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Abstract

Recent advances in natural language processing have resulted
in the development of powerful semantic parsers that could,
in theory, extract planning models from text. Despite their
proficiency, these approaches remain poor at extracting model
information from diverse sources, as they are unable to han-
dle cases where the same entity may be referred to in differ-
ent terms in different documents. In this work, we address
this problem for the first time by applying meta-actions to a
planning model to create bridges between semantically equiv-
alent state variables with different labels. We then iteratively
test and refine this model until it is able to produce a valid
plan by correctly identifying the relationship between syntac-
tically different fluents like this. Our approach is then eval-
uated on two standard IPC domains, where our methods are
able to identify the correct plans.

Introduction
The recent developments in large language models have led
to the development of powerful semantic parsers that could
be used out of the box to extract planning model descriptions
directly from natural language (Guan et al. 2023). However,
we still see such systems failing in scenarios where informa-
tion about the model is coming from heterogeneous sources.

Consider the task of extracting a planning model to cap-
ture the possible actions a cybersecurity attacker can take
from a database of vulnerability descriptions, more com-
monly referred to as Common Vulnerabilities and Exposures
(CVE) (Yosifova 2021; Santiago and Mendez 2023). From a
conceptual point of view, this is a reasonably easy task; after
all, each vulnerability here corresponds to a specific action
the attacker can take, and the descriptions themselves are ex-
plicitly specified in terms of pre-conditions that need to hold
for a vulnerability to be exploited and post-conditions (i.e.
effects) resulting from that exploitation (and as such can be
mapped over to the effects).

Once such planning models are extracted, they can be
used to model attackers and perform analysis like pen-
testing (Bezawada, Ray, and Tiwary 2019). But different
vulnerability authors might describe the same phenomena
in different terms. Thus, one of the greatest strengths of
such databases, namely the fact that they are collected from
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different sources, also becomes a weakness. For example,
while one author might list a service being down as a
post-condition for exploiting a vulnerability, another author
might use the words service unavailable to describe the pre-
conditions for a different vulnerability. A semantic parser
might ascribe different propositions to each of these descrip-
tions and, as such, result in an incorrect domain description.

Beyond cybersecurity, this issue applies to any applica-
tion domain where a model may need to be learned from
documents from different sources, including application ar-
eas for planning like web-service composition (Hoffmann
2015) and business process automation (Carman, Serafini,
and Traverso 2003; Marrella and Chakraborti 2021). In each
of these cases, one may end up with a domain with a set of
semantically equivalent state variables, which are syntacti-
cally different in so far that they are provided with different
labels. We will refer to such models as partial models in so
far that it is missing information, particularly equivalence
between the fluents.

Our work represents the first attempt at providing a sys-
tematic solution to working with domains with such state
variables. In this work, we will focus on refining such a plan-
ning model (assumed to be given) through interaction with a
simulator until it can generate a valid plan for a given prob-
lem instance. At the core of our approach lies the use of a
set of meta-actions, referred to as ‘replace’ actions. These
actions hypothesize potential equivalence between pairs of
state variables. Plans generated from domains augmented
with such replace actions are then tested on simulators for
the domain, and the feedback received (in terms of what ac-
tions failed and what preconditions were unsatisfied) is then
used to update the replace action list.

We demonstrate our approach’s effectiveness on two IPC
domains modified to contain semantically equivalent state
variables with distinct labels. Our method identified valid
plans in each case and uncovered correct fluent relation-
ships.

Related Work
In previous work that looked at the mapping between state
variables, most have focused on the relationship between
variables from different models. Planning has a long history
of utilizing state abstractions (e.g., (Bäckström and Jonsson
2013; Sacerdott 1973; Srivastava, Russell, and Pinto 2016)).
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Here, a specific state space is mapped to a different, possi-
bly smaller set. If we use a factored representation for the
target, one could have mappings between state variable sub-
sets from the source model to the target. In this vein, an-
other set of related works is the problem of learning inter-
pretable representations for inscrutable models (Sreedharan
and Kambhampati 2021). The underlying assumption here
is that the state variables in the learned representation cor-
respond to information in the base model. However, given
the inscrutable nature of the base model, the exact variables
may not be known.

Most previous work on model learning for classical plan-
ning side-steps this issue, given their focus on learning
from plans or plan traces (Wu, Yang, and Jiang 2007;
Aineto, Jiménez Celorrio, and Onaindia 2019; Cresswell,
Mccluskey, and West 2013). Many of these methods assume
access to the set of state fluents upfront. While some of
these assume access to intermediate states (cf. (Stern and
Juba 2017)), the others assume access to only the initial and
final state (Aineto, Jiménez Celorrio, and Onaindia 2019).
Some methods try to generate state variables as part of the
model learning process (Verma and Srivastava 2020; Guan
et al. 2023). We start running into the problem described
in the paper when considering learning models from a nat-
ural language description. While there are previous works
on learning models from natural language descriptions (e.g.,
(Lindsay et al. 2017; Addis and Borrajo 2011; Guan et al.
2023), to the best of our knowledge, we are the first to iden-
tify and solve the specific problem of linking semantically
equivalent fluents. It is also worth noting that our approach
of refining models using simulators also makes it an instance
of online model learning (Lamanna et al. 2021).

