 of the Nitrogen tank and 2 trucks
worth of Helium (the same amount of Helium and Nitro-
gen as the supporting event). Resource constraints prior to
the actual launch are checked assuming the worst-case re-
source usage, i.e. STAR assumes that the event in the man-
ifest scrubs and uses resources. That means in our previ-
ous example, checking Nitrogen consumption for a GU-V
launch would assume 3

5 of the Nitrogen tank and 2 trucks
worth of Helium. Once the event has been deemed success-
ful, however, the resource consumption of the launch is used
instead. The tracking of the scrubs in the manifest is shown
for the consumable Helium resource, and protecting against
scrubs in the manifest, is shown in Figures 1; the dotted line
shows how much more resource would be used if a scrub
that uses resources occurs instead. When a scrub using re-
source occurs, the event is attempted again until it succeeds.
The run records the usage of the scrub.

2.3 Resource Examples
To see how rolling limits work, and also see how the charac-
teristics of each vehicle bump up against KSC-wide infras-
tructure constraints, consider the Go-Upper Five’s Helium
consumption. The 6 tankers in 7 days rolling Helium limit
described in the previous paragraph ensures KSC can only
launch one GU-V or a GU-I every rolling 7 day period, as
shown in Figure 1 (left). More precisely, since events use 2
trucks in the worst case, and the limit is 6 trucks in 7 days,
any 7 day period can contain 3 of the events (launch or sup-
porting) in any order. However, a total of 4 events are needed
to perform 2 launches. An example of how the launches, sep-
aration of launch and supporting events, and resource con-
sumption and replenishment of the consumable Helium re-
source work, is shown in Figure 1 (right). Resource replen-
ishment is continuous, at a fixed rate, while each event uses
large amounts of the resource instantly.

2.4 Temporal Constraints
Launches may have customer-provided individual launch
windows that must be respected. These windows only con-
strain the launch event; the supporting event can fall out-
side these windows. Similarly, KSC may have facility-wide
launch blackout periods when no launches may take place.
Supporting events can occur during these periods. Launch
windows are specified by customers, while facility-wide
launch blackouts are KSC-wide infrastructure constraints.

In addition to constraints on individual launches, pairs of
launch events must respect a wide variety of temporal con-
straints. Pairwise constraints propagate from launch events

1 2 3 4 5 6 7 8 90 10

Nominal
ScrubNitrogen

(% Usage)

Max Usage

Run (X)

Pairwise Separation: 3 days

Supporting Event Separation:
3 days

Supporting Event Separation:
1 day

Manifest
(M)

Day

100

0

80

60

40

20

Pairwise Separation:
2 daysMinimum Separation: 4 days

1 2 3 4 5 6 7

1

8 90

Run (X) Manifest
(M)

Pairwise Separation:
3 days

Supporting Event Separation:
3 days

Supporting Event Separation:
1 day

Nominal
Scrub

Helium

Day 0

2

3

4

5

6

7

8

Figure 1: Tracking Rolling limits (left): Two launches are shown, a GU-V and a GU-I. The GU-V supporting event uses 2
tankers while the launch uses 1 tanker. The rolling limit is 6 tankers in a 7 day period; the first period is indicated at the bottom
of the figure. The separation between main and supporting events of the GU-V is 3 days. The run shows a successful GU-V
launch on Day 3. The GU-I supporting event on Day 5 is followed by its launch on Day 6. We must conservatively assume
the GU-I launch uses 2 trucks if there is a scrub; the accumulated use of Helium violates the rolling limit on Day 6. Tracking
Consumable Resources (right): This manifest has three launches, one GU-I and two GU-Vs. The second GU-V launch is on
day 8. Nitrogen is a consumable resource used by all launches, and the tank can be refilled in 5 days. The worst-case Nitrogen
resource use of the GU-V launch is on day 8 in the manifest violates the limit.

to the supporting events, so the only pairwise constraints
we need to describe are those between launches. Many con-
straints arise due to the need to manage infrastructure across
all of KSC during any launch, and are referred to as KSC
pairwise constraints Customer’s constraints and processes
drive the time needed to reconfigure a launch pad between
launches. For instance, it may take 4 days between succes-
sive GU-V launches and 3 days between successive GU-I
launches. We refer to these as minimum spacing constraints.
.

