
The Gateway Vehicle Systems Manager Planner

Michael Whitzer1, Anthony Koutroulis3, Hemanth Koralla4, Chris Knight2, Chuck Fry3,
Jeremy Frank2, Minh Do3, J. Benton2, Laura Barron1, Abiola Akanni2

1Software, Robotics and Simulation Division, NASA Johnson Space Center
2Intelligent Systems Division, NASA Ames Research Center

3KBR Wyle Services, NASA Ames Research Center
4Jacobs Technology, Inc, NASA Johnson Space Center

Abstract

NASA has developed an automated planner as part of the
Vehicle System Manager (VSM), integrated with flight soft-
ware, to control a habitable spacecraft, currently referred to
as Gateway. We describe the knowledge engineering chal-
lenges in developing this planner. These challenges range
from the use of a novel domain modeling language with mul-
tiple stakeholders, including the planner; the deployment en-
vironment, a slow, memory bounded radiation tolerant flight
computer; and the high criticality needs of software operating
a human spaceflight vehicle. We focus in this paper on how
these challenges shaped development of the planner.

1 Introduction
NASA plans to construct a habitable spacecraft, currently
referred to as Gateway (Crusan et al. 2018), in the vicinity
of the Moon and has developed and tested multiple tech-
nologies to enable its autonomous operation. These tech-
nologies include a Vehicle System Manager (VSM), inte-
grated with flight software, to control the habitat. Building
on previous VSM work (Aaseng et al. 2018, 2023; Badger,
Strawser, and Claunch 2019) to develop and demonstrate au-
tonomy technology using contemporary flight software and
automated reasoning technology, we have developed an au-
tomated planner as part of the Gateway VSM. In this pa-
per, we focus on the knowledge engineering challenges we
have encountered in our work. Our automated planner in-
herits recognizable qualities from decades of research and
development efforts for handling tasks involving time and
resources. However, integrating a planner with systems de-
signed for human spaceflight posed numerous challenges.
We focus on these knowledge engineering aspects of the
VSM planner and how they influence the current planner de-
sign as we maintain the heritage of model-based automated
planners developed by the AI planning community.

It was essential that we considered software engineering
design decisions, external interface requirements, and soft-
ware quality requirements, all of which influenced the final
product. For instance, the planner employs a new modeling
framework specific to the VSM. Instead of using conven-
tional flat-file storage of models, we were required to in-
terface with an SQLite database that serves multiple VSM
functions, as well as other VSM applications including fault

management, resource management, and state determina-
tion. These factors influence the planner’s architecture. The
database stores all of the possible tasks the planner can use,
which necessitates pre-processing routines such as reach-
ability and relevance analysis to narrow down the set of
relevant tasks. Additionally, the planner will operate on a
PowerPC SP0-S processor1, which offers significantly less
power and memory compared to the standard desktop com-
puters on which most research planners operate. Human
spaceflight software requires the highest levels of safety and
quality assurance, which imposes a variety of software test-
ing and quality control requirements on the planner. All of
these requirements drive language choice, coding standards,
and algorithms that facilitate automated software testing.

The paper is structured as follows: in Section 2, we
describe our planning model. In Section 3, we describe
different components of our VSM Planner including pre-
processing routines, core planning algorithm, heuristic-
guided search algorithms, and resource handling routines.
In Section 4, we describe the external interfaces between the
planner and the rest of the VSM. In Section 5, we describe
the testing procedure for our planner. Finally, in Section 6,
we describe the software engineering decisions that influ-
ence planner development and algorithms.

2 Planning Model
Gateway, our primary operating domain, drove the develop-
ment of our planning model. One unique aspect of our model
is the language used to specify it, which integrates features
similar to the temporal and numeric aspects of PDDL, while
also introducing unique modifications derived from Space-
craft Onboard Interface Services (SOIS) compliant Elec-
tronic Data Sheets (SEDS).2 The language has many famil-
iar features. The model uses state variables (fluents) that can
be assigned either enumerated or numeric values, but also
includes first-class representation for resources and resource
requirements. Another notable feature is the introduction of
prevailing constraints, requirements which must be satisfied
through the entire plan execution, based on vehicle mode &
configuration. We will elaborate on those concepts in the

1https://aitechsystems.com/product/sp0-rad-tolerant-3u-
compactpci-sbc/

2https://public.ccsds.org/Publications/SOIS.aspx

later part of this section.
The input to our VSM planner contains three main parts:

Goals, Tasks, and Telemetry (i.e., initial state). The output
plan P = {⟨a1, t1⟩, . . . , ⟨an, tn⟩} is the list of tasks and
their starting times. Tasks are allowed to overlap and may
start at the same time. Key concepts in our model are:

• State Variable: The state of the system is defined by
values assigned to state-variables of type discrete (i.e.,
multi-valued) or numerical.

• Comparison Constraint: A relation x ⋄ y in which x is
a variable (discrete or numeric), y is a either (i) another
variable of the same type or (ii) a legal value of x, and
⋄ ∈ {=, ̸=, >,≥, <,≤}.

• Variable Assignment: An assignment x ← y in which
x is a variable, either discrete or numeric, and y is a legal
value of x.

• Resource: A numeric variable r with bounded value that
is changed by task T during its execution.

