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Abstract

Automated planning is the field of AI that focuses on identi-
fying sequences of actions allowing one to reach a goal state
from a given initial state. To support the use of planning tech-
niques in challenging real-world applications, that requires
the ability to reason in terms of hybrid discrete and con-
tinuous changes, expressive languages such as PDDL+ have
been introduced. PDDL+ includes a number of features de-
signed to improve the readability and conciseness of the re-
sulting knowledge models, but that are commonly doubted
to have detrimental impact on the performance of domain-
independent searches and heuristics.
To shed some light on the extent of the impact that some
of these language features can have on well-known planning
techniques, in this paper we perform an empirical analysis us-
ing challenging models from a real-world application, and a
range of search and heuristics approaches. Surprisingly, our
analysis indicates that the use of assignments and conditional
effects, usually deemed to be detrimental to planning perfor-
mance, positively affects the performance of the considered
techniques.

Introduction
Automated planning is a prominent Artificial Intelligence
challenge, which is concerned with the problem of finding
a sequence of actions that can bring the agent into some
goal state from a given initial condition. Automated plan-
ning is exploited in many real-world applications as it is a
common capability requirement for intelligent autonomous
agents (Ghallab, Nau, and Traverso 2016; McCluskey, Va-
quero, and Vallati 2017). Recent example application do-
mains include drilling (Fox et al. 2018), train dispatching
(Cardellini et al. 2021), unmanned aerial vehicle control
(Kiam et al. 2020) and pharmacokinetic optimisation (Al-
aboud and Coles 2019).

Real-world applications often require the ability to accu-
rately represent aspects of the environment. This is com-
monly achieved by exploiting mixed representations that can
model both continuous and discrete changes. In response to
this need, the PDDL+ language was developed to facilitate
the concise encoding of hybrid models for automated plan-
ning (Fox and Long 2006). The availability of this standard
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language supported the design and development of domain-
independent search and heuristics, providing “off-the-shelf”
technology that can be quickly used.

Notably, PDDL+ models are amongst the most advanced
models of systems and the resulting problems are noto-
riously difficult for domain-independent planning engines
to cope with. A well-established strategy for tackling hy-
brid PDDL+ problems involves breaking down complexity
through discretisation (Della Penna, Magazzeni, and Mer-
corio 2012; Percassi, Scala, and Vallati 2023). This tech-
nique assumes that time is discrete, as are the actual numeric
changes, contributing to a more manageable problem formu-
lation. This allows for the handling and reasoning of highly
complex environmental dynamics.

Complexity can also be exacerbated by the use of lan-
guage features that have been designed to improve readabil-
ity and maintenance for knowledge engineers, but that are
poorly supported by existing planning engines or have the
potential to make the search space more difficult to explore.
Considering less expressive languages from the PDDL fam-
ily, there is indeed a wealth of work that focuses on refor-
mulating knowledge models by removing the use of some
poorly supported language features (Helmert 2009; Ceriani
and Gerevini 2015; Percassi and Gerevini 2019).

With the aim of supporting the knowledge engineer-
ing process of PDDL+ models, in this paper we empiri-
cally assess the impact of challenging language features on
a range of domain-independent search and heuristic tech-
niques. This assessment is carried out by considering a real-
world application of planning in urban traffic control, build-
ing upon the work by El Kouaiti et al. (2024), utilising his-
torical data for analysis, and introducing compact compila-
tions to remove the target features from the model. In terms
of considered language features, the focus is on assignments,
which allows the direct assignment of a numeric value to a
variable, and conditional effects, which can extend the ef-
fects of a performed action if some additional condition,
beyond the preconditions, holds when applied. These two
features of the PDDL+ language are commonly believed to
have a detrimental impact on planning performance; how-
ever, they are deemed useful for knowledge engineers as
they contribute to a more concise and readable represen-
tation. Contrary to common beliefs in the field, our anal-
ysis reveals that the utilisation of these features can have



a positive impact on performance, especially in addressing
challenging real-world problems. Hence, their exploitation
is strongly recommended to support both knowledge repre-
sentation and problem-solving.