Some of these pairwise temporal separation durations are
order dependent. That is, if a GU-V is scheduled to launch
before a GU-I, the required separation between launches is 3
days, whereas if the GU-I is scheduled to launch before the
GU-V, the separation is only 2 days. Examples of both min-
imum spacing and KSC pairwise constraints are also shown
in Figure 1 such as the 3 day separation constraint between
the first GU-V launch on day 3, and the GU-I launch on day
6, and the violated 2 day separation constraint between the
GU-I launch and the second GU-V launch on day 7.

Delays due to scrubs, as well as due to reschedul-
ing when constraints are violated, can propagate to the
customer-specific minimum spacing constraints. The result-
ing minimum-spacing delays are referred to as ripple effect
delays. Delays due to rescheduling are tracked separately
from ripple effect delays, as discussed further in Section 4.

3 Formalism
Formally, we start with the manifest, M , over a set of
launches L. An element of the manifest consists of a launch
event li or a supporting event si, and the time at which each
event is scheduled, t(li) or t(si). It is sometimes convenient
to remain neutral about whether the event is a launch or sup-
porting event, in which case we denote the event by ei and

the time of the event by t(ei).
We denote the set of rolling limit constrained resources O,

the set of consumable resources C, and the set of reusable
resources R. Each event uses some amount of the specified
resources. All resources are consumed at the hour on the
date the event occurs. Consumable resources are replenished
at a fixed rate. Rolling and reusable resources availability is
discussed further below.

We denote the amount of resource used by event ei as
follows: oi(ei) denotes use of rolling limit resource oi, ci(ei)
denotes use of consumable limit ci, and ri(ei) denotes the
use of reusable resource ri. We will describe the notation
of worst-case usage of an event prior to simulation, and the
actual usage of events as a result of simulation outcome, in
Section 4 (Manifest Simulation).

Consumable resources are replenished at an hourly pro-
duction rate, up to a maximum capacity. We denote by cmi
the maximum capacity of consumable resource ci ∈ C, and
δ(ci) the hourly rate of replenishment of resource ci.

Limits on rolling resources are expressed in terms of the
maximum rate of replenishment in a rolling daily period.
Recall there can be multiple rolling limits on each such re-
source oi; each such limit is denoted oi,j . We denote by
windowj(oi) the jth rolling time window size, and oiw

m
j

the maximum resource use limit on oi associated with the
jth window. Yearly limits are expressed as a number of
times a specific rolling limit can be reached (not exceeded)
in a year. We denote by oiy

m
j as the number of times the jth

rolling limit on resource oi can be reached in a year. When
the jth rolling limit is reached oiy

m
j times, oiwm

j is reduced
to oiw

m′

j until the next year. (We abuse notation and say oi,j
∈ O.) Some rolling limits only apply when one of a specific
set of launches Lj(oi) ⊂ L has taken place in the window.

Reusable resources are used for a fixed period of time and

1 2 3 4 5 6 7

5

4

3

2

1

0
8 90

Run (X) Manifest (M)

1

0

Refurbish
(GU-I-1,1)

Wait
(GU-V-3,2)

Wait
(GU-V-3,1)

Refurbish
(GU-V-3,1)

Wait
(GU-V-7,1)

Wait
(GU-I-6,1)

Refurbish
(GU-I-1,1)

Refurbish
(GU-V-3,1)

Wait
(GU-V-7,2)

GU-V GU-I

Support Abort Launch Support Abort Launch

2X

Figure 2: Tracking Reusable Resources. The run shows a
GU-I launch on day 1, a GU-V launch on day 3, both of
which are recorded in the run X , and a GU-V launch on
day 6 in the manifest. Each GU-I uses one piece of launch
support equipment, while the GU-V uses two. Since the shop
can only refurbish one piece of equipment at a time, by the
time we get to the GU-V launch in the manifest, not enough
pieces of equipment have been refurbished to support it. We
label each wait and refurbish task with a launch vehicle and
launch day, and an arbitrary index referring to the piece of
support equipment used by that launch.

then returned. We denote by rmi the maximum capacity of
reusable resource ri. The reusable resources in STAR are
complicated due to the need to refurbish each piece of equip-
ment between launches; The shop needed to refurbish these
reusable resources are also constrained, and can refurbish a
limited number of pieces of support equipment at a time.

Modeling the usage and refurbishment is accomplished
using an additional set of tasks. We refer to reusable resource
r1 as the pool of launch support equipment, and resource r2
as the shop. If li uses r1(li) pieces of support equipment, we
create r1(li) refurbishment jobs and associated constraints.
Each refurbishment job for the jth piece of support equip-
ment used for launch li consists of a wait task wji and the
refurbishment task itself, bji. Both tasks use r1, as does the
launch itself, but the bji task only uses r2, the shop. The set
of wait tasks wji for li is denoted Wi and the set of refur-
bishment bji tasks is denoted Bi.

