
Nyx: Planning for Emerging Problems with PDDL+ and Beyond

Wiktor Piotrowski1, Alexandre Perez, Sachin Grover1

1 PARC, part of SRI International CA, USA
e-mail: wiktor.piotrowski@sri.com, alexandrecperez@gmail.com, sachin.grover@sri.com

Abstract
Real-world applications of AI Planning often require a highly
expressive modeling language to accurately capture the in-
tricacies of target systems. Hybrid systems are ubiquitous
in the real-world, and PDDL+ is the standardized model-
ing language for capturing such systems as planning do-
mains. PDDL+ enables accurate encoding of mixed discrete-
continuous system dynamics, exogenous activity, and other
features encountered in the real world. However, the uptake
in usage of PDDL+ has been slow and apprehensive, largely
due to a shortage of general-purpose PDDL+ planning soft-
ware, and rigid limitations of the few existing planners. To
overcome this chasm, we present Nyx, a novel PDDL+ plan-
ner built to emphasize lightness and adaptability to a wide
range of novel real-world problems that often require models
beyond the expressiveness of PDDL+. Nyx can be tailored
to tackle a wide range novel problems rooted in real-world
applications, facilitating wider adoption of versatile planning
methods. We evaluate Nyx on openAI Gym’s classic control
problems: Mountain Car and CartPole, modeled in PDDL+.

Introduction
Realistic planning problems require an expressive model-
ing language to accurately capture the innate intricacies
of the modeled scenario. Indeed, most existing domain-
independent planning languages, such a STRIPS (Fikes and
Nilsson 1971), ADL (Pednault 1989), PDDL (McDermott
et al. 1998), and even PDDL2.1 (Fox and Long 2003), lack
features to describe commonplace elements of real-world
systems. As a result, the vast majority of planning mod-
els are severely abstracted or limited in scope, often being
forced to ignore aspects of the domain that, in the real world,
have significant impact on the system’s operations such as
environmental phenomena.

PDDL+ (Fox and Long 2006) is one of the most ex-
pressive modeling languages and was designed to model
mixed discrete/continuous (hybrid) systems. PDDL+ is, ar-
guably, the closest AI Planning has come to accurately rep-
resenting realistic scenarios as planning domains. It has
proved useful for capturing a wide range challenging AI do-
mains from traffic control(Vallati et al. 2016) and physics-
based games(Piotrowski et al. 2021) to spacecraft oper-
ations(Piotrowski 2018). However, the resulting PDDL+

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

planning problems are notoriously difficult to solve. Plan-
ning with PDDL+ domains is undecidable and requires rea-
soning with a wide range of advanced domain features,
including non-linear system dynamics, exogenous happen-
ings, high branching factors, temporal activity, and more.

Solving PDDL+ problems requires a powerful and effi-
cient planner, capable of reasoning with the aforementioned
aspects of PDDL+. However, development of PDDL+ plan-
ners has been slow and underwhelming. There are only a
handful of available domain-independent PDDL+ planners,
and each one is only suited for specific class of problems.
Furthermore, most of them have a rigid and complicated
code-base, very specific (often outdated) dependencies, and
are generally too cumbersome to adapt for novel classes
of planning models. Consequently, in lieu of AI Planning,
the scientific community and potential target users turn to
more accessible and flexible approaches which can be eas-
ily adapted or trained to solve emerging real-world chal-
lenges. Often, AI Planning can be particularly well-suited
to efficiently tackle certain classes of problems and provide
sought-after characteristics such as robustness, explainabil-
ity, and transparency. However, it is overlooked as a viable
approach simply because decision-makers are unaware of
its potential and advantages. This issue is particularly ev-
ident for applications requiring more a expressive model-
ing language (recent example, well-suited for PDDL+ plan-
ning, but overlooked in favor of Learning methods: (Vouros
et al. 2022)). There is a dire need for more flexible AI Plan-
ning tools which can efficiently tackle a wide range of real-
world problems and which can be easily adapted to emerg-
ing classes of applications.

We present Nyx, a novel lightweight PDDL+ planner
designed with adaptability and simplicity at the forefront
of development. Nyx is built to increase planning perfor-
mance via easily implemented heuristics and exploiting
high-fidelity settings configurations. In this paper, we de-
scribe the motivation behind developing Nyx, discuss the ba-
sic principles it is built on, and outline the path for adapting
the planner to any potential scenario.