The PDDL+ Language
The planning research community has designed several lan-
guages to describe different classes of planning problems.
One of the most prominent languages is PDDL+ (Fox and
Long 2006), which encompasses a spectrum of very expres-
sive constructs and allows the modelling of continuous and
discrete changes. One major feature of this language is that
it allows to model separately the changes that are induced by
the agent’s action on the world, and the exogenous changes
that can occur in the world as a result of certain conditions or
as a consequence of the flow of time. This separation allows
to sharply isolate the modelling of the agent from the physics
of the environment within which the agent operates, hence
supporting the use of the resulting knowledge model also for
the sake of simulation and validation (Bhatnagar et al. 2023).

A PDDL+ planning problem is formally defined by a tu-
ple Π = ⟨F ,X , I,G,A, E ,P⟩ in which each element is de-
tailed as follows. F and X are sets of Boolean and numeric
variables, respectively; the domain of a Boolean variable is
B = {⊤,⊥} where ⊤ and ⊥ are the logical true and false,
respectively; the domain of numeric variable is Q.
I is the description of the initial state, expressed as a full

assignment to all variables in X and F . G is the description
of the goal, expressed as a formula.

A and E are the sets of actions and events, respectively,
sharing the same syntax. An action or event is a pair ⟨p, e⟩,
where p is a propositional formula using standard connec-
tives from logic involving numeric and Boolean conditions,
and e is a set of Boolean or numeric effects. Boolean con-
ditions are of the form ⟨f = b⟩ with f ∈ F and b ∈ B.
Numeric conditions are of the form ⟨ξ ▷◁ 0⟩, where ξ is a nu-
meric expression over X and Q, and ▷◁∈ {≤, <,=, >,≥}.
A Boolean assignment has the form ⟨f := b⟩, where f ∈ F
and b ∈ B. A numeric assignment has the form ⟨op, x, ξ⟩,
where op ∈ {asgn, inc, dec}, x ∈ X , and ξ is a numeric
expression. Specifically, op can be the contraction of the
keywords assign (x′ := ξ), increase (x′ := x + ξ) and
decrease (x′ := x − ξ) where x′ and x are the value as-
sumed by the affected numeric variable after and before the
application of the action/event, respectively.

P is a set of processes, and a process is a pair ⟨p, e′⟩,
where p is a propositional formula involving numeric and
Boolean conditions, and e′ is a set of continuous numeric
effects expressed as pairs ⟨x, ξ⟩, where x ∈ X and ξ is a
numeric expression defined as above. In the continuous for-
mulation of PDDL+ ξ represents the additive contribution to
the first derivative of x as time flows continuously. In the dis-
crete setting, that is the semantics adopted in this work and
by the majority of planning engines, ξ represents the finite
difference of x when time flows by δ, i.e., x′ = x+ ξ · δ.

Note that the essential difference between A and E ∪P is
that actions in A prescribe changes that take place as the
agent’s choice, whereas the elements in E ∪ P prescribe
changes outside the control of the agent. Also, note that

1 (:action action_name

2 :parameters (par1 - type1 par2 - type2 ... )

3 :precondition (condition_formula)

4 :effect

5 (and

6 (effect1) (effect2) ...

7 (assign (numVar) 3.0)

8 (when (cond) (eff))

9 ...))

Figure 1: PDDL syntax of an action with a conditional effect.

PDDL+ problems can be described compactly by means of
a lifted representation. Lifted representations allow the rep-
resentation of actions, processes, and events with free-typed
variables, which need to be instantiated with objects spe-
cific to a particular instance of the problem. The lifted rep-
resentation supports the knowledge engineering process of
automated planning applications by providing a concise and
easy-to-maintain representation of the knowledge needed by
the automated reasoner (McCluskey, Vaquero, and Vallati
2017). The interested reader is referred to (Fox and Long
2006) for additional details on PDDL+.

A PDDL+ plan is a sequence of timed actions ⟨a, t⟩ where
a ∈ A and t is a non-negative value representing the times-
tamp in which a is executed. A plan is also coupled with a
non-negative value representing its duration.

Solving a PDDL+ problem Π corresponds to the task of
finding a plan for Π such that all actions are applicable at the
corresponding time and the goal condition is satisfied at the
end of the plan. The states in which the actions are applied
are the result of a combination of effects of continuously
changing variables (given by the active processes through
time) and discrete changes happening for effects of actions
that get applied or events that get triggered.

Conditional Effects
Conditional effects are an expressive PDDL language fea-
ture utilised for defining state-dependent effects in the ac-
tion model. In essence, a conditional effect of an action rep-
resents an effect that occurs only when an additional condi-
tion holds at the time when the action is applied. Widely em-
ployed in complicated scenarios, conditional effects serve as
a valuable tool for compactly representing complex applica-
tion domains.