The duration of bji is fixed to some duration bd. The du-
ration of the wait tasks needs to be computed given the con-
straints and an objective. We bundle the wait task duration
with the launch hour itself, so wait task wji starts at t(li) and
ends when the shop starts to service this piece of support
equipment. Refurbish task bji starts at the time wji ends,
lasts bd days, and uses the shop until it is finished. Both
resources r1 and r2 are returned when bji ends, as is nor-
mal for reusable resources. The set of temporal constraints
on wait times and refurbishment tasks associated with li is
denoted BTi. A run and manifest tracking the Reusable re-

sources is shown in Figure 2.
We denote by K the set of KSC infrastructure pairwise

constraints; there may be several such constraints between
a pair of launches li and lj , so each constraint is denoted
kh(li, lj). The separation time between launches somtimes
depends on which vehicle launches first, so in general such
constraints take the form

kh(li, lj) =

{
t(lj) > t(li)⇒ t(lj)− t(li) ≥ khji
t(lj) < t(li)⇒ t(li)− t(lj) ≥ khij

Let P be the set of customer-provided pairwise con-
straints. At most one such constraints exist between a pair
of launches. These constraints can also be order dependent.
If such a constraint exists, it is denoted by p(li, lj) and has a
similar form to kh(li, lj).

The set of constraints defining the separation between a
launch event and supporting event is denoted D; the separa-
tion for an individual launch event li and its supporting event
si is denoted di and has the form t(li) − t(si) ∈[di,l, di,u].
Let N be the set of customer-provided windows for each
launch. The set of launch windows for li is denoted ni. Since
a launch may have multiple windows, the jth window for
launch li is denoted nji with bounds [nji,l, nji,u]. The con-
straint has the form ∨j(t(li) ∈ [nji,l, nji,u]).

Denote scrubs by ai, and resource usage of the scrubs
oi(ai) or ci(ai) as appropriate. (Reusable resources are not
used during scrubs.) The time a scrub occurs is denoted
t(ai). A scrub is just another event, so ei can refer to a scrub,
and t(ei) can refer to the time of a scrub.

We denote by X the simulated manifest events, the times
of those events, and scrubs, scrub times, and related resource
use generated during the simulation of M .

Let Z refer to the set of KSC-wide blackout periods. Each
blackout period zi has bounds [zi,l, zi,u]. No launches are
permitted during these periods. Finally, let H refer to the
earliest and latest date of any launch in M .

4 Manifest Simulation
We are initially presented with an initial manifest M of fixed
times t(ei) and t(si) (i.e. an initial schedule). This manifest
is guaranteed not to violate any of the pairwise constraints
in H , N , P , D. Other constraints (pairwise constraints in
K or resource constraints) may be violated by the manifest.
STAR simulates the manifest, generates unexpected events,
and records delays and the reasons for them in the run.

STAR processes events in M in chronological order
imposed by the manifest, but is modified by delays and
rescheduling. As described in the introduction, STAR sim-
ulates events to determine whether launches are scrubbed,
or occur at t(ei). In STAR, the consumable and rolling win-
dow resources are consumed when there is a scrub, but the
pad support equipment is not used, meaning these resources
don’t need to be refurbished, and are available for subse-
quent launches. The times of scrubs and associated resource
use are added to the run X; the times of scrubs which do not
incur resource use are also included in the run to aid in com-
puting delays. The scrubbed event is delayed some number
of days into the future, and is inserted back into the manifest

at the new time, resulting from the delay. Events violating
constraints are rescheduled, also resulting in delays.

We use the convention that the ’current’ event from M
being simulated is always indexed by n; we refer to this
event as en. If en is a supporting event sn, then ln refers
to the launch in the manifest associated with this supporting
event. Also by convention, if ln is the current event in the
manifest that is being simulated, then sn refers to the sup-
porting event (by definition in the run, since it has already
been simulated) associated with this launch. Events in the
run are indexed by i, thus, ei; we do not need to refer events
in the manifest other than en.