However, having an high-performing and capable planner
is often not enough to solve many realistic problems. Real-
world systems are often prohibitively complex and cannot
be modeled as planning domains. Even the expressiveness
of PDDL+ is bound to basic arithmetic operations, and any-

thing beyond is either impossible to include in the domain
(e.g., square root, logarithms) or requires numeric approx-
imations (e.g., trigonometric functions). Thus, the second
contribution of our work is to overcome the expressiveness
limits of PDDL+. Nyx supports advanced domain extensions
that span well beyond the current expressiveness of PDDL+.

Related Work
To date, the language with, arguably, the most set of fea-
tures relevant to real-world problems is PDDL+ (Fox and
Long 2006). It was designed specifically as a planning stan-
dard for modeling hybrid systems (switched dynamical sys-
tems) governed by a set of differential equations and discrete
mode switches. Formally defined as a mapping of planning
constructs to Hybrid Automata (Henzinger 2000), PDDL+
enables the modeling and solving of problems set in sys-
tems exhibiting both discrete mode switches and continuous
flows. PDDL+ builds on the expressiveness of its predeces-
sors, it encapsulates the entire set of features from PDDL2.1
(including continuous effects) and supplements that with
the inclusion of timed-initial literals (TILs) from PDDL2.2.
However, the biggest advancement over its predecessors is
the inclusion of new constructs for defining exogenous ac-
tivity, namely discrete events and continuous processes.

The expressiveness of PDDL+ enables natural definitions
of certain phenomena ubiquitous in real-world scenarios.
However, the resulting planning problems are notoriously
difficult to solve due to immense search spaces and com-
plex system dynamics. Indeed, planning in hybrid domains
is challenging because, apart from the state space explosion
caused by discrete state variables, the continuous variables
cause the reachability problem to become undecidable (Alur
et al. 1995). As a result, efficient model implementation is
crucial to solving PDDL+ problems.

Recent works highlight how PDDL+ expressiveness,
teamed with clever system modeling, can achieve high plan-
ning performance despite the problems’ complexity in a
range of domains, including Urban Traffic Control (Vallati
et al. 2016), Angry Birds (Piotrowski et al. 2021), Chem-
ical Batch Plant (Della Penna et al. 2010), drilling (Fox
et al. 2018), Minecraft (Roberts et al. 2017), and UAV con-
trol (Kiam et al. 2020).

Currently available PDDL+ planners vary in their perfor-
mance and abilities to reason with different PDDL+ features.
Real-world applications often require high-performing plan-
ners to handle large numbers of happenings, wide range
of model features, and non-linear system dynamics. SMT-
Plan+ (Cashmore et al. 2016) can reason with all features
of PDDL+ but it is only capable of dealing with polyno-
mial non-linearity and does not scale well with the num-
ber of happenings. UPMurphi (Della Penna et al. 2009)
is highly optimized and can reason with the entire set of
PDDL+ features and non-linear dynamics, but its scalabil-
ity is impacted by lack of heuristics. DiNo (Piotrowski et al.
2016) is a PDDL+ planner which builds on the strengths
of UPMurphi and extends it by implementing a domain-
independent heuristic. However, DiNo’s heuristic is compu-
tationally expensive and does not perform well some classes
of domains. ENHSP (Scala et al. 2016) is a versatile PDDL+

planner equipped with various model-independent heuristics
and numerous search configurations. It can handle complex
PDDL+ domains and also reason with advanced mathemati-
cal expressions. ENHSP has very minor limitations with re-
spect to expressiveness. All of the aforementioned planners
have rigid, complicated code-bases that heavily rely on nu-
merous libraries. As a result, they cannot be easily adapted
to novel systems and scenarios, limiting their usefulness in
tackling emerging classes of problems.

Nyx Planner Implementation
Lightness and accessibility are ubiquitous throughout the en-
tire architecture and implementation of Nyx. The planner
is written in Python, a high-level scripting language which
facilitates rapid code writing and comprehension. Python
is the world’s most popular programming language(TIOBE
2022; IEEE Spectrum 2022), and is particularly favored for
AI and scientific computing applications. Python was cho-
sen as Nyx’s implementation language to make the planner
more accessible and encourage various extensions and mod-
ifications. In contrast, most established planners are very
specialized tools aimed at very narrow target audience. Their
code-base is usually written using performance-focused lan-
guages (i.e., C/C++) and optimized to extract every bit of
performance available. While the performance gains are sig-
nificant, the software becomes much less flexible and ac-
cessible. Modifications to the tool become infeasible due
to convoluted and unreadable code-base that is usually also
highly-dependent on external libraries.