An example of how a conditional effect is defined in a
PDDL action is provided in Figure 1. It is specified using the
keyword when, and the effect (eff) takes place if and only if
the condition (cond) holds when the action is applied. Oth-
erwise, the conditional effect is ignored.

Due to the impact that conditional effects can have on
search spaces, the traditional approach in literature for han-
dling them is to compile them away (Gazen and Knoblock
1997; Nebel 2000).

Assignments
Assignments is a language feature introduced to support nu-
meric reasoning in PDDL. An assignment is a statement that
is defined as an effect of an action model, to indicate that as



1 (:action changeConf

2 :parameters (?p - stage ?j - junction ?c1 ?c2 -

configuration)

3 :precondition (and

4 (inter ?p)

5 (controllable ?j)

6 (endcycle ?j ?p)

7 (availableconf ?j ?c2)

8 (activeconf ?j ?c1)

9 (not (activeconf ?i ?c2)))

10 :effect (and

11 (not (activeconf ?j ?c1))

12 (activeconf ?i ?c2)))

Figure 2: PDDL+ changeConf action for changing the con-
figuration of the junction j from c1 to c2.

a result of the action execution, a numeric variable is chang-
ing its value to a new one. An example of an assignment is
provided in Figure 1, where (assign (numVar) 3.0) in-
dicated that numVar value is set to 3.0 in the state resulting
from the action execution.

Case Study
In this work, we perform our empirical analysis on a ver-

sion of the models presented in El Kouaiti et al. (2024),
namely VARE. This model extends the one introduced by
McCluskey and Vallati (2017) to address traffic signal op-
timisation through automated planning, in a way that en-
sures deployability. We first provide a brief description of
the considered model, and then discuss how the potentially
problematic PDDL+ language features of assignments and
conditional effects have been compiled away.

A region of the road network is represented by a directed
graph, where edges stand for road links and vertices stand
for junctions. One special vertex is used for representing the
outside of the modelled region. Intuitively, vehicles enter
(leave) the network via road links connected with the out-
side. Each link has a given maximum capacity, i.e., the max-
imum number of vehicles that can be, at the same time, in
the corresponding road, and the current number of vehicles
of a road link, which is denoted as occupancy.

Traffic in junctions is regulated by turn rates, defined us-
ing a dedicated predicate, between couples of road links.
Given two links rx, ry , a junction j, and a traffic signal stage
p such that rx is an incoming link to the junction i, ry is an
outgoing link from i, and the flow is active (i.e., the corre-
sponding signal light is on green) during stage p, the turn
rate associated with rx, ry , j and p, stands for the number of
vehicles that can leave rx, pass through j and enter ry per
time unit. Notably, turn rates are defined only for permitted
traffic movements. The turn rate value is given in “passen-
ger car units” PCUs per second. For the sake of simplicity,
we assume that vehicles moving in the same direction will
occupy the correct lane, thus avoiding the blockage of other
vehicles travelling in different directions.

Junctions are associated with a sequence of traffic signal
stages. The next predicate is used to define the sequence of
stages. The active traffic signal stage determines the turn

1 (:action changeLimit

2 :parameters (?p - stage ?j - junction ?l - limit)

3 :precondition

4 (and

5 (inter ?p)

6 (configurable ?j ?p)

7 (not (= (cyclelimit ?j) (conflimit ?l))))

8 :effect

9 (and

10 (assign (cyclelimit ?j) (conflimit ?l))

11 (not (configurable ?j ?p))))

Figure 3: The changeLimit action making use of an assign-
ment statement for changing the minimum number of times
?l a selected configuration must be repeated on junction j.
This action can only be executed during the last intergreen
of a cycle.

rates corresponding to the green lights. The PDDL+ model
includes, for each junction, a set of cycle configurations that
can be used to optimise traffic conditions. Let j be a junc-
tion, and let Sj = ⟨s1, ..., skj ⟩ be the sequence of stages as-
sociated with j, also referred to as a cycle. Additionally, let
Gj = {gt1, ..., gtkj

} be a set of numeric variables that track
the set duration of each stage within j. A cycle configuration
of j is a complete assignment over Gj . E.g., given a junction
j having a cycle involving 3 stages Sj = ⟨s1, s2, s3⟩, a cycle
configuration of j is {⟨gt1 = 30⟩, ⟨gt2 = 30⟩, ⟨gt3 = 30⟩},
assigning an uniform duration, 30 secs, to each of the three
stages. Each stage ends with an “intergreen” period, which
is the time required for a signal to change to green while al-
lowing for stacked vehicles in the middle of the junction to
clear and/or provide time for pedestrian crossings.