• Resource Requirement (ResReq): A resource require-
ment is a relation Rr = ⟨r, v, p⟩ in which r is a resource,
v is a value of resource that will be used, and p ∈
{RELEASE DURATION,RELEASE START,
RELEASE END,RESERV E DURATION,
RESERV E START,RESERV E END} is a
resource-use-property value that specifies how the v
amount of resource r is impacted by a given task.
Resource impact is additive; ‘reservations’ reduce the
available resource and ‘releases’ increases the available
resources. All impacts are instantaneous.

• Resource Kind: In our data model, each resource is
also labeled with a resource-kind value that can be one
of the following: {REUSABLE,CONSUMABLE,
REGENERATIV E,CLAIMABLE}. In Sec-
tion 3.1, we will discuss in more details the relationship
between resource-use-property and resource-kind values
and how they are used during planning.

• Mode & Configuration: The system can be specified
to operate in a particular mode or configuration and
each combination of ⟨mode, configuration⟩ is associ-
ated with a particular set of comparison constraints that
needs to be satisfied throughout the plan execution. These
prevailing constraints are discussed in Section 2.3.

2.1 Goals
Our planner supports both hard and soft goals with pref-
erences. While the Gateway VSM allows various methods
to specify soft-goal values, the planner currently simplifies
these to a single scalar preference value for two types of
goals: (i) a set of tasks or (ii) a set of comparison constraints:

• Task-As-Goal (TAG): A Task-As-Goal (TAG) gT contains
a specific set of tasks T = {a1...an}. For a hard-goal gT ,
a plan P is considered valid if it includes all tasks ai in
T . For a soft-goal gT with a preference value vg , the plan
P receives a value of vg only if it includes all tasks in T
(partial completion of T does not get any value).

• State-Target (ST): A State-Target (ST) goal gS is de-
fined by a set of comparison constraints: gS = {⟨p1 ⋄
q1⟩,⟨pn ⋄ qn⟩}. For a hard-goal gS , the plan is valid if
the final state Se satisfies all constraints in gS . If gS is a
soft-goal associated with a value vg , the plan P gains vg
if the final state Se meets all constraints in gS (like soft
TAG, partial-satisfaction does not get any value).

Our planner can process any arbitrary combination of hard
and soft goals of either type TAG or ST, and the main objec-
tive function is to: (1) satisfy all hard-goals; and (2) maxi-
mizes the accumulated values of soft-goals (i.e.,

∑
vg).

2.2 Tasks
Task models in our system closely resemble the durative ac-
tions found in PDDL2.1 (Fox and Long 2003). Specifically,
each task is specified by the following components:

• Prerequisites: a list of conditions, each a comparison
constraint, that must be met at the task’s start.

• Invariants: a list of conditions, each a comparison con-
straint, that must remain true for the duration of the task.

• Effects: a list of instantaneous variable assignments ap-
plied at the end-time of the task.

• Resource Requirements: a list of resource requirement
incurred by the task.

• Duration: an estimated and worst-case durations, de-
noted by ⟨dure, durw⟩. Currently, our planner consider
only the worst-case duration dure.

Discussion Our task model aligns with the at-start and over-
all durative conditions of PDDL2.1 through prerequisites
and invariants. However, unlike PDDL2.1, it does not fea-
ture at-end instantaneous conditions and there’s also no pro-
vision for at-start effects. The VSM language also makes re-
source requirements explicit and integral to task modeling.
Task models in our framework are fully grounded with fixed
task durations and resource utilization properties. TAGs can
be modeled as classical goals using existing AI planners, but
are included as first-class goals in the Gateway model.

2.3 Initial State
At the onset of the planning process, the planner receives
current system state information via telemetry messages
from software components that monitor various hardware
modules. This system information comprises the initial state
for the planner, detailing the initial values of state variables
and the profiles of resource availability. Specifically:

• Initial Variable Assignments: initial values of all state
variables.

• Resource Profiles: each resource r is given a profile de-
fined by: Pr = ⟨Maxr,minr, Ar⟩ in which:

⋄ Maxr and minr are the maximum and minimum val-
ues of r that the planner needs to keep the resource
amount within (i.e., Maxr ≥ value(r) ≥ minr)
throughout the plan.

⋄ Ar = {⟨v1, t1⟩....⟨vn, tn⟩}} is a step-function that de-
scribes the amount of r that is available for the planner

to use over the planning horizon where: (i) t1 = 0
denotes the initial availability of r, and (ii) each pair
⟨vi, ti⟩ indicates that vi is the amount of r available
from time ti until ti+1.

• Mode & Configuration: special state variables xm and
xc represent the system’s operating mode and configura-
tion for the duration of the planning process. The mode
and configuration are retrieved with the other telemetry
values and can be thought of as variable assignments of
the form (xm ← ym) ∧ (xc ← yc)).

• Prevailing constraints: are comparison constraints that
must be satisfied through the entire plan execution and
take the form (xm ← ym) ∧ (xc ← yc) =⇒ (p1 ⋄
q1) ∧(pm ⋄ qm). Thus, when mode xm and config-
uration xc take on specific values, a corresponding set
of comparison constraints the plan must adhere to for its
entire execution are enabled. These resemble the plan-
trajectory constraints, modeled as Linear Temporal Logic
(LTL) formulas, in PDDL3.0 (Gerevini and Long 2006).

3 Gateway VSM Planner
The Gateway VSM Planner combines goal achievement rea-
soning and scheduling to resolve potential resource con-
flicts. This section concentrates on the planner’s internal
working while leaving the discussion on interfacing with
other software components to Section 4.