Nyx, on the other hand, aims at different targets. It serves
as a transparent, easy-to-understand platform for rapid pro-
totyping and testing of algorithms and approaches. Nyx it-
self has a very minimalistic structure, only containing 4
base classes (main, parser, planner, and simulator), 8 ob-
ject classes (e.g., action, state, trace), and 3 compiler classes
(for efficient parsing and evaluating of PDDL+). Finally, our
planner has two auxiliary template classes for implement-
ing novel heuristic methods and external functions/semantic
attachments. Nyx has no complicated or obscure dependen-
cies, it relies only on the very basic concepts in Python.

Most PDDL+ planners are tailor-built for a specific class
of problems and thus only support a subset of PDDL+ fea-
tures and algorithms. Indeed, there are few planners which
are capable of adjusting their planning algorithms and pa-
rameters beyond a few simple options. Furthermore, estab-
lished PDDL+ planners are rigid in their structure and can-
not be easily modified to accommodate new classes of plan-
ning problems or features. Thus, problems intersecting mul-
tiple classes or requiring support for the full set of PDDL+
features have a very limited choice in planning solvers with
such coverage. Each class of problems might require a sep-
arate planner suited to that particular type of scenarios, de-
feating the notion of general-purpose PDDL+ planning.

To counter these shortcomings and ensure that Nyx can
deal with a variety of problem types, we equipped Nyx with
a range of generic strategies and operating options as a foun-
dation for the planner. However, the built-in functionality of
Nyx serves as the basis for further extensions. Nyx is specif-
ically designed to adapt to novel classes of problems by al-

lowing semantic and syntactic extensions, and rapid imple-
mentations of novel heuristics, external functions, and other
features. Nyx facilitates extensibility and straightforward in-
tegration of novel features, crucial aspects for attempting
to tackle emerging real-world problems and domains whose
scope spans beyond PDDL+.

Planning Paradigms
Simplicity is the main focus in Nyx. The planner relies
on fundamental approaches for representing time, states,
change, and happenings.
Planning via Discretization Nyx adheres to the planning-
via-discretization paradigm for handling the temporal
and continuous behavior of hybrid dynamical systems.
Nyx approximates a model’s continuous system dynamics
using a uniform time step (∆t) and step-functions. Nyx
also specifies number precision for representing numeric
state variables (which can be specified by the user). Nyx
follows standard discretization-based planning approach
of introducing a special time-passing action (atp) that,
during search, the planner can choose to apply alongside
actions defined in the domain. Time-passing allows the
planner to advance time during search and apply the effects
of events and processes, over a duration of the time step
∆t. Planning-via-discretization, while a straightforward
approach, enables Nyx to reason with all types of system
dynamics, including non-linear behavior. Plans generated
by Nyx can be validated (with VAL (Howey, Long, and
Fox 2004)) to complete the Discretize & Validate cycle
(Della Penna et al. 2009).

More formally, Nyx converts the planning model into
a Discretized Finite State Temporal System (DFSTS)
S=(S,A, E, P,D, F), where S is a finite set of states,
A is a finite set of actions (including the special time-
passing action atp∈A), and D is a finite set of durations.
F :S×A×D→S is the transition function. E and P are
the finite sets of events and processes, respectively. The
formalisms in this work are adapted from (Fox et al. 2012).

A state s∈S is a tuple s=(p(s), v(s), t(s)), where p(s) is
a finite set of propositions, v(s) is a finite set of continuous
variables, and t(s)∈R is the time at which state s occurs
(i.e., elapsed planning time from the initial state, t(s0)=0).
The transition function F yields a successor state s′∈S by
executing action a in state s, i.e., F (s, a, d(a))=s′ where
d(a)∈R≥0 denotes the duration of a and t(s′)=t(s) + d(a).

An action a∈A is a tuple a=(pre(a), eff(a)), where
pre(a) is a set of preconditions (both propositional and nu-
meric), and eff(a) is a set of effects over state variables
p(s) and v(s). An action a is applicable in state s iff its pre-
conditions pre(a) are satisfied, i.e., s|=pre(a).

Events and processes are analogous to actions, i.e.,
e=(pre(e), eff(e))∈E and p=(pre(p), eff(p))∈P , re-
spectively. Thus, their effects can technically be ap-
plied via the transition function F from DFSTS, i.e.,
F (s, e, d(e))→s′ and F (s, p, d(p))→s′. In practice, how-

ever, events and processes are encapsulated in and executed
by the special time-passing action atp. The time-passing ac-
tion has no preconditions itself pre(atp) = ∅. On the other
hand, the effects of atp are the union set of effects of all
events and processes whose preconditions are satisfied in
state s: eff(atp)=

⋃
ep∈EP eff(ep) where s|=pre(ep) and

EP=E∪P .
A DFSTS-based planning problem is a tuple

P=(S, s0, G,∆t, T), where S is an DFSTS, s0∈S is
the initial state, G ⊆ S is a finite set of goal states, ∆t∈R
is the discrete time step, and T is a finite temporal horizon
which bounds the state space. All states (including goal
states) must heed the bound imposed by the finite temporal
horizon T , i.e., ∀s∈S : t(s) ≤ T .