At the time at which en is simulated, we must assume
there will be a scrub that uses resources. Recall that support-
ing events can scrub and use resources. Thus, when check-
ing for infrastructure violations and subsequent reschedul-
ing, rolling resource oj(en) and consumable cj(en) are as-
sumed to use their worst-case values, i.e. the consumption in
the event of a scrub. In general, oj(an) oj(sn) cj(sn) are all
distinct. When an event succeeds and is inserted into run X ,
we store the nominal resource usage in X . When referring
to resource use in X , we use an index other than n; oj(ai)
and cj(ai) refer to scrubbed event resource use, and oj(li)
and cj(li) refer to nominal resource use.

For rolling limits oi that only apply when one of a specific
set of launches Lj(oi) has taken place in the window, we can
use the following calculation of the resource used between
t(ln) − windowj(oi) and t(en). Denote by amt(oj , t(i))
the amount of resource consumed during this window. Let
W be the set of events occurring in this window. If Lj(oi)
∩W = ∅ then we set amt(oj , t(i))= 0, otherwise we com-
pute the amount as usual.

Consumable resource replenishment is assumed to occurs
hourly, up to cmi . Denote the amount of resource ci that has
been consumed and not replenished at the time ei was pro-
cessed d by amt(ci, t(i)). If the last event occurred at t(ei)
and the current event in the manifest is scheduled at t(en),
the new amount is amt(ci, t(n))= max((amt(ci, t(i)) +
δ(ci)(t(en) − t(ei)),cmi).

If executing the event en at t(en) would violate some
infrastructure constraint, it is rescheduled. However, only
events in X and en itself are used to check for constraint vi-
olations. Only en can be rescheduled, and it is always moved
without regard to constraints involving future events in M .
The current event is only constrained by pairwise constraints
with previously executed events, (worst case) resource con-
sumption of en, and resource consumption due to previously
executed events or scrubs that use resources. The new launch
date and time are constrained to move integer days into the
future, not hours. Because of orbital mechanics, when there
is a scrub, the launch time the next day is 30 minutes earlier
and we approximate as a 24 hour scrub.

Some events in the manifest are never be rescheduled as
a result of infrastructure violations. These events impose a
special form of blackout before and after the event. The set
of such events are denoted MU . For an event ei ∈ MU , at
time t(ei), an associated blackout uzi ∈ Z ensures no other
event can be scheduled in the blackout period. In general,
t(ei) ∈ [uzi,l, uzi,u]. Unlike other blackouts, if the associ-

Algorithm 1: SimulateManifest
Input : Manifest M
Input : Blackouts Z
Input : Pairwise K
Input : Rolling O
Input : Consumables C
Input : Reusable R
Input : Unmovables MU

Input : Horizon H
Output: Run X
X ← ∅;
while M ̸= ∅ do

en ← getNextEvent(M, en);
b← checkInfrastructureSatisfied(X, en);
if (b == false) then

recordViolations(X, en);
t(en)← rescheduleEvent(X, en);
propagateSpacing(X, en,M);
recordDelays(en,M);

else // (b == true)
UpdateYearlyRollingLimitCount(X, en);
un ← getEventOutcome(en);
if (un ==success) then

getEventUsage(en);
X ← X ∪ (t(en), en);
M ←M − (en);

else // (un ̸= success)
if (un ==reseuse) then

getEventUsage(an);
X ← X ∪ (an, t(en));

t(en)← t(en)+ getScrubDelay(an);
propagateSpacing(X, en,M,Z);

return violations;

ated event moves because of weather or technical delays,
then t(ei) and the associated uzi also moves.

When events are rescheduled or delayed, a new event time
t∗(en) is generated, and the event is inserted back into man-
ifest, in chronological order. This means events can be pro-
cessed in a very different order than they appeared in the ini-
tial manifest M . It also means launches can occur much later
than their supporting events if they are delayed or resched-
uled after the supporting event has been executed.

To ensure that the manifest always respects constraints in
D, P , N , each time events are delayed or rescheduled, all
of these constraints are propagated before the next item in
M is processed. The difference dn,u − dn,l is referred to as
the supporting event buffer, and allows for a small amount
of delay of supporting events prior to a launch, without pro-
voking further revision of the manifest. The constraints in D
are propagated if t(sn) changes, and are enforced as follows:
If t(ln) −t(sn) ≤ dn,l then we reassign t(ln)=t(sn)+dn,u,
otherwise t(ln) remains unchanged.