3.1 Planning Model Building
The Onboard Data Model (ODM) is an SQLite database
containing the variables and tasks that capture the whole
VSM system configuration, and all possible potential goals
that the planner may have to plan for. Clearly, in any given
planning scenario, with its specific goals and initial con-
ditions, much of the ODM may be unnecessary or irrele-
vant. Therefore, the VSM Planner runs pre-processing steps
to narrow down the set of tasks, goals, and the associated
variables to make the planning model as compact as pos-
sible. We first load the ODM task library from the SQLite
database. Conflict Analysis pre-detects and stores informa-
tion on conflicting task pairs. This helps speedup the subse-
quent phase of planning search where task conflicts lead to
task-orderings and causal-link threats. Relevance Analysis
finds the tasks and variable-assignments that are ‘relevant’
to the goals. Finally, Reachability Analysis finds the tasks
and variable-assignments that are ‘reachable’ from the ini-
tial state.

Upon receipt of a planning request, which includes the
goal information:
Loading Tasks from ODM: The entire task library is read
in from the ODM at application startup. Task IDs, names,
durations, and status are read in the first pass. Task conse-
quences (effects), prerequisite and invariant conditions, and
resource requirements are read in subsequent passes. Finally,
variable metadata is loaded for all variables referenced by
task conditions, consequences, and resource requirements.
Internally, each state variable stores a list of consequences
affecting that variable. Consequences in turn have links back

to their tasks. This organization facilitates search and pre-
search analyses.
Conflict Analysis: Task conflict analysis, which identifies
effect-effect (i.e., two task effects change the same variable
to different values) and effect-condition (i.e., one task effect
violates the other task’s prerequisite/invariant) conflicts, is
performed immediately after the task library is loaded. Task
conflicts are stored in a map keyed by task ID pairs.
Filtering disabled tasks: Task status (enabled/disabled) is
refreshed and the set of tasks pre-loaded from the ODM
is refreshed, filtering out from consideration disabled tasks.
Detailed Information about goals G in the request are read
from the ODM.
Acquire Initial Values: Projected initial state variable val-
ues Sinit are requested from the State Determination cFS
app, and resource availability projections RPinit are ob-
tained from the Resource Manager app. Prevailing con-
straints Cprev are read from the ODM, based on the pro-
jected mode (i.e., mission phase) and configuration of the
assembled spacecraft in Sinit.
Relevance Analysis: Once the planner receives the goal set
G from the Fault Manager cFS app, this routine looks for
tasks, variables, and resources that are relevant to G. Rele-
vant tasks are those which either achieve the goals directly
or support the conditions that enable other tasks to achieve
the goals. Specifically, let TR and CR be the relevant set of
tasks and comparison-constraints. A sketch of the Relevance
Analysis routine is as follows:
1. Initialize: TR with the set of Task-As-Goal (TAG) and

CR with the union of State-Target goals.
2. Relevant Tasks Update: add to TR any task with effect

that support a comparison-constraint in CR.
3. Relevant Variable-assignments Update: add to CR all

prerequisites and invariants of new tasks added to TR.
Step 2 and 3 are run alternatively until a fixed-point is

reached (i.e., no change to TR and CR). The final sets TR

and CR contains all tasks and variable-assignments relevant
to the set of TAG and state-target goals given to the planner.
Also note that in those two steps, any task or variable assign-
ments that violate prevailing constraints are disqualified.
Reachability Analysis: while Relevance Analysis can be
thought of as ‘backward’ reasoning from the goals to find
relevant tasks and variable-assignments, Reachability Anal-
ysis runs in the opposite ‘forward’ direction and finds tasks
and state-assignments that can be reached from the initial
state through executing a set of tasks that are applicable. A
sketch of the Reachability Analysis is as follows:
1. Initialize: the reachable set of variable-assignments SI

with the set of variable-assignments in the initial state
and the reachable set of tasks TI = ∅.

2. Reachable Tasks Update: add to TI any task that has its
conditions fully supported by SI .

3. Reachable Variable-assignment Update: add to SI the ef-
fects of all tasks that are newly added to TI .

Like Relevance Analysis, we also run the two updating
steps 2 and 3 until a fixed-point (i.e. no change to SI and TI).
The final sets SI and TI contains all variable-assignments

and tasks that can be achieved with the given initial-state
that the planner operate from.
Combined Algorithm: Running Relevance Analysis fol-
lowed by Reachability analysis yields the following:
1. Run Relevance Analysis for a given set of goals and re-

turn TR and CR.
2. Run Reachability Analysis from the initial-state:

(a) Reachable Task Update: only consider as candidate
tasks that are in TR when building TI .

(b) Reachable Variable-assignment Update: only consider
adding task effects that support CR to SI .