A trajectory π in DFSTS S is a sequence of states,
actions, and action durations, which ends with a state:
π = si, ai, d(ai), si+1, ai+1, d(ai+1), ..., sn, where i∈Z≥0,
n∈Z≥1, si∈S, ai∈A, and d(ai)∈D. A trajectory π∗ is a so-
lution to a planning problem P if it begins in the initial state
s0 and ends in a goals state sn∈G. Furthermore, for each
step i in the trajectory, the transition function F yields the
following state, i.e., F (si, ai, d(ai))→ si+1.

Nyx dictates a set of additional assumptions about plan-
ning via discretization. All actions are instantaneous (i.e.,
have duration d(a) = 0), except time-passing atp whose du-
ration is equal to the discrete time-step ∆t, i.e., d(atp) =
∆t. Thus, in practice, the finite set of durations is D =
{0,∆t}. In the discretized state space, states only occur
at time-points which are multiples of time step ∆t, i.e.,
∀s∈S : t(s) = ∆t ∗ n, where n = Z≥0 is a non-negative
integer. Thus, the preconditions of events and processes are
also checked at ∆t intervals. Finally, the effects of continu-
ous processes are applied by the transition function F, each
time over the uniform interval ∆t. Nyx neglects the support
for durative actions which can be seen purely as syntactic
convenience. Instead they can be equivalently compiled ac-
cording to the start-process-stop model (Fox and Long 2006)
where instantaneous actions and/or discrete events can trig-
ger and terminate continuous change.

Finally, setting the time discretization ∆t = 0 nullifies
the continuous aspect of the model and removes the need
for the time-passing action atp. In Nyx, this is done auto-
matically, by simply excluding :time from the PDDL do-
main requirements. However, Nyx allows events to be trig-
gered in non-temporal domains, since they only apply dis-
crete change themselves.
Grounding The initial parsing of the PDDL+ domain and
problem files explicitly grounds the initial state. All states in
Nyx are currently fully grounded. Similarly, all happenings
are fully grounded after the PDDL model is parsed.
Expression Compilation To bridge the performance gap
between Nyx and other planners written in compiled lan-
guages, Nyx features expression compilation. For every ef-
fect and precondition PDDL expressions in a grounded do-
main, Nyx translates them to equivalent Python bytecode at
runtime. This compilation step is transparent to users and
is performed in a just-in-time (JIT) fashion as expressions
are evaluated for the first time. Subsequent evaluations of a

compiled expression will use JITed Python code instead of
interpreted PDDL code for increased efficiency.

Search Algorithms and Heuristics
Similarly to other discretization-based PDDL planners, Nyx
converts the discretized PDDL+ problem into a graph
search task, where planning states are represented by nodes
and actions by edges. Nyx traverses the state space using
forward-chaining search algorithms. Currently, the planner
is equipped with four basic search algorithms: Breadth-First
Search (BFS), Depth-First Search (DFS), Greedy Best-First
Search (GBFS), A*1.

By default, breadth-first search is enabled. The user can
specify their preferred search algorithm to use by adding a
command-line argument when running Nyx. The algorithms
change the ordering and queuing procedures of the open list
of visited states. Using A* and GBFS requires defining a
heuristic function which evaluates each generated successor
state. Nyx has a special class which stores the implemen-
tations of heuristic functions. Invoking a specified heuris-
tic function is done with command-line parameters. Mul-
tiple heuristics can be implemented at the same time, the
user only needs to specify the index of the heuristic function
they intend to use for a given problem. The heuristic func-
tion takes in a planning state object as input and returns a
numeric value, i.e., the heuristic estimate for the given state.
The heuristic value is then used to enqueue the generated
state into the priority open list of explored states. The open
list’s enqueue mechanism is determined by the active search
algorithm, and the states are ordered w.r.t. heuristic estimate.

The planner’s search process can be constrained by the
user to limit the already vast state space and/or to focus the
search effort to a particular subsection. The user can specify
the temporal horizon (i.e., states beyond a certain time-point
will not be expanded), depth limit (i.e., strict cap on plan
length), and planner timeout (limited runtime).