PDDL+ processes are used for modelling the flows of ve-
hicles described by turn rates, that are activated when a cor-
responding traffic signal phase is on green. Dedicated pro-
cesses are also used to measure the time spent on green by
the traffic signal stages (or intergreens) on the considered
junctions. PDDL+ events are used to stop flows of vehicles
when the receiving link is completely full or the discharging
link is empty.

The actions under the control of the agent for affecting
the urban network are changeConf and changeLimit whose
definitions are provided in Figure 2 and 3, respectively. The
action changeConf is used to allow the planning system to
change the current running configuration c1 to c2 on a given
junction j, while the action changeLimit is used to define the
minimum number of times the selected configuration must
be repeated before allowing further changes.1

Plan Example
To illustrate the structure of traffic signal strategy that can
be generated by reasoning upon the described model, Figure
4 provided an excerpt of a PDDL+ plan. The listing is or-
ganised as a sequence of timestamped actions (timestamp:
action) closed by a special tag denoting the duration of the

1The complete domain model can be found here:
https://github.com/anas-elkouaiti/utc-models-deployable



1 362.0: (changeConf j5_stage4 j5 conf_j5_1 conf_j5_2)

2 362.0: (changeLimit j5_stage4 j5 lim9)

3 464.0: (changeConf j4_stage4 j4 conf_j4_1 conf_j4_3)

4 464.0: (changeLimit j4_stage4 j4 lim8)

5 474.0: (changeConf j6_stage3 j6 conf_j6_1 conf_j6_2)

6 474.0: (changeLimit j6_stage3 j6 lim8)

7 477.0: (changeConf j2_stage5 j2 conf_j2_1 conf_j2_3)

8 628.0: (changeConf j1_stage4 j1 conf_j1_1 conf_j1_3)

9 628.0: (changeLimit j1_stage4 j1 lim10)

10 637.0: (changeConf j3_stage6 j3 conf_j3_1 conf_j3_6)

11 637.0: (changeLimit j3_stage6 j3 lim7)

12 969.0: (changeConf j2_stage5 j2 conf_j2_3 conf_j2_5)

13 969.0: (changeLimit j2_stage5 j2 lim9)

14 1370.0: (changeConf j5_stage4 j5 conf_j5_2 conf_j5_1)

15 ...

16 2049.0: @PlanEND

Figure 4: Example of a PDDL+ plan encoding a signal traffic
strategy based on the presented model.

1 (:event triggerChange

2 :parameters

3 (?p1 ?p2 - stage ?j - junction)

4 :precondition

5 (and

6 (inter ?p2)

7 (contains ?j ?p1)

8 (next ?p ?p2)

9 (>= (intertime ?j)

10 (- (interlimit ?p1) 0.1)))

11 :effect

12 (and

13 (not (inter ?p1))

14 (active ?p2)

15 (assign (intertime ?j) 0)))

Figure 5: PDDL+ triggerChange event for transitioning from
a stage p1 to the next one p2 over junction j.

plan (@PlanEnd).
The plan reveals that the problem’s goal is achieved in a

duration of 2049.0 time units and that until time 362.0, no
action is taken to change the configuration set in the initial
state. Notably, all actions to change the running configura-
tion on a junction are immediately followed by an action to
set the minimum number of cycles for which it must be kept.
For example, at time 362.0, the configuration of junction j5
is changed from conf j5 1 to conf j5 2. This decision oc-
curs during stage stage 4 as it is the final stage of the cycle.
Subsequently, an action is taken to set the minimum number
of cycles for junction j5 to 9 (lim9).

Language Features and Compilations
We focus on two features of the language in this analy-

sis, namely assignments and conditional effects. In the con-
sidered model, assignments are used to reset to 0 numeric
variables or to update numeric values due to some changes
in the configuration. The first case, exemplified in Figure
5 in the triggerChange event, can be compiled away by
substituting the assignment effect with a subtraction of the
numeric value by itself, such as (decrease (intertime

1 (:action changeLimit

2 :parameters (?p - stage ?i - junction ?l1 ?l2 -

limit)

3 :precondition

4 (and

5 (inter ?p)

6 (configurable ?i ?p)

7 (activelimit ?i ?l1)

8 (not (activelimit ?i ?l2)))

9 :effect

10 (and

11 (not (activelimit ?i ?l1))

12 (activelimit ?i ?l2)

13 (not (configurable ?i ?p))))

Figure 6: The reformulated changeLimit action where the
assignment statement is compiled away.