Tasks and variable assignments absent from the final sets
TI and SI can be excluded from the planning model. If there
is a TAG Tg or a state-target goal STg that is not entirely
in TI or SI , respectively, then: (i) If Tg or STg is a soft-
goal, it’s removed from the planning model; (ii) If Tg or STg

is a hard-goal, then we can declare the planning problem
unsolvable.
Resource Type Inference: As outlined in Section 2, each
resource R is classified as one of 4 types, REUSABLE,
CLAIMABLE, REGENERATIVE, CONSUMABLE that the
Planner relies upon during planning (refer Section 3.5). Also
as outlined in Section 2, each task can have a resource-
requirement on R of one of the six different types. How-
ever, there is no guardrail in the ODM to ensure that the
collective resource requirements by all tasks are consistent
with the resource-kind declaration for each resource. Fur-
thermore, it’s possible that Relevance and Reachability can
reduce the set of tasks, and allow or force the planner to
treat resources differently, based on the remaining tasks in
TI . Therefore, the pre-processing phase includes a routine to
infer the resource-kind to be consistent with how resources
are utilized by the final set of relevant & reachable tasks.

Specifically, let T be the set of task collected from the
ODM after running the combined filtering algorithm (rele-
vant + reachability analysis), for each resource r, we first
collect the set of tasks Tr ⊆ T that require r. Then we apply
the rules outlined in Table 1 to all tasks in Tr to infer the
correct resource-kind for r. Specifically:
• Line 1-3: If exist t ∈ Tr that ‘release’ (i.e., generate) r

at any point during its execution, then r is classified as
REGENERATIVE.

• Line 4-5: If exist two tasks t1, t2 ∈ Tr in which t1 re-
quires r with type RESERVE DURATION and t2 re-
quires r with type either RESERVE START or RE-
SERVE END, then r is classified as REGENERATIVE.

• Line 6: If all tasks t ∈ Tr uniformly requires r with
type RESERVE DURATION, then r is classified as
REUSABLE. If all requirements are for exactly 1 unit
of r then we classify r as CLAIMABLE.

• Line 7-8: If all tasks t ∈ Tr requires r with type either
RESERVE START or RESERVE END, then r is classi-
fied as CONSUMABLE.

3.2 Planner Setup
Algorithm 1 captures the key steps described in this section.
Specifically, when the Planner app is starting up, it loads all

REL S REL D REL E RES S RES D RES E RES KIND

1 Y * * * * * REGEN
2 * Y * * * * REGEN
3 * * Y * * * REGEN
4 * * * Y Y * REGEN
5 * * * * Y Y REGEN
6 N N N N Y N REUSE
7 N N N Y N * CONSUM
8 N N N * N Y CONSUM

Table 1: Inferring Resource-Kind from Resource-Use-
Properties.

tasks from the ODM (line 1) and conducts Conflict Analysis
to identify potential effect-effect and effect-condition con-
flicts between all pairs of tasks in Tall (line 2).

The planner then enters the perpetual mode of waiting for
the plan request from Fault Manager. Upon receiving such
a request (line 5), it will start the process of building the
planning model, going through several key steps:

1. It first invokes the pre-processing routine to assess the
current task-status flags and exclude all tasks that are cur-
rently disabled from consideration (line 17), and extract
the specified goal information (line 18) from the ODM.

2. The planner retrieves (lines 21-25) from other cFS apps:
(1) the initial values for state variables from State Deter-
mination; and (2) resource allocation profiles from Re-
source Manager. It will then fetch applicable prevailing
constraints (line 24) from the ODM based on vehicle
mode and configuration.

3. With the concrete set of goals and tasks, initial values for
state variables, resource allocation profiles, and the pre-
vailing constraints, the Planner calls Relevance Analysis
(line 27-31) to find all tasks, variables, and resources rel-
evant to the goals.

4. It then calls Reachability Analysis (line 33-36) to further
narrow the set of relevant tasks to only those tasks reach-
able from the initial state.

5. The final planning model is built (line 38-44) from tasks,
goals, variables & variable assignments, and resources
that are both relevant and reachable.

After the planning-model is built, the planner will try to
find a valid plan using the Partial Order Causal-Link (POCL)
planning algorithm (Penberthy and Weld 1992), and when
found will send the plan to the Dispatcher cFS app for ex-
ecution (line 12). Simultaneously, the planner will request
that the Goal Tracker cFS app tracks the achievements of
the given goals (line 13). After that, the planner returns to
the idle loop waiting for the new plan-request.

3.3 POCL Planning Algorithm
Our POCL planning algorithm starts from an initial partial-
plan Pinit containing only tasks that belong to ‘hard’ TAG
goals, and continues to expand it by generating ‘child’
partial-plans that add causal-link support for goals and re-
solve unsupported action conditions.

Algorithm 1: Gateway VSM Planner as cFS Application

1: Tall ← read all tasks from the ODM using SQL query
2: Conduct CONFLICTANALYSIS to store all conflicting

task pairs.
3:
4: loop
5: Receive plan-request PR from FAULTMANAGER
6: Call PREPROCESSING(PR)
7: Call ACQUIREINITIALVALUES(V,R)
8: Call RELEVANCEANALYSIS(G)
9: Call REACHABILITYANALYSIS(Sinit, Trel)

10: Call BUILDFINALPLANNINGMODEL
11: Call POCLPLANNINGALGORITHM
12: Send the plan to DISPATCHER to execute
13: Ask GOALTRACKER to track goal-achievement
14: end loop
15:
16: procedure PREPROCESSING(PR)
17: Filter out from Tall all tasks currently disabled
18: G← retrieve from ODM using goal IDs in PR
19: end procedure
20:
21: procedure ACQUIREINITIALVALUES(V,R)
22: Sinit ← values for V from the STATEDETERMINA-