Plan Metrics Temporal planning is undecidable, thus
most planners reasoning with PDDL2.1 and beyond are usu-
ally only concerned with finding a feasible solution to a
given problem. Due to this obstacle, plan quality has been
pushed to the background when working with more ad-
vanced domains written in more expressive paradigms such
as PDDL2.1 or PDDL+. Plan metrics measure the quality of
a solution based on a pre-specified function in the problem
file. However, plan metrics have been largely neglected in
temporal planning and beyond.

Nyx allows for the parsing of a plan metric defined as
a mathematical expression in the PDDL problem file. The
metric definition follows the syntax of PDDL+ and requires
a function that returns a numeric value. The planning objec-
tive is to find solutions with optimized metric (either min-
imize or maximize). There are two special cases for plan
metrics which concern important aspects of the solution but
cannot be defined with respect to state variable values. In-
stead, these metrics focus on finding plans with optimized

1Currently, the look-back value g(s) of the A* algorithm is im-
plemented to track the number of actions back to the initial state
s0. This will be updated in subsequent version of Nyx.

(:metric minimize
(total-time))

(:metric maximize
(* (fuel_remaining) (total_reward)))

(:metric minimize
(total-actions))

(:metric minimize
(* (- (revenue) (cost)) inflation))

Figure 1: Examples of PDDL plan metrics.

with respect to makespan (“total-time”) and number of plan
actions (“total-actions”). If no metric is specified, the plan-
ner will minimize plan makespan.

Anytime Search Nyx is equipped with anytime search al-
gorithm (Hansen, Zilberstein, and Danilchenko 1997) for
improving the quality of solutions as a trade-off for search
time. After the first valid goal state has been encountered, the
anytime algorithm exploits prior search progress and contin-
ues to explore the state space in search of improved solu-
tions. The anytime approach uses plan metrics which quan-
tify solution quality. Found plans are ranked with respect
to plan metrics. After the allotted search time has been ex-
hausted, the planner returns the ranked list of solutions.

For practicality reasons, the number of solutions concur-
rently held in memory is limited by the user who can specify
the maximum size of the list containing the top plans. Simi-
larly, the user specifies the planning timeout limit. When the
limit is reached, Nyx returns the encountered plans.

Nyx does not have a separate anytime search algorithm
as such. Instead, the user can select from the already im-
plemented algorithms (BFS, DFS, GBFS, A*) or implement
their own search algorithm. The selected algorithm contin-
ues to explore the state space instead of terminating at the
first encountered goal state (default timeout is 30 minutes).

Nyx Planning Algorithm

The main planning approach of Nyx is summarized in Algo-
rithm 1. The presented algorithm is a skeleton which can be
modified by the user to include various operations, such as
an additional event check (at the very beginning of the time
passing block). The algorithm returns a set of goal states
(reachedGoals) from which a trajectory can be extracted via
backtracking using predecessor(s) and achiever(s) functions
which return the predecessor state and achieving action of
any state s.

Precondition Tree

Internally, Nyx reasons with grounded representations of
states, actions, events, and processes. Unfortunately, this ap-
proach can cause an explosion in the number of happenings
which need to be repeatedly checked for applicability at ev-
ery step during search. Checking a list of preconditions of all
actions, events, and processes in a linear fashion is often un-
feasible. To improve the efficiency of the planner, this paper
introduces precondition tree, a novel approach to check-
ing happening applicability inspired by the concept of the
trie (Fredkin 1960). Structuring the precondition checking

Algorithm 1: Nyx Planning Algorithm
Input : Ag , Eg , Pg - list of grounded actions,

events, and processes, respectively.
Input : requirements - list of domain requirements.
Input : s0 - initial state.
Input : ∆t - time discretization quantum.
Output: reachedGoals - list of reached goal states.

1 OPEN← {s0}
2 while OPEN do
3 s← pop(OPEN)
4 if s ∈ G then
5 enqueue(reachedGoals, s, metric(s))
6 if not anytime then
7 return reachedGoals

8 s′ ← copy(s)
9 predecessor(s′)← s

10 foreach a ∈ applicable(actions, s) do
11 if a is time-passing then
12 if “:semantic-attachment” ∈

requirements then
13 s′ ← semanticAttachment(s′)
14 foreach p ∈ applicable(processes, s′) do
15 s′ ← F (s,p, ∆t)
16 foreach e ∈ applicable(events, s′) do
17 s′ ← F (s,e,0)

18 else
19 s′ ← F (s,a, 0)
20 if “:time” /∈ requirements then
21 foreach e ∈ applicable(events, s′) do
22 s′ ← F (s,e, 0)

23 achiever(s′)← a
24 if isValid(s′) then
25 insert(visited, s)
26 enqueue(OPEN, s′, h(s′))

27 if runtime limit reached then
28 break

29 return reachedGoals

as a tree traversal task allows for efficient pruning of actions
which contain falsified preconditions. A single falsified pre-
condition can prune multiple actions from being unnecessar-
ily checked for applicability.