?j) (intertime ?j)). In our model, this type of assign-
ment appears three times.

The more complicated assignment case refers to the up-
date of a numeric value, that in the considered model is used
in the changeLimit action shown in Figure 3. In this case, the
reformulation requires to explicitly specify in the initial state
the allowed limit values, e.g., 4, and the action is modified
so that a limit can be activated on a considered junction, as
shown in Figure 6. This compilation requires also the mod-
ification of the parameters list of the action, that now needs
to include both the currently active limit ?l1 and the limit to
be assigned ?l2. This class of assignment statements is only
used once in the reference domain model.

We can now turn our attention to the language feature of
conditional effects, used to allow some effects to be imple-
mented only if some additional conditions are met in the en-
vironment. The only occasion where such a feature is used
in the domain model is in the trigger-change event, shown
in Figure 7. Conditional effects, denoted by the keyword
when, are used to allow the event to take appropriate ac-
tions according to when, in a cycle, it has been triggered.
The first conditional effect, i.e., (when (endcycle ?i
?p1) (increase (countcycle ?i) 1)), is employed
to increment the variable that keeps track of how many
times the configuration, currently selected for junction
j, has been executed. The second conditional effect,
i.e., (when (endcycle ?i ?p) (not (configurable
?i ?p)), not only narrows down the search space but also
maintains the integrity of the problem’s correctness con-
straints, preventing the changeLimit action in invalid stages.

For the reformulation of this language feature, we fol-
lowed a methodology similar to an approach used in liter-
ature (Nebel 2000), which consists of multiplying out the
construct, in this case, the trigger-change event, according
to all the possible combinations of conditional effects. In the
specific case, this leads to the encoding of 3 events: the orig-
inal trigger-change with no conditional effects, and a new
one event for each potential branch of the starting condi-
tional effect.

It is worth noting that some of the considered reformu-
lations lead to an increased number of PDDL+ constructs



or an increased number of parameters for some of the ac-
tions, which can have significant repercussions in terms of
the size of the grounded representation (Scala and Vallati
2021). However, in works focusing on less expressive lan-
guages of the PDDL family, the performance benefits have
greatly outweighed the potential issues.

Experimental Analysis
The experimental analysis aims at assessing the impact of
the considered language features on a range of search strate-
gies and heuristics.

We use an extended version of the benchmark used by
Percassi et al. (2023). The modelled urban network area is
situated in West Yorkshire, United Kingdom, specifically
within the Kirklees council. It consists of a major corridor
that links the Huddersfield ring road with the M1 highway
and the southern part of the Kirklees council. It is heavily
used by commuters and by delivery vans to get to the centre
of the Huddersfield town, or to move between the M62 and
the M1 highways. The corridor is approximately 1.3 kilo-
metres long, and consists of 6 junctions and 34 road links.
Each junction has between 4 and 6 stages, and between 10
and 17 valid traffic movements. A schema of the considered
region is shown in Figure 8, in terms of links, junctions, and
connections with the outside region. For this region, we have
access to historical data collected by deployed sensors and
the running traffic control infrastructure.

On this area, we consider six scenarios in two distinct
days: the 26th (referred to as day A), which is a Wednesday,
and the 30th (referred to as day B), a Sunday, both in January
2022. Each day was examined at three different time slots:
the morning peak hour at 8:30 am, noon at 12:30 pm, and
the evening peak hour at 4:30 pm. This provides variabil-
ity in terms of traffic volumes and conditions. Further, we
include an additional scenario involving exceptional traffic
circumstances, pertaining to a concert held at John Smith’s
Stadium on Tuesday the 20th of June 2023, which attracted
an approximate audience of 30, 000 people. The time con-
sidered is 4:00 pm, which is before the start of the concert.
This scenario is interesting because there is a clash between
commuters leaving the town and spectators arriving at the
concert, creating two opposed traffic demands.