Algorithm 1 summarizes the manifest simulation al-
gorithm. We hilight only the most important inputs to

the various functions in this algorithm. For instance,
checkInfrastructureSatisfied(X ,en) does not take as input
the manifest, but propagation of spacing requires the man-
ifest, run and time of the current event. Blackouts, minimum
spacing and pairwise constraints, the resource types and lim-
its, and the horizon, are all used by most of the functions.
As noted, delays in unmovable events can lead to changes in
the blackouts due to these events, so the set of blackouts is
passed to propagateSpacing(X ,en,M ,Z).

STAR logs event times, scrubs and scrubs, delays and
failed launches. The logs allow STAR users to compute met-
rics from each run, including the percentage of launches de-
layed by vehicle type, year, or other vehicle property, the
percentage of delays caused by each resource or KSC-wide
pairwise constraint class in K, Customer spacing constraint
propagation caused by resource or K induced rescheduling
(ripple effect), and the number and length of delays, includ-
ing delays due to unexpected events, direct delays due to
rescheduling, and ripple effect delays caused by other de-
lays in conjunction with minimum spacing constraints.

5 Constraint Checking and Rescheduling
For each launch, the violations caused by resource limita-
tions, blackouts, or the pairwise constraints in K must be
recorded, along with their durations. In the event that the
reusable wait and refurbishment jobs are collectively infea-
sible, we only need to report that the support equipment con-
straint is violated, not whether there is insufficient amount of
support equipment or that the shop capacity is insufficient.
The job-shop-like problem STAR uses, both for checking
infrastructure violations and for rescheduling, consists of:

1. The run X , consisting of simulated manifest events
and times they occur (ei,t(ei)); these can be launches
(li,t(li)), supporting events (si,t(si)) or scrubs (ai,t(ai)).

2. Current manifest event and event time (en,t(en))
3. Inequality constraints of the form t∗(en) ≥ xi, derived

from the minimum spacing and pairwise constraints, and
as we will see below, from the consumable resources.

4. Rolling Limit Resource usage of events and scrubs,
oi(ei) oi(en), and constraints windowj(oi) with limits
oiw

m
j , oiymj

5. Disjunctions of inequalities to handle Z

6. Reusable Refurbishment tasks wji and bji
7. Reusable Refurbishment task constraints BTi, BTn

8. Reusable Resource usage ri(oi), ri(wij), ri(bij)
9. Reusable Resource capacities rmi

When checking infrastructure violations, en is con-
strained to occur at t(en) in the manifest. All prior events
are constrained to occur at the times recorded in X . This
means that, when checking constraint violations, almost all
of the job-shop-like problem described above does not re-
quire solving a constraints problem at all, but merely evalu-
ating the constraints given a fixed assignment. The only free
variables are the start times and durations of the Reusable
Refurbishment tasks wji and bji, not just for the current
launch but others in X , which may extend past t(en). Even

here, we only need to check whether the rmi limits are vio-
lated given the fixed start times of the launches in the run,
and the time t(en) from the manifest.

All minimum spacing and KSC pairwise constraints de-
volve to simple inequalities, because every launch in X is
totally ordered, and every launch in X precedes the cur-
rent event en, both when checking constraints and when
rescheduling.

When rescheduling, we find a new time for en that does
not violate any infrastructure constraints; the problem is to
minimize t∗(en) subject to all the constraints. Instead of
checking constraints, we now pose and solve the problem
of moving the current event to satisfy all constraints. We
now proceed to show how many of the resource constraints
are simplified into inequalities, and formalize the remaining
constraints into a mathematical programming problem.

Consider some consumable resource ci. Because all prior
events and scrubs are fixed in the simulated manifest, and we
know how to compute the total replenished resource using
the hourly rate δ(ci), we know how to compute the available
resource at t(en), which is the current scheduled time for
event en. Denote the amount of resource ci that has been
used and not replenished at t(en) by amt(ci, t(n)). If ci(en)
+ amt(ci, t(n)) > cmi , we can compute how far into the
future en needs to be scheduled in order not to violate the
resource constraint, namely, w =

ci(en)+amt(cn,t(en))−cmi
δ(ci)

.
We then add constraint t∗(en) ≥ xi =t(en)+w.