Running Example
As a motivating example, consider a robot that learned to
cook from a set of recipes. Now, the robot is tasked with
making hummus, whose recipe calls for the use of chick-
peas. Searching through the kitchen cabinet it only finds a
package of garbanzo beans. Now the robot can only achieve
its goal if it knows that (has-chickpeas) are the same
as (has-garbanzo-beans). Now, our method will, in
fact, try to hypothesize such potential equivalence and try
out plans that are supported by them. In this case, the robot
will find out that the equivalence holds, as using garbanzo
beans still results in a tasty hummus.

Background
In this section, we introduce the planning formalisms used
in this paper. A planning model is the tupleM = ⟨D, I,G⟩,
where I is an initial state and G is a goal description. D
is then the domain associated with the model and is de-
fined by D = ⟨F ,A⟩. F corresponds to a set of boolean
variables that can uniquely describe any state space s for a
given planning problem. An action a ∈ A is a tuple where
a = ⟨pre+(a), pre−(a), add(a), del(a)⟩, which correspond
to the positive or negative preconditions that must be satis-
fied for each action to be executed, while add(a) and del(a)
are add and delete effects produced when an action is exe-

cuted. A solution to this is a plan π, which is a sequence of
actions that takes an agent from an initial state I to a goal
state G. Each a ∈ A has a cost c. The sum of these costs is
the total cost of a plan.

Problem Formulation
To formalize the notion, we create a mapping function
between two models. The ground truth model MT =
⟨DT, IT ,GT ⟩ represents the ideal situation where every-
thing is known and all actions and states are accurately rep-
resented. Instead of the true model, the planner instead has
access to a partial modelMP = ⟨DP, IP ,GP⟩, which is de-
fined in terms of a new fluent set FP . We assume that there
exists an unknown surjective Λ : FP → FT , that maps flu-
ents from FP to fluents in FT, which may include fluents
that were not originally a part of the true model.

We will state thatMP is a partial model that corresponds
to MT if the application of the function Λ over the model
components results in the corresponding model component
forMT . Model components here include action definitions,
initial state, and the goal description. For example, the ini-
tial state and goal description of MP is given as follows,
IT = Λ(IP) and GT = Λ(GP). Now, we can state that the
partial modelMP contains semantically equal but syntacti-
cally distinct fluents if there exists f1, f2 ∈ FP , such that
f1 ̸= f2, but Λ(f1) = Λ(f2).

In the running example, the true model corresponds to the
unknown true model with a single unified fluent for having
access to the legume needed for making hummus. Mean-
while, the partial model includes separate fluents for having
access to chickpeas and garbanzo beans.

Our goal here is to use MP to identify a plan π that
is valid in the unknown model MT. Given the fact that
we consider positive precondition models and we have a
surjective mapping from MP action definitions to MT ,
the only reason a plan π that is valid in MT would be
invalid in MP is if there is at least one broken causal
link in the plan for MP because of a semantically equiv-
alent but syntactically distinct fluent pair. In the run-
ning example, the action make puree has a precondition
(has-chickpeas), but there are no actions that would
make it true (on the other hand, you have actions that will
make (has-garbanzo-beans) true).

Generating Potential Plans
As discussed earlier, we will allow for the model to generate
such plans by the use of additional “replace” actions which
try to connect different fluent pairs. To do this, we will ex-
tend the modelMP to a new modelM′. To start with, the
fluents for this new model are given as F ′ = FP ∪ FK,
where FK is a set of fluents that is used to track whether
the value of some fluent in FP is known to be true (as such
|FK| = |FP |). We will refer to this new set of fluents as
the known status of the original fluents. The new actions are
given as A′ = AR ∪ AP′, where AR is the set of replace
actions and AP′ is obtained by updating the original action
set AP by including the known status fluents.



In the new model, an action in AP′ will now include a
known status fluent in its add effect if the original fluent was
part of the add effect or the precondition of the correspond-
ing action definition in AP (and isn’t part of the delete ef-
fect). We set the known status of the precondition fluents as
true because the successful execution of the action confirms
that the fluents in the precondition must have been true at the
time of the action execution. The known status of a fluent is
deleted whenever that fluent is part of the delete effect in the
original action definition. Additionally, as we will see the
known status is not made true by the replace actions. This
means that even if a replace action added a fluent, this is to
be treated as a possibility and is only known to be true if a
future action uses it in a precondition.