A precondition node of a precondition tree is a tuple
pn=(expr(pn),Aexpr(pn), C(pn)), where
∀a∈Aexpr(pn):expr(pn)∈pre(a) is a propositional or
numeric precondition expression, a finite set of actions
Aexpr(pn)⊆A which all contain the expr(pn) precondi-
tion, i.e., ∀a∈Aexpr(pn) : expr(pn)∈pre(a). C(pn) is a
finite set of child precondition nodes.

Note, that for each precondition node pn, each action in
Aexpr(pn) also contains all preconditions from its parent
nodes. Thus, for each action a∈A, its set of preconditions
pre(a) is represented as a trajectory (a sequence of linked
precondition nodes) in the precondition tree, where the final

Algorithm 2: Precondition tree traversal to find ap-
plicable grounded actions.

Input : s ∈ S - a planning state.
Input : pnrt = (expr(pnrt),Aexpr(pnrt), C(pnrt)

- root node of a grounded precondition tree.
Output: APPLICABLE - list of applicable actions.

1 OPEN← {pnroot}
2 APPLICABLE← ∅
3 while OPEN do
4 pn← pop(OPEN)
5 if s |= expr(pn) then
6 foreach a ∈ Aexpr(pn) do
7 APPLICABLE.append(a)
8 foreach pnc ∈ C(pn) do
9 OPEN.append(pnc)

10 return APPLICABLE

node of the trajectory contains the action a.
More formally, a precondition trajectory is a se-

quence of precondition nodes τ=pni, pni+1, ..., pnn, where
i∈Z≥0 and n∈Z≥1. Each precondition node pn con-
tains the following node inside its set of child nodes,
∀pnk∈τ :pnk∈C(pnk−1) where k∈Z≥1. The final node pnn

of any trajectory τ must contain a non-empty set of actions
Aexpr(pnn) ̸= ∅. The set of preconditions pre(a) for any
action a∈Aexpr(pnk) contained inside some precondition
node pnk∈τ must also contain the preconditions contained
by all of its predecessor nodes in the precondition trajectory,
i.e., ∀a∈Aexpr(pnk):pre(a) =

⋃k
i=0 expr(pni).

In a precondition tree, multiple precondition trajectories
can partially overlap. In fact, a precondition trajectory of
some action ak∈A may contain a whole precondition tra-
jectory of another action aj∈A iff pre(aj) ⊂ pre(ak). If
pre(aj) = pre(ak), they would be part of the same trajec-
tory τ with the final precondition node pnn containing both
actions, i.e., aj , ak∈Aexpr(pnn)

Given a grounded state s∈S, the mechanism traverses
the precondition tree, starting at the root, evaluating the
precondition expression expr(pni) in each expanded node
pni. If the grounded precondition is satisfied in the given
state, all actions contained by that precondition node
are deemed applicable, i.e., ∀a∈Aexpr(pni) : s |=
expr(pni) =⇒ s|=pre(a). Furthermore, if s |= expr(pni)
then all child nodes C(pni) will be expanded and evaluated.
Conversely, if precondition expr(pni) is falsified in s, i.e.,
s ̸|= expr(pni), the entire branch containing precondition
node pni and all of its successors is pruned away. The pre-
condition tree traversal is shown in fig. 2.

A precondition tree is generated by iteratively inserting
a precondition node pn for each precondition expr∈pre(a)
for each action a∈A in the grounded planning problem P .
Algorithm for generating a precondition tree is shown in 3.

Since all happening types (i.e., actions A, events E, and
processes P) have identical structure, the precondition tree
approach is applicable to all happenings. Algorithms 3 and
2 can be adapted by replacing the set of grounded actions
A, with the set of events E or processes P . In practice, Nyx

Algorithm 3: Precondition Tree Generation
Input : A - a set of grounded actions

∀a ∈ A : a = (pre(a), eff(a)).
Input : pnrt = (expr(pnrt) = ∅,Aexpr(pnrt) =

∅, C(pnrt) = ∅) - an empty root
precondition node.

Output: pnrt - a root precondition node (containing
the precondition tree).