Each rolling limit constraint oi,j , characterized by win-
dow size windowj(oi) and limit oiwm

j , can be expressed
as a cumulative constraint (Beldiceanu and Carlsson 2002),
which requires that a set of tasks given by start times s,
durations d, and resource requirements r, never require
more than a global resource bound b at any one time. Start
times include the new event t∗(en), and all prior event
times in the manifest. The duration of resource usage equals
windowj(oi) (abbreviated wj(oi) for brevity below), and
resource usage for each event is indicated by oi(ei). Recall
that events in runs could be scrubs. Recall we must protect
for a scrub of the launch so the resource usage for the
current event en is designated oi(an). Finally, the global
resource bound is oiw

m
j or oiw

m′

j depending on whether
coiwj ≤ oiy

m
j . Each such constraint, then, can be written

Cum(t(ei), t
∗(ln),wj(oi),wj(on),o(ei),o(an),oiw

m
j),

where bold font indicates a constant. All events in the run,
plus the current event in the manifest, are in the scope of
this constraint; t(ei) refers to all event times, wj(oi) refers
to all window durations, and so on. The only free variable
in each such constraint is the new time for the current event.

We keep track of how many times windowj(oi) is
reached (not exceeded) in a year, and when this number
equals oiy

m
j , we reduce oiw

m
j to ojw

m′

i , and use the same
constraint of rolling limits above.

The reusable resource constraints are also expressed
as a pair of cumulative constraints. The first con-
straint ensures all wait tasks wji and refurbishment
tasks bji using the launch support equipment resource
r1 respect limit rm1 . This cumulative is thus writ-
ten Cum(bji,s, bjn,s, wji,s, wjn,s, bji,d, bjn,d, wji,d, wjn,d,

r1(bji), r1(bjn), r1(wji), r1(wjn), r
m
1). The second con-

straint ensures the refurbishment tasks using the shop re-
source r2 respect the shop limit rm2 ; this constraint is writ-
ten Cum(bji,s, bjn,s, bji,d, bjn,d, r2(bji, r2(bjn), r

m
2) As

above, all events in the run, plus the current event
in the manifest, are in the scope of these constraints;
bji,d, wji,d, r1(bji) and so on refer to all wait and refurbish
jobs of all events in the run.

Figure 3 shows the declarative version of the reschedul-
ing problem. The declarative form of the constraint checking
problem for violation recording is similar, except that t(en)
is fixed, and we minimize the latest end time of the schedule.

6 STAR for KSC
STAR is configured to evaluate manifests using 20 distinct
launch vehicles. There are 400 pairwise constraints, divided
into 6 classes of constraint. Launches are separated by dura-
tions ranging from a few hours to a few days, and most are
asymmetric (i.e. depend on the launch order). There are 25
customer-imposed minimum spacing constraints.

While the specific details of launch vehicles STAR is
used to analyze can’t be divulged due to commercial sen-
sitivity of launch providers and U.S. Government consider-
ations, we can give a sense of the scalability needed to en-
able STAR analyses. There are 20 distinct types of launch
vehicles. There are 6 classes of KSC-wide pairwise vehicle
separation constraints; however, not every pair of vehicles is
constrained by every class of constraint. There are 4 KSC-
wide resources; one consumable, one rolling resources with
three rolling window limits and no yearly limit, one rolling
resource with four rolling windows and one yearly limit,
and the two inter-linked reusable resources (pad support
equipment and the shop). There are multiple infrastructure-
prescribed blackout windows; customer launch windows can
be added. A typical manifest could contain 100 launches per
year; a large manifest could contain 175 − 200 launches.
Analyses can run multiple years. Scrub and scrub proba-
bilities depend on each launch vehicle type (newer vehi-
cles scrub more frequently in a year) and time of year (poor
weather causes more scrubs).

7 How to Build a STAR
Knowledge engineering for STAR consisted of several parts.
First, what are the key constraints on KSC launch opera-
tions, and how do we formally represent them? Second, what
form of analysis is STAR required to do, what algorithms did
STAR require to perform that analysis, and how were they
implemented? Third, how did we ensure STAR was imple-
mented properly and performing its required functions? We
discuss each of these elements of STAR in turn.

The domain knowledge required to build STAR was gath-
ered by interviewing domain experts at KSC familiar with
each of the main classes of constraints. These constraints
were first documented using natural language. Each con-
straint, in turn, needed to be represented in a formal way.
As we describe in Section 3, the bulk of STAR’s constraints
are straightforward temporal inequalities, but the specifics
of the resource constraints required significant iteration with

the KSC customer before settling on a formal definition.
The specific analysis required (discussed in the next para-
graph) also resulted in some simplification of the resource
constraints. Ultimately, as we describe in Section 5, we
mapped every constraint described by the KSC customer
(both KSC infrastructure and customer constraints) to a con-
straint in minizinc’s constraint language, and use a minizinc-
compliant solver (CBC, in our case), to solve the resulting
scheduling problems. The most complex constraint model
elements were the inter-related reusable resource constraints
modeling launch support equipment.