TION cFS app
23: RP ← resource profiles for R from the RESOURCE-

MANAGER cFS app
24: Cp ← applicable prevailing constraints from ODM

using mode & configuration from Sinit

25: end procedure
26:
27: procedure RELEVANCEANALYSIS(G,Sinit, RP,Cp)
28: Trel ← tasks in Tall that are relevant to G given

Sinit, RPinit, and Cprev

29: Vrel ← variables appear in conditions of Trel

30: Rrel ← resources utilized by tasks in Trel

31: end procedure
32:
33: procedure REACHABILITYANALYSIS(S, T)
34: Trec ← tasks in Trel that are reachable from Sinit

35: Srec ← effects of Trec

36: end procedure
37:
38: procedure BUILDFINALPLANNINGMODEL
39: Vfinal ← variables appear in both Vrel and Srec

40: Tfinal ← Trec

41: Rfinal ← resources used by Tfinal

42: Gfinal ← goals supported by tasks in Trec

43: Run RESOURCETYPEINFERENCE.
44: end procedure

Each causal-link connects a task effect e to another task’s
condition or a state-target goal, for which the compari-
son constraint representing it is satisfied by the variable-
assignment representing e. Since task effects can conflicts
with each other or violate other tasks’ prerequisites/invari-
ants, the POCL algorithm also manage all conflicts between
tasks in the (partial) plans and maintain the task orderings re-

sulted from conflicts. Each partial-plan integrates a Simple
Temporal Network (STN) (Dechter, Meiri, and Pearl 1991)
that captures all temporal relations imposed by causal-links
and task-orderings to resolve conflicts, allowing us to de-
tect temporal violations (e.g., circular causal dependency be-
tween two tasks) early. A partial-plan is a complete plan
if: (1) all ‘hard’ goals are supported; (2) there is no task-
condition that is not supported; (3) no temporal or resource
constraint violation. While each plan P is represented by a
set of causal-link supports, P ’s STN can give the earliest
time at which each task can execute. The Planner then send
the set of tasks and the associated earliest-start-time to the
Dispatcher cFS app (refer Figure 1) for execution.

We use a variant of Best-First Search, with the heuristic
function deciding the ‘best’ node briefly explained in Sec-
tion 3.4, to navigates the set of partial-plans generated by
the POCL algorithm. To compensate for the heuristic qual-
ity, and to handle the combination of hard and soft goals
described in Section 2.1, we have implemented an anytime
search algorithm. We provide a search-time limit tslimit; if
the planner finds a complete plan before tslimit is over, then
we will keep generating plans as long as there are still not-
visited search nodes, potentially finding a better solution.
Thus, our algorithm may find multiple solutions with grad-
ually better plan quality, and at any point tstop ≤ tslimit,
we can return the best solution found by tstop. For example,
the first complete plan P1 that it returns at t1 < tslimit may
satisfy all hard-goals without addressing any ‘soft’ optional
goals that could add additional value. If we keep searching
after t1 we can find plans with better quality by satisfying a
higher-value subset of ‘soft’ goals.
Implementation details: The planner’s search algorithm it-
erates over a priority queue (i.e. no recursion). Its STN
propagation algorithms are incremental and iterative. The
STN algorithms are derived from the NASA open source
EUROPA constraint based reasoning system (Frank and
Jónsson 2003). While our POCL algorithm handles con-
sumable resources directly, it defers handling of reusable
resources (refers Section 2) to a ‘scheduling’ phase after a
complete plan is found. This phase employs an incremental
and iterative heuristic algorithm. Notably, neither STN prop-
agation or reusable resource handling algorithm uses back-
tracking, and there is no need for retraction of constraints
during either the planner or scheduler search.

The planner’s best-first graph search algorithm can gen-
erates and visit many equivalent search states, leading to in-
crease planning time, and requires additional queue space.
We employ a variant of duplicate-detection, in which the
entire search history is recorded in a hash table of par-
tial plans. Prior to being enqueued, new partial plans are
checked against this history using first the plan’s hash value,
and then the full partial-plan structure if the hash is matched.
Unique partial plans are enqueued and recorded in the table;
duplicates are dropped from consideration. The space-time
tradeoff inherent in this approach is discussed in Section 6.

3.4 Heuristics
Heuristics are crucial in providing estimates to rank search
nodes and decide which partial-plans are the ‘best’ to ex-

plore next. At the high-level, heuristics help guide the plan-
ning search algorithm towards finding a valid good quality
plan efficiently, leading us to design a multi-factor heuristic
function that is geared toward ranking partial plans based on
the following factors:
1. Find a valid plan: Thus, it first prioritizes partial-plans

nearing the state of a complete, valid plan, which means
supporting all ‘hard’ goals.

2. Find a good quality plan: Since plan quality is deter-
mined by the sum of ‘soft’ goal values, the heuristic then
gives precedence to plans that accumulate the highest
goal values.

3. Find a plan efficiently: Next, our heuristic prioritizes
partial-plan that is closer to a complete plan, thus re-
quire adding fewer new actions and having fewer goals
and open-conditions that need to establish new support.

Specifically, we rank partial-plans by these heuristics, or-
dered by their preferences: (1) fewer unsatisfied mandatory
‘hard’ goals; (2) higher total potentially achievable soft goal
value; (3) higher accumulated soft goal value; (4) higher
number of goals supported; (5) lower planning-graph addi-
tive heuristic value; (6) fewer unsupported conditions; and
(7) fewer actions. Several of those heuristics are inspired
by the ones used in existing POCL planner such as VH-
POP (Younes and Simmons 2003) or UCPOP (Penberthy
and Weld 1992).