Following the work of Percassi et al. (2023), for each sce-
nario we generated five planning problems, progressively
expanding the set of explicitly considered corridor links in
the goal. This allows for the enforcement of different be-
haviours in the planning systems and introduces more chal-
lenging goals to be achieved. For each link, we specified
that a minimum of 350 vehicles should move through it as
soon as possible. In terms of cycle configurations to be used
to solve the planning problem, we generated six configura-
tions per junction of the network, where in turn one stage
is maximised. All the configurations have the same length
of 90 seconds, to comply with legal requirements and to
ensure that synchronisation between the junctions is main-
tained throughout the plan.

Experiments were run on a machine with a 2.3 GHz In-
tel Xeon Gold 6140M CPU and 8 GB of RAM. As plan-
ning engine, we use ENHPS (Scala et al. 2020a) version 20.

1 (:event trigger-change

2 :parameters

3 (?p ?p1 - stage ?i - junction)

4 :precondition (and

5 (inter ?p)

6 (contains ?i ?p)

7 (next ?p ?p1)

8 (>= (intertime ?i)

9 (- (interlimit ?p) 0.1)))

10 :effect (and

11 (not (inter ?p))

12 (active ?p1)

13 (decrease (intertime ?i) (intertime ?i))

14 (when (endcycle ?i ?p1)

15 (increase (countcycle ?i) 1))

16 (when (endcycle ?i ?p)

17 (not (configurable ?i ?p)))))

Figure 7: The trigger-change event that is triggered when an
intergreen finished, to allow moving to the next stage for the
junction ?i.
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Figure 8: A simplified overview of the modelled urban re-
gion, in terms of junctions (circles), links, and boundaries
(rectangles). For the sake of readability, the map is not cor-
rectly scaled.

This system implements a large number of heuristics and
search techniques, providing the ideal testbed for assessing
the impact of PDDL+ features on performance. The con-
sidered search strategies are greedy best-first search (GBFS)
and A⋆, and the adopted heuristics include hadd (Scala et al.
2016), hmax (Scala et al. 2016), and hmrp (Scala et al. 2020b).
These are state-of-the-art approaches in hybrid planning. We
also considered blind search, implemented by ENHPS, but no
problem has been solved using that technique.

Table 1 provides an overview of the results in terms of
the number of solved instances, and IPC score for the qual-
ity of generated plans, i.e., their durations, expanded nodes,
and runtime. Here the IPC score is calculated as in the IPC
2014 (Vallati, Chrpa, and McCluskey 2018). In short, for
each planning instance, a considered combination of model
and search configuration can get between 1.0 and 0.0 points.
1.0 is awarded to the combination that obtained the best re-
sult amongst all the considered, 0.0 to the combination that
fails to solve the instance, and a value in between accord-
ing to how close is the result of the combination to the best
observed. The better the result, the closer the score gets to



hmax hmrp hadd Σ (210)

GBFS A⋆ GBFS A⋆ GBFS A⋆

Number of Solved Instances

B (35) 35 0 34 0 1 0 70
-ce 35 0 34 0 1 0 70
-asgn 34 0 31 0 0 0 65
-ce -asgn 30 0 25 0 0 0 55

Σ (105) 134 0 124 0 2 0

Score(Quality)

B (35) 32.91 0 32.62 0 1.00 0 66.53
-ce 32.94 0 32.49 0 1.00 0 65.43
-asgn 31.99 0 29.62 0 0.00 0 61.61
-ce -asgn 22.09 0 18.34 0 0.00 0 40.43

Σ 119.93 0 113.07 0 2.00 0

Score(Expanded Nodes)

B (35) 20.00 0 12.80 0 0.02 0 32.82
-ce 20.95 0 11.10 0 0.02 0 32.07
-asgn 21.52 0 12.71 0 0.00 0 34.23
-ce -asgn 13.10 0 5.75 0 0.00 0 18.85

Σ 75.57 0 42.36 0 0.05 0

Score(Runtime)

B (35) 18.42 0 15.02 0 0.12 0 33.56
-ce 18.69 0 14.66 0 0.16 0 33.51
-asgn 13.77 0 10.20 0 0.00 0 23.97
-ce -asgn 6.78 0 5.07 0 0.00 0 11.85

Σ 57.66 0 44.96 0 0.28 0

Table 1: Results in terms of coverage, quality of generated
plans, expanded nodes, and planning time for each consid-
ered domain model. “B” denotes the basic formulation while
-ce and -asgn, denotes, respectively, a variant where condi-
tional effects and/or numeric assignments have been com-
piled away. Aggregated results are presented per each model
formulation, and per each search combination. Bold indi-
cates the best aggregated results.