As we describe in Section 4, analysis performed by STAR
required simulating each launch, random events that could
delay the launch, and reporting constraint violations. Docu-
menting the specific process prior to design and implemen-
tation revealed numerous problems to be solved, but also re-
sulted in simplifications of what would otherwise be a very
hard problem. STAR uses a combination of constraint mod-
eling (minizinc (Nethercote et al. 2007) and CBC constraint
solver (Forrest and Lougee-Heimer 2014)) and direct imple-
mentation of constraint checking during manifest simulation
in Python. We need to record what constraints are violated
for a fixed assignment. That means commodity constraints
technology isn’t suited to our needs, because most solvers
don’t report violated constraints, which is what STAR needs
to do. Since constraint violations are computed from a run
plus the time of the next event in the manifest, most of these
constraint violations are determined using Python code di-
rectly. The most complex constraints needing to be solved
when rescheduling are those involving refurbishment of the
pad support equipment, which are written to a minizinc
model to check for constraint violations.

When rescheduling, however, we must write a somewhat
more complex minizinc model involving all the derived in-
equalities from the run and the resource constraints, then
find the earliest time we can reschedule the event in the
manifest that has violated some constraints. Python code is
used to compute the inequalities, as described in Section
4, which augment the minizinc model for the reusable re-
sources, along with the rest of the constraints, and a mini-
mization objective instead of a feasibility objective.

The need to split constraints between KSC infrastructure
constraints and customer pairwise constraints deep inside
the manifest simulation process led to custom code to write
and solve separate minizinc models, one for rescheduling,
and a second model (not described in this paper) to prop-
agate customer spacing constraints after rescheduling was
completed. However, STAR’s requirements didn’t include
building an up-front schedule in the presence of uncertainty,
allowing us to use a ’classical’ constraint representation for
rescheduling. Furthermore, the requirement to only resched-
ule a single launch at a time led to great simplification of
the minizinc representation; in particular, the consumable
resources devolve to simple inequalities.

The testing of the STAR constraint model posed a signif-
icant challenge. We constructed multiple test cases for each
class of constraint present in STAR; that is, each of the 6
classes of pairwise constraint, customer spacing constraints,
the consumable resource, the reusable resource, the 5 lim-

min t(ln)
∗

s.t. xi ≤ t(ln)
∗ ∀ci ∈ C (1)

∨i (zi,l ≤ t(ln)
∗ ≤ zi,u) ∀zi ∈ Z (2)

khcj ≤ t(ln)
∗ − t(lj) ∀kh(lj , ln) ∈ K (3)

Cum(t(ei), t
∗(ln),wj(oi),wj(on),o(ei),o(an)) ∀oi,j ∈ O (4)

wji,s = t(li) ∀Wi, ∀wji ∈ Wi (5)

wjn,s = t∗(ln) ∀wjn ∈ Wn (6)
wji,s + wji,d = wji,e ∀Wi ∪Wn, ∀wji ∈ Wi (7)
bji,s + bji,d = bji,e ∀Bi ∪Bn, ∀bji ∈ Bi (8)
bji,s = wji,e ∀Bi ∪Bn, ∀bji ∈ Bi (9)
bji,d = bd ∀Bi ∪Bn, ∀bji ∈ Bi (10)
Cum(bji,s, bjn,s, bji,d, bjn,d, r2(bji, r2(bjn), r

m
2) (11)

Cum(bji,s, bjn,s, wji,s, wjn,s,

bji,d, bjn,d, wji,d, wjn,d,

r1(bji), r1(bjn), r1(wji), r1(wjn), r
m
1) (12)

Figure 3: The constraint program for the rescheduling problem. Bold font indicates constants. Universal quantification indi-
cates multiple constraints of each type. Constraints 1 represent consumable resource imposed delays. Constraints 2 are due to
blackouts. Constraints 3 are due to pairwise infrastructure constraints. Constraints 4 are due to rolling resource window con-
straints. Constraints 5 - 6 constrain the start of the wait jobs for the reusable resources to launch times. Constraints 7 - 12 are
the linked reusable resource constraints for the wait and refurbishment jobs.

its on rolling resources, the 3 limits on rolling window re-
sources, along with a variety of other test cases for launch
windows, blackout periods, and other related behavior. Test
cases included scenarios in which a constraint should, and
should not, be violated. Dozens of tests were constructed
to validate STAR’s ability to detect and repair every con-
straint correctly. Many tests could be constructed with either
one or two launches. Blackouts can be tested with a single
launch; pairwise constraints with two launches. Testing re-
source constraints often required as many as six launches.