1 foreach a ∈ A do
2 pn← pnrt

3 foreach expr ∈ pre(a) do
4 pnmatch ← ∅
5 if C(pn) = ∅ then
6 pnmatch = (expr, ∅, ∅)
7 C(pn).append(pnmatch)
8 else
9 foreach pnc ∈ C(pn) do

10 if expr(pn) = expr(pnc) then
11 pnmatch ← pnc

12 break

13 pn← pnmatch

14 return pnrt

generates a precondition tree for each type of happenings.
From a design perspective, the precondition tree is a more

efficient approach instead of sequentially checking lists of
preconditions to determine applicability of each grounded
happening. In practice, however, the efficiency of the pre-
condition tree is affected by the planning domains and their
characteristics. Many domains have small branching factors,
relatively few grounded happenings of each type, and sim-
ple precondition expressions. Under those circumstances,
building the precondition tree can add unnecessary over-
head. As a result, the precondition tree is an optional fea-
ture in Nyx that can be activated via a command-line flag
when needed. Table 1 presents the impact of the precondi-
tion tree on search performance, measured w.r.t. the average
number of explored states per second over the first 10000
states. As is evident from the data, the precondition tree ap-
proach more than doubled the state space exploration rate
for the Angry Birds domain (Piotrowski et al. 2021) where
1413 grounded events need to be checked at each time tick
(checking for collisions, explosions, and other phenomena
between birds, pigs, blocks, and platforms). It also has the
highest average number of preconditions for all happening
types and the vast majority of preconditions are complex nu-
meric expressions which are particularly time-consuming to
evaluate. However, the event-driven Angry Birds model is
an outlier in its complexity compared to other benchmark
PDDL+ models (Fox and Long (2006); McDermott (2003);
Stern et al. (2022); Howey et al. 2004).

Finally, like any approach for checking happening appli-
cability, the precondition tree is sensitive to the ordering of
preconditions. For uniformity, all sets of preconditions are
sorted in lexicographical order. Though, out of scope for this
paper, subsequent work will conduct an analysis of node or-
dering in the precondition tree to optimize its efficiency.

Nyx Expressiveness Extensions
PDDL+ is one of the most expressive planning modeling
languages in use today. It is specifically designed for hybrid
systems with mixed discrete and continuous dynamics. Hy-
brid systems are omnipresent in the real world. In fact, most
realistic systems exhibit both discrete and continuous behav-
ior. Furthermore, PDDL+ is also able to express exogenous
activity in the form of processes and events (i.e., the environ-
ment’s actions). Deployed intelligent agents are required to
interact with real-world phenomena, making PDDL+ well-
suited for modeling realistic scenarios.

However, PDDL+ models are still severely limited by the
classes of mathematical expressions they can exploit. Cur-
rently, PDDL+ (and other numeric versions of PDDL) are
limited to basic arithmetic operations, i.e., addition, subtrac-
tion, multiplication, and division. Thus, any significantly ad-
vanced system dynamics, that cannot be easily defined us-
ing the aforementioned operations, must be simplified or
approximated. This is at odds with the real-world planning
applications that require model accuracy and greater expres-
siveness. Indeed, even quite basic mathematical operations
such as roots, absolute values, or trigonometric functions can
be unfeasible to accurately encode in PDDL.

Some approximations are sufficiently accurate to exploit
(e.g., Bhaskara’s trigonometric approximations) but this of-
ten comes at a cost of significant reduction in model clarity,
readability, and/or conciseness. Figure 2 shows the PDDL
expression required to approximate sin θ◦ and cos θ◦. Mod-
eling complex systems using bloated and overly complicated
approximations for basic mathematics is cumbersome and
time-consuming. Additionally, such practices are prone to
introducing errors into the models. Most importantly, having
to resort to using much simplified dynamics or complicated
approximations may discourage users from considering AI
planning approaches altogether. Nyx facilitates straightfor-
ward extensions for defining advanced system dynamics be-
yond the current arithmetic confines of base PDDL+.

Domain Language Extensions Nyx supports extending
the expressive power of PDDL+ by integrating new math-
ematical expressions and operations for use directly in the
planning domain. The integration of new expressions into
the planner is done in a straightforward manner directly. The
user is only required to add a new entry to an existing list of
mathematical symbols/function names, and then define how
the parser will evaluate the expression. In practice, adding a
new expression requires only about 2 lines of code in one file
(one specifying the new symbol and arity of the expression,
the other - how to evaluate the expression in Python). Virtu-
ally any type of function can be seamlessly integrated into
Nyx via Python, including specialized operators/expressions
which require external libraries/packages (provided they are
imported in the parser).