1.0. The total IPC score is the sum of the scores achieved on
each considered instance.

As a first observation, it is easy to notice that the use of A⋆

does not allow solving any of the considered instances. On
one hand, this is not surprising, considering the complexity
and challenges of PDDL+ planning, which require reasoning
in terms of both continuous and discrete changes. On the
other hand, this seems to suggest that there is no silver bullet
when it comes to planning models and language features:
improvements can be remarkable but not game-changing.

When it comes to the performance that the models with
and without the considered language features allow to
achieve, some interesting behaviours can be observed. In
general terms, it is apparent that the use of conditional ef-
fects and assignments does not harm planning performance.

This is a very surprising result, as it contradicts the com-
mon knowledge that considers such features detrimental to
planning performance. This is highlighted by the poor per-
formance, according to all of the considered metrics, of the
model when both conditional effects and assignments are
compiled away.

Let us now take a closer look at the variability of perfor-
mance according to the considered metrics. In terms of cov-
erage, i.e., the ability to solve planning instances, numeric
assignments are the features that is mostly beneficial, while
conditional effects do not appear to have any remarkable im-
pact on the capabilities of the considered search combina-
tions. A similar figure can be drawn when looking at quality
scores and runtime, i.e., the time needed by the approach
to generate a solution. However, taking a closer look at the
way in which the search space is explored gives us a differ-
ent insight. In terms of expanded nodes, the use of condi-
tional effects has a positive impact on performance: in other
words, conditional effects may allow us to find a solution by
exploring a smaller chunk of the search space. In the con-
sidered domain, this has a limited impact on runtime perfor-
mance and on the ability to solve planning instances, but it
should be noted that in different applications, where states
are perhaps larger and more complex, the impact could be
significant.

Turning now our attention to the heuristics, it appears that
the one providing the best guidance for GBFS in the consid-
ered domain is hmax. Intuitively, this appears to be reason-
able as it allows the search to focus on dealing with the link
that requires more attention to get traffic through, as hmax

focuses on the hardest to achieve goal. In a sense, it may
allow the planning system to focus on the bottleneck of the
considered network, hence implicitly improving the overall
performance.

Summarising, our extensive experimental analysis dis-
proofs the common belief that the use of conditional ef-
fects and numeric assignments has a detrimental impact on
PDDL+ search and heuristic techniques. On the contrary, we
showed that their use can be beneficial and should not be
excluded a priori. While we acknowledge that the analysis
considers a single domain model, it is worth highlighting
that the model is amongst the most complex benchmarks in
PDDL+ planning in terms of dynamics of the environment
and size of the models, hence it is the most suitable to em-
phasise performance differences.

Conclusion
With the aim of supporting the knowledge engineering pro-
cess of complex planing knowledge models, in this paper we
empirically assessed the impact on planning performance
of two potentially challenging PDDL language features,
namely assignments and conditional effects. First, we de-
scribed compilations to remove such features from a PDDL+
model. Second, we performed an extensive analysis on a
range of search and heuristic approaches, focusing on a chal-
lenging real-world application leveraging on historical data.
The surprising result is that the features, commonly believed
to have a detrimental impact on performance, demonstrate a
beneficial impact, and their employment should therefore be



considered when PDDL+ planning problems are concerned.
Future work will look into extending the analysis to differ-
ent benchmarks, where the impact of other language features
can be assessed.
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Scala, E.; Haslum, P.; Thiébaux, S.; and Ramirez, M. 2020a.
Subgoaling Techniques for Satisficing and Optimal Numer-
icPlanning. J. Artif. Intell. Res., 68: 691–752.
Scala, E.; Saetti, A.; Serina, I.; and Gerevini, A. E.
2020b. Search-Guidance Mechanisms for Numeric Plan-
ning Through Subgoaling Relaxation. In Proc. of ICAPS
2020, 226–234. AAAI Press.
Scala, E.; and Vallati, M. 2021. Effective grounding for hy-
brid planning problems represented in PDDL+. Knowl. Eng.
Rev., 36: e9.
Vallati, M.; Chrpa, L.; and McCluskey, T. L. 2018. What you
always wanted to know about the deterministic part of the
International Planning Competition (IPC) 2014 (but were
too afraid to ask). Knowledge Eng. Review, 33: e3.