Several key features of STAR facilitated testing. First, the
ability to specify launch date and launch hour let us create
tests guaranteed to satisfy or violate constraints. Second, the
ability to turn off probabilistic events ensured we could con-
struct tests with deterministic outcomes. Third, ensuring that
unexpected failed events that consume resources led to the
correct behavior was accomplished by implementing flags
that would automatically fail the event in question. It was
often not possible to construct test cases to only violate a
single constraint; when multiple constraints were violated,
careful documentation of all expected outcomes was neces-
sary. STAR problems identified with such tests ranged from
bugs in code to mis-configured constraints.

8 Related Work
The problem faced by KSC is to identify bottlenecks that
prevent scheduling, and thus customer satisfaction. A typ-
ical approach is to use Discrete Event Simulations (DES)
(Lai, Che, and Kashef 2021). A challenge of DES is that
event transitions may not capture scheduling decisions with-
out significant modeling effort. Direct analysis of optimal

schedules (Wang et al. 2016) is also used. By contrast, the
approach taken in STAR is to record constraint violations
found during the simulated execution of the schedule.

(Zhu, Zhou, and Che 2022) describes integrating schedul-
ing and simulation to handle scheduling problems in the
presence of uncertainty. Such approaches do not perform
bottleneck analysis, which is the problem STAR addresses.

Some approaches both identify and relax constraints to
solve complex planning and scheduling problems. Hauser
(Hauser 2014) describes the minimum constraint removal
problem to enable robots to operate safely in an environ-
ment. Eifler et al. (Eifler, Frank, and Hoffmann 2022) show
how to explain why plans cannot simultaneously achieve
pairs of goals, or properties. They automatically determine
minimal relaxations of time and resource constraints that al-
low both (or sets of) properties to be achieved. Whether such
approaches are scalable unclear, and none of the methods
above incorporate uncertainty.

9 Conclusions and Future Work

STAR presents an interesting use case for knowledge engi-
neering for scheduling. While we have described these chal-
lenges for a specific application, our design and approach
employ standard minizinc models and solver technology.
Our lessons learned are useful for future projects requiring
the integration of simulation, scheduling, and tracking re-
source violations as opportunities for investing in new in-
frastructure.

References
Beldiceanu, N.; and Carlsson, M. 2002. A New Multi-
Resource cumulatives Constraint with Negative Heights.
Proceedings of the 8th International Conference on the Prin-
ciples and Practices of Constraint Programming.
Brücker, P. 1998. Scheduling Algorithms. Springer.
Eifler, R.; Frank, J.; and Hoffmann, J. 2022. Explaining Soft-
Goal Conflicts through Constraint Relaxations. In Proceed-
ings of the 31st International Joint Conference on Artificial
Intelligence, 4621 – 4627.
Forrest, J.; and Lougee-Heimer, R. 2014. CBC User
Guide. INFORMS TutORials in Operations Research.
Https://pubsonline.informs.org/doi/pdf/10.1287/educ.1053.0020.
Hauser, K. 2014. The minimum constraint removal problem
with three robotics applications. The International Journal
of Robotics Research, 33(1): 5–17.
Lai, J.; Che, L.; and Kashef, R. 2021. Bottleneck Analysis in
JFK Using Discrete Event Simulation: An Airport Queuing
Model. In 2021 IEEE International Smart Cities Conference
(ISC2), 1–7.
Nethercote, N.; Stuckey, P.; Becket, R.; Brand, S.; Duck, G.;
and Tack, G. 2007. MiniZinc: Towards a standard CP mod-
elling language. In Proceedings of the 13th International
Conference on Principles and Practice of Constraint Pro-
gramming, 529––543.
Wang, J.-Q.; Chen, J.; Zhang, Y.; and Huang, G. Q. 2016.
Schedule-based execution bottleneck identification in a job
shop. Computers and Industrial Engineering, 98: 308–322.
Zhu, M.; Zhou, C.; and Che, A. 2022. Simulation-
Optimization Approach for Integrated Scheduling at Wharf
Apron in Container Terminals. In 2022 Winter Simulation
Conference (WSC), 1944–1955.