3.5 Resource Handling
As described in Section 2, there are 4 different re-
source types in our planning model: REUSABLE (with
CLAIMABLE being a special case), CONSUMABLE, RE-
GENERATIVE. Currently, our planner handles CONSUM-
ABLE and REUSABLE resources.

Consumable resources are managed during the planning
phase. When a task is added to the plan, its resource con-
sumption is assessed against projected availability. If the
total consumption surpasses availability, the planner iden-
tifies a resource conflict. Reusable resources are handled af-
ter a complete plan is found by a greedy resource repair
algorithm. This is similar to strategy of handling planning
(causal) and scheduling (resource) in two separate phases
in the RealPlan planner (Srivastava, Kambhampati, and Do
2001). Specifically, the repair algorithm progresses from the
start of the plan, addressing each resource conflict sequen-
tially. It employs multiple greedy heuristics: a ‘minimum
time perturbation’ heuristic for direct conflict resolution and
a ‘minimum resource usage’ heuristic to mitigate the risk
of future conflicts when adjusting task timings. There is no
iterative feedback loop between the planner and scheduler;
instead, the algorithm relies on the planner’s generation of
alternative task sequences that facilitate effective heuristic
application. Our current scheduling algorithm for reusable
resources runs greedily in polynomial time and doesn’t guar-
antee completeness.

4 Planner Interfaces
As outlined in Section 3 and demonstrated in Algorithm 1,
the Planner’s integration with numerous VSM applications

Figure 1: Planner interfaces to other VSM applications.

is vital for its operation. These applications include SQLite
Interface (SQLITE IF), Fault Manager, Resource Manager,
State Determination, Dispatcher, and Goal Tracker, each
playing a unique role:

• SQLITE IF: As mentioned previously, the Gateway On-
board Data Model (ODM) stores all of the onboard data
required for the operation of the vehicle. Like other VSM
applications, the planner utilizes the SQLITE IF app to
retrieve and write data to the database.

• Fault Manager (FM): The FM app is the entity in charge
of determining if a fault response is necessary. FM is the
application in the middle between State Determination
(SD) and Planner. FM is the gatekeeper to determining if
safing and recovery responses are required.

• Resource Manager (RM): The RM app is specifically
responsible for calculating and reporting current & pro-
jected state, and trending information for resources such
as power, bandwidth, and storage capacity. These reports
and calculations aid in plan creation and execution, oper-
ator awareness, and fault management.

• State Determination (SD): The SD app monitors
telemetry from all over the vehicle in the form of state
variables. Some state variables are derived through calcu-
lations in SD. Using the current values of state variables,
plus additional predictions requested from the Resource
Manager, the Planner can set up the resource conditions
and projections at the beginning of the new plan.

• Dispatcher: The Dispatcher acts as the plan executor
which involves issuing task start requests as dictated by
the plan. The Dispatcher also tracks the status of all
planned tasks and generates plan reports.

• Goal Tracker (GT): The GT app accepts internal VSM
commands from the Planner to add a single goal or a set
of goals to the active goal list as an output of planning.
GT maintains the active goal list as input and will log
goal success and failure to a file as well as report goal
status in cyclic telemetry.

Figure 1 describes these interfaces between the Planner
and the other apps. We explain this figure, referring back to
Algorithm 1 in Section 3, in the remainder of this section.
In the event that a fault occurs, FM may initiate a recovery
process after Gateway has achieved a safe state. When the
Planner receives a replan command from FM (Algorithm

Figure 2: Planner running in the Offline Mode.

1, line 5), it filters the task set it previously retrieved from
the ODM using SQLITE IF for any disabled tasks, then
uses SQLITE IF to retrieve goal data from the ODM for
the goal(s) it received from FM (line 6). Next, the Planner
obtains projected state variable values at the planning hori-
zon start from the SD app, and resource projections from
the RM app (line 7). It then performs Relevance Analysis
(line 8) and Reachability Analysis (line 9) to eliminate irrel-
evant and unusable tasks from the search space. The anal-
ysis results are used to build the final planning model (line
10). With this data, the Planner has all of the initial con-
ditions needed to initiate the planning algorithm (line 11).
Once a plan is found the Planner transmits the plan to the
Dispatcher (line 12) and Goal Tracker (line 13) apps, which
will execute and monitor the active plan. The green arrows
in Figure 1 represent data inputs to the Planner for the prob-
lem setup. The figure also contains interactions between the
planner and other apps during the planning process.

5 Verification & Testing
Given its critical role within the Gateway VSM, rigorous
testing is imperative to ensure the Planner’s reliability and
defect-free operation. Defects arise in different parts of the
planner; inside any of the numerous constituent planner al-
gorithms (e.g. search or heuristics), in the interfaces between
the Planner and other parts of the VSM, poorly specified
problem instances due to model defects, and so on. Testing
methodologies designed to quickly identify these planning
model, interfaces, and algorithmic errors are critical to en-
suring a quality software product.