Now, we will have a replace action for every pair of flu-
ents in the original fluent set FP . For the pair, f1, f2, the
corresponding replace action will delete f1 from the state
and make f2 true, provided the f1 fluent has a true value in
the state, and f1 was known to be true. More formally, the
action definition for aR(f1,f2)is given as:

pre+(a
R
(f1,f2)

) = {f1, fK
1 },

add (aR(f1,f2)) = {f2},
del (aR(f1,f2)) = {f1, f

K
1 }.

The cost of the actions in AP′ is set the same as the orig-
inal action in AP , except that we place an extremely high
penalty on the replace action, so it is only used when neces-
sary. We set the cost of the replace action to be higher than
the cost of the costliest plan possible under AP . In future
work, we will investigate assigning variable costs to differ-
ent replace actions based on the semantic relevance of their
fluents. If a fluent is part of the initial state, the correspond-
ing known status fluent is also set to true in the initial state.
The goal is kept the same as the partial model.

With the replace action in place, the new modelM′ can
generate new plans by connecting an add effect and a pre-
condition specified using different fluents. If we are using
an optimal planner, it will only use a replace action if no
other plans exist.

Inner Loop for Identifying a Valid Plan
Using this updated model with replace actions,M′, we gen-
erate a plan, π′. All replace actions from this plan are then
filtered out, and the remaining plan is checked against a sim-
ulator that captures the true modelMT, to see whether it is
valid or not. If the filtered plan is valid for this domain, the
algorithm stops. However, if the plan is not valid, the re-
place actions that made this plan invalid are identified (this
corresponds to the last replace action that tried to add the
failed precondition) and removed from theM′ model. This
loop then repeats until either a valid plan is found or the
problem is determined to be unsolvable. The pseudo-code
for this procedure is given in Algorithm 1.

Evaluation
Our evaluation objective was to show that our approach
could be used to identify relationships between semantically

Algorithm 1: Fluent Mapping Algorithm
Input:MT ,M′

Output: A plan π′ that is valid inMT

1: is valid plan← False
2: while is valid plan is false do
3: for replace action in ActionsToRemove do
4: M′ ← RemoveAction(M′)
5: π′ ← GetP lan(M′)
6: π′ ← FilterReplaceActions(π′)
7: if π′ is valid inMT then
8: is valid plan← True
9: else

10: π′ ← AddBackReplaceActions(π′)
11: ActionsToRemove[]← BadActions(π′)
12: return π′

equivalent fluents and identify plans that are valid in the true
model.

Datasets We evaluated our method on the standard
Blocksworld and Gripper IPC domains 1, by creating vari-
ations of each original problem instance for use in our fluent
mapping problem. Both domains were chosen for their size
and simplicity, as the execution of each depends on a finite
number of actions whose connection to a final goal state is
clear and therefore easy to manipulate. This allowed us to
test our method on more basic, controllable domains before
trying more complex ones.

Blocksworld: This domain tests the situation when a sin-
gle link between actions is broken. In Blocksworld, an agent
is tasked with stacking blocks using four actions: pick-up,
put-down, stack, and unstack. The fluent (handempty)
tracks whether an agent is holding a block. When this fluent
is true, the agent can pick up or unstack a block, resulting
in (not (handempty)), which can only reverse if the
agent either stacks or puts a block down. This variation is
the total model.

To create the partial problem, a copy of the original
Blocksworld problem adds the fluent (not-holding) to
its list of predicates, and replaces (handempty) in the ef-
fect of the stack action with (not-holding). Thus, once
an agent stacks a block, the (handempty) fluent remains
false while the (not-holding) fluent becames true, pre-
venting the agent from picking up any additional blocks or
fully executing its plan.

Gripper: This domain tests a situation where two links
between actions are broken. In Gripper, an agent uses grip-
pers to transport balls between two rooms with three ac-
tions: move, pick, and drop. The fluent (free ?g -
gripper) tracks if an agent is holding a ball in one of
its grippers. When free is false, the agent cannot pick up
a ball with a given gripper, and when true, it can. The flu-
ent (at ?b - ball ?r - room) tracks the location
of balls in rooms. Once false, (free ?g - gripper)

12nd International Planning Competition, 2000.
//github.com/potassco/pddl-instances/tree/master/ipc-2000
//github.com/potassco/pddl-instances/tree/master/ipc-1998



and (at ?b - ball ?r - room) can only become
true again once the agent has executed a drop action. This
variation is the total model.