Algorithm 1 outlines our planner running in a continuous
closed-loop interacting with other cFS apps (as shown
in Figure 1). While this is how the planner is deployed,
it is difficult to effectively test solely on the deployment
architecture. The ODM and other cFS apps need to be cor-
rectly configured and loaded for the planner to run. These
are complex procedures involving many stakeholders and
complicated computer system setup. In addition, the ODM

contents (the planning model and goals) are configuration
managed, with multiple VSM stakeholders depending on its
contents.

ODM Checker: Plan domain modeling for AI planners is a
challenge, even for experts. The VSM Planner domain mod-
eling language is rich and complex, and will be used by
spacecraft systems engineers and mission operations staff
who may not be familiar with this style of plan domain
modeling. For example, modelers can make errors in parts
of a task model, such as forgetting preconditions or effects,
or constructing tasks with conflicting preconditions or ef-
fects which trivially can’t be inserted into a plan. As a more
complex example, as we described in Section 3.5, model-
ers could incorrectly identify the ‘type’ of a resource, given
all of the tasks and their resource impacts. A final challenge
is the translation between abstract model elements (tasks,
goals, resources) and the ODM SQLite representation.

These factors led to the development of an ODM Checker.
This checker is configurable with a variety of rules, and
reads an ODM instance and reports on violations of those
rules. These, in turn, can be used to help find problems
with either the models that drive planner development, or
translations between the language and the ODM SLQLite
instance or schema that can cause the planner to fail. This
checker complements our ability to test the planner’s inputs
prior to ‘scenario-level’ testing using the ODM itself.

Offline Testing with JSON Planning Model: Testing sce-
narios are limited to what is currently available in the current
stable version of the ODM. Since the ODM is only updated
infrequently while the planner is constantly changing, lim-
iting testing to the configuration managed ODM would sig-
nificantly impact planner development. Therefore, we also
developed an additional ‘offline’ method to test the plan-
ner that allows us to test it without compiling or running
other cFS apps providing its input such as Fault Manager,
State Determination, or Resource Manager. We can also test
any planning scenarios that may involve tasks/goals/vari-
ables that currently are not in the ODM, or are slightly differ-
ent from their configuration managed definition in the ODM.
This ‘offline’ test mode supports rapid development and al-
low us to work on future-looking features of the planner.

To support offline testing, we developed a modeling
framework based on the JSON format that mimics all
planner inputs described in Section 2. For Tasks and Goals
that the online setting extracts from the ODM, in the offline
mode the planner can use either from the ODM or the JSON
input. Specifically, the planner combines the set of tasks
and goals read from the ODM and JSON file, if both are
specified as input sources. If there is a task or goal with ID
exists in both the ODM and the JSON input file, then the
task or goal version from the JSON file is used. All other
input to the planner that make up the initial state, that in
the ‘online’ mode received from the State Determination
and Resource Manager cFS apps, can also be specified
in the JSON format. Figure 2 shows the input and output
information flow diagram of our planner running in the
offline testing mode.

Preliminary Results: our Gateway VSM planner is fully
implemented and integrated with other cFS apps as shown
in Figure 1 and has been tested with small but realistic sce-
narios. The online integration testing has been done both by
us and other groups working on Gateway VSM. For offline
testing, we have an automated test suite currently consist of
66 scenarios that test different technical capabilities of our
planner (e.g., different goal combination, different resource
types with different availability profiles, task conflicts etc).
The entire test suite runs in under 5 seconds on current desk-
top computers, despite the search algorithm generating in
excess of one hundred partial-plans in several of these sce-
narios.

6 Software Design Requirements
Human spaceflight software requires the highest levels of
safety and quality assurance. This imposes a variety of soft-
ware testing and quality control requirements on the planner,
which in turn drives choices such as the language of imple-
mentation (C), coding standards, and algorithm design to fa-
cilitate automated software testing. We describe the impact
of these criteria on Planner design decisions.
Planner-ODM Interaction: Gateway VSM has a number
of components that rely on complex vehicle configuration
information stored in the Onboard Data Model (ODM) and
this model is stored in a SQLite database and model infor-
mation is retrieved via the SQLite C API. In order to man-
age concurrent data access, this functionality is contained
within a singular Core Flight Software application called
‘SQLITE IF’. As the planner logic is heavily-reliant on the
ODM for goal and task definition, the VSM development
team integrated the planner into the SQLITE IF application,
enabling it to quickly down-select task and goal information
as needed using the SQL language.
Memory Management: Gateway VSM runs as part of the
flight software load on the HaLO module. The Aitech SP0-S
flight computer is a COTS single board computer with sig-
nificant spaceflight heritage. The SP0-S is based on a Pow-
erPC system-on-a-chip introduced in 2005. It has one 32-bit
CPU core, which runs at a 1 GHz clock rate, and 1 GiB of
DDR2 RAM. The COTS real-time operating system doesn’t
support virtual memory paging, meaning all active code and
data reside in physical memory. The file system is loaded
from flash storage at startup, and also resides in main mem-
ory during execution. The Core Flight Software system (Mc-
Comas, Wilmot, and Cudmore 2016) and spacecraft flight
software standards impose additional constraints3. Applica-
tions may use a standard cFS dynamic memory allocator li-
brary, but the allocation region must be reserved statically
at build time. Process stack space is also set statically at
startup. Recursion is prohibited by flight rule. These con-
straints have influenced the design of Planner elements such
as the anytime search algorithm, search state duplicate de-
tection, and the Simple Temporal Network (STN).

Fixed size objects are allocated from static arrays. Vari-
able size structures are dynamically allocated from a static

3See CFE User’s Guide, 1.6.16 Memory Pool

pool. A 1 MiB pool has proven sufficient for planning prob-
lems requiring up to hundreds of search steps. The STN
propagation algorithm is iterative with a fixed size queue.
STN structures have been optimized for the relatively small
problem sizes. 2-byte array indices are used in place of
pointers. The resulting network size limits of 64k nodes and
64k edges have proven more than adequate for the problems
the Planner will be required to solve. Despite representing
time as an 8-byte integer representation, a node in the STN
occupies only 32 bytes – the size of an L1 cache line on
the flight CPU – and an edge only 16 bytes. STN nodes
and edges are stored in contiguous, homogenous arrays. The
result is a very compact representation with a minimum of
pointer chasing. The plan representation has also been tuned
for space efficiency.

The anytime search algorithm retains the best complete
plan found so far, and updates it when a better plan is
found. Search history storage for duplicate detection domi-
nates memory pool usage for larger problems, causing mem-
ory exhaustion after a few hundred search steps. If memory
runs out before search times out, search is terminated imme-
diately. If at least one complete plan has been generated, the
best plan is returned.
Software Quality Assurance: VSM has coding standards
and test requirements covering syntax, symbol naming, cov-
erage testing, and functional testing. The planner team im-
plemented a number of these specifically for planner code
to ensure integration into the flight software went with min-
imal effort. Tools leveraged include: GitLab CI4 jobs to en-
sure code quality, code formatting (yamllint5, clang-format6,
pyfmt7, shfmt8), and code static analysis (flawfinder9,
shellcheck10, and internally-developed database and code
checking tools). Functional testing includes the cFS Test
Framework (CTF)11, cFS unit tests, and a standalone test
framework. Critical to support development is the ability to
monitor code quality on changed code so that code quality
would improve incrementally and reduce the effort to meet
code compliance later in the development cycle.

7 Conclusions and Future Work

Future requirements for VSM planner capability will in-
clude: replanning, handling of complex resource availability
profiles, generalization of resource types, timed initial lit-
erals and constraints, and mode and configuration changes.
We also expect changes in the domain model and increases
in the size of plans we must generate. These changes will
require evolving the planner algorithms and heuristics, es-
pecially in light of the deployment environment.

4https://docs.gitlab.com/ee/ci/
5https://github.com/adrienverge/yamllint
6https://clang.llvm.org/docs/ClangFormat.html
7https://github.com/Psycojoker/pyfmt
8https://github.com/mvdan/sh
9https://dwheeler.com/flawfinder/

10https://github.com/koalaman/shellcheck
11https://github.com/nasa/ctf

References
Aaseng, G.; Do, M.; Frank, J.; Fry, C.; and Planning, A. S. I.
2023. Diagnosis, and Execution for Vehicle Systems Man-
agement. In Proceedings of the Workshop on Integrating
Planning and Execution.
Aaseng, G.; Frank, J.; Iatauro, M.; Knight, C.; Levinson, R.;
Ossenfort, J.; Scott, M.; Sweet, A.; Csank, J.; Soeder, J.;
Loveless, A.; D, C.; Ngo, T.; and Greenwood, Z. 2018. De-
velopment and Testing of a Vehicle Management System for
Autonomous Spacecraft Habitat Operations. In Proceedings
of the AIAA Space Conference.
Badger, J.; Strawser, P.; and Claunch, C. 2019. A Distributed
Hierarchical Framework for Autonomous Spacecraft Con-
trol. In Proceedings of the IEEE Aerospace Conference.
Crusan, J. C.; Smith, R. M.; Craig, D. A.; Caram, J. M.;
Guidi, J.; Gates, M.; Krezel, J. M.; and Herrmann, N. 2018.
Deep Space Gateway Concept: Extending Human Presence
into Cislunar Space. In Proceedings of the IEEE Aerospace
Conference.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal Con-
straint Networks. Artificial Intelligence, 49: 61–94.
Fox, M.; and Long, D. 2003. PDDL 2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. Journal
of Artificial Intelligence Research, 20: 61 – 124.
Frank, J.; and Jónsson, A. 2003. Constraint-Based Attribute
and Interval Planning. Journal of Constraints Special Issue
on Constraints and Planning.
Gerevini, A.; and Long, D. 2006. Preferences and Soft Con-
straints in PDDL3. In Proceedings of the ICAPS Workshop
on Preferences and Soft Con- straints in Planning.
McComas, D.; Wilmot, J.; and Cudmore, A. 2016. The Core
Flight System (cFS) Community: Providing Low Cost Solu-
tions for Small Spacecraft. In Proceedings of the 30th AIAA
/USU Conference on Small Satellites.
Penberthy, J.; and Weld, D. 1992. UCPOP: A sound, com-
plete, partial order planner for ADL. In Proceedings of the
Third International Conference on Principles of Knowledge
Representation and Reasoning, 103–114.
Srivastava, B.; Kambhampati, S.; and Do, M. 2001. Planning
the project management way: Efficient planning by effective
integration of causal and resource reasoning in RealPlan. Ar-
tificial Intelligence Journal, 131: 73–134.
Younes, H.; and Simmons, R. 2003. VHPOP: Versatile
Heuristic Partial Order Planner. Journal of Artificial Intelli-
gence Research, 20: 405–430.