To create the partial problem, a copy of the original
problem adds the fluents (in ?b - ball ?r room)
and (not-holding ?g - gripper) and replaces
(at ?b - ball ?r - room) with (in ?b -
ball ?r room) and (free ?g - gripper) with
(not-holding ?g - gripper) in the effects the
drop action. Thus, once an agent dropps a ball, the (at ?b
- ball ?r - room) and (free ?g - gripper)
remain false, while the fluents (in ?b - ball ?r
room) and (not-holding ?g - gripper) become
true. Because the Gripper move action requires the (at
?b - ball ?r - room) to be true, and the pick action
requires (at ?b - ball ?r - room) and (free
?g - gripper), these changes disrupt the agent’s
ability to execute its plan by preventing it from moving or
picking any more balls up.

Domain Replace Actions: These partial Blocksworld and
Gripper domains were grounded, and replace actions com-
posed of every fluent pair possible (except for the known flu-
ents) were added to them. For Blocksworld, this totaled 900
replace actions, constructed from four actions and a mixture
of six propositional and parameterized fluents. For Gripper,
this also totaled 900 replace actions, from three actions, and
six parameterized fluents. For each domain, a cost of 10,000
was assigned to all replace actions, while all actions native
to these domains were assigned a cost of one. This was to
force the planner to be selective about which replace ac-
tions it chose to use. Using the method outlined in Algorithm
1, these replace actions were then iteratively removed from
each domain until the planner found a subset of them which
allowed it to produce a valid plan.

Setup The original and partial Blocksworld and Gripper
PDDL domain and problem files were inputted using our
method. The original files were taken from a repository of
benchmark PDDL problem instances from past years used
in the International Planning (IPC) Competition. To create
a partial version, a duplicate copy of these files was made
and modified according to the methodology outlined in the
previous section, to which replace actions were then added.
Here, the partial files were used to generate a plan, and the
original files were used to validate it with VAL. We used
the Fast Downward Planner to runA∗ search with the Land-
mark Cut heuristic (Helmert 2006). All experiments were
performed on a Mac with a 2.6GHz 6-Core i7 processor and
16 GB Ram.

Results To create an initial benchmark, we tested our
method on a single version of the Blocksworld and Grip-
per domains. These results are presented in Table 1 where
the primary metrics tracked were the total time in seconds
and number of iterations taken for a valid plan to be found,
and the number of replace actions in the domain before and
after a valid plan was found. Recall, during each iteration a
single replace action was removed from the domain, mean-
ing this number corresponds to the total number of replace
actions removed and iterations taken for our problem to be

solved. As such, we see that our method was able to find a
valid plan by both leveraging and only removing a fraction
of the replace actions available to it.

Domain Blocksworld Gripper
Total Time (sec) 11470.00 171394.05

Starting Replace Actions 900 900
Ending Replace Actions 853 709

Iterations / Removed Actions 47 191

Table 1: The first row lists the domains used in our experi-
ment, Blocksworld and Gripper. The remaining rows show
the total number of iterations/replace actions deleted, total
time taken in seconds, and the starting/ending number of re-
place actions in each domain to find a valid plan.

Discussion From our empirical evaluation, we see our
method successfully allowed a valid plan to be found in each
domain. One shortcoming is that allowing replace actions to
be created between every possible fluent increases the num-
ber of grounded actions significantly. In fact, for the prob-
lems we considered, we ended up with a total of 900 actions.
This increase in grounded actions affected our problem run-
time significantly. In our case, the planner spent substantial
amounts of time reasoning about plans with replace actions
that would never be executable in the real world. This was
particularly evident in the Gripper domain.

Conclusion and Future Work
In this paper, we showed one possible method for generat-
ing a plan using a partial domain, that was valid given a total
domain. Specifically, we looked at scenarios where the par-
tial domain contained fluents that were semantically but not
syntactically equivalent, resulting in broken links between
actions and inexecutable agent plans. The purpose of this
work was then to avoid these unwanted outcomes by us-
ing replace actions to map these fluents to each other. We
tested this method on modified versions of the Blocksworld
and Gripper domains, achieving promising results for each,
where the agent was able to use a minimal set of replace
actions to find a valid plan. In the future, we hope to ex-
tend this work by applying our method to more complex
domains that contain multiple fluent pairs like this, as well
as different types of actions and broken action links yet to
be explored. We also hope to investigate the use of domain
knowledge and the use of domain structural clues to identify
more promising replace actions. Other possible venues of
investigation include the use of more complex and realistic
simulators. The use of simulators that provide more detailed
feedback about the identification of specific failures could
even be used to improve our current methods. Finally, our
current paper focuses on the use of actions as a way to con-
nect different fluents. However, this is one of many ways to
achieve this. Other possibilities include the use of axioms,
conditional effects, etc. Each of these methods could have
computational trade-offs Investigating such trade-offs could
be a fruitful future next step.
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