Additionally, Nyx natively supports the entire Python
math library2 via the @ symbol for direct use in the plan-
ning domain file. Any function from the library can be used
by adding @ in front of the math function name and fol-

2https://docs.python.org/3/library/math.html

Domains # actions
(avg # preconditions)

events
(avg # preconditions)

processes
(avg # preconditions)

exploration rate (nodes/sec)
with PT without PT difference

Car 4 (2.33) 1 (3) 2 (1.5) 44971 54489 -17.5%
Sleeping Beauty 4 (1.67) 6 (2.5) 2 (1.5) 41037 54132 -24.2%

Vending Machine 3 (2) 3 (3) 1 (1) 32932 37260 -11.6%
Convoys 129 (2) 0 (0) 65 (1.98) 6305 7841 -19.6%
Cartpole 3 (4) 4 (2) 1 (2) 10846 11269 -3.7%

Mountain Car 3 (4) 6 (1.7) 0 (0) 27911 33422 -16.5%
Angry Birds 9 (5.5) 1413 (7.1) 5 (3.6) 924 422 +118.8%

Table 1: Comparison of Nyx’s exploration rate (w.r.t. expanded nodes) with and without using the precondition tree (PT)
approach for various PDDL+ domains. The total number of grounded actions, grounded events, and grounded processes is
presented per domain. The average number of preconditions per each happening type is show in brackets.

sin_theta= (/ (* (* 4 (theta)) (- 180 (theta))) (- 40500 (* (theta) (- 180 (theta)))))
cos_theta= (/ (- 32400 (* 4 (* (theta) (theta)))) (+ 32400 (* (theta) (theta))))

Figure 2: PDDL-style implementation of sin(θ◦) and cos(θ◦) using Bhaskara’s approximation.

|v⃗| =
√

(x2 − x1)2 + (y2 − y1)2

(assign v_mag
(ˆ (+ (ˆ (-(x2)(x1)) 2) (ˆ (-(y2)(y1)) 2)) 0.5))

Figure 3: Absolute value of some variable z and the magni-
tude of some vector v⃗, using Nyx’s added power operator ∧.

lowing the PDDL prefix notation convention. For exam-
ple, (@sin (z)) and (@pow (x) (y)) in the domain
will yield the sine of z and x to the power of y, respec-
tively. In Python, these expressions would be evaluated as
math.sin(z) and math.pow(x,y). For convenience,
the power operator is also implemented in Nyx as the ∧ sym-
bol, i.e., (ˆ (x) (y)), where x is the base number and
y is the exponent. The power expressions also accept frac-
tional exponents which allows for representation of roots.
Figure 3 shows a PDDL snippet using Nyx’s language ex-
tensions to compute the magnitude of a vector |v⃗|.

Semantic Attachments Real-world systems can be ex-
traordinarily complex. Unfortunately, some realistic sys-
tem dynamics cannot be defined as part of a planning do-
main even exploiting Nyx’s domain language extensions de-
scribed in the previous section. Such cases represent a signif-
icant loss of scientifically interesting scenarios to the plan-
ning community. In many cases, modeling a real-world sys-
tem as a planning domain might prove unfeasible due to a
single, yet important, feature of the system which cannot
be encoded using conventional PDDL+. To overcome sce-
narios where a piece of the system dynamics is beyond the
scope of expressiveness of PDDL+, Nyx is equipped to ac-
commodate plug-in semantic attachments (Dornhege et al.
2009; Hertle et al. 2012). Semantic attachments are external
functions to which the planner delegates the computation of
some of the system’s dynamics. Via semantic attachments,
Nyx enables the integration of advanced methods and li-
braries which cannot be exploited otherwise. Furthermore,
it facilitates a straightforward manner of integrating exter-
nal functions in virtually any form, including pure Python
code, trained surrogate models, functional mock-up units,
and simulators, to name a few.

Figure 4: Modeled OpenAI Gym environments: Mountain
Car (left) and Cartpole (right).

Average cost −128.86± 31.399
Completion 100%

Planning time 0.0508± 0.005791 secs
Best RL agent cost3 110

Table 2: Mountain Car results over 100 episodes.
Nyx models a semantic attachment as a Python func-

tion that takes a planning state as input, updates a subset
of state variables’ values, and returns the modified state.
In the planner, the feature is activated by simply adding
:semantic-attachment to the domain requirements.

Results
In this section we evaluate Nyx’s capabilities by model-
ing two of the OpenAI Gym games(Brockman et al. 2016),
Mountain Car and Cartpole, as PDDL+ domains for the
first time. The models are based on the OpenAI simula-
tor descriptions(OpenAI 2016b,a). The initial state is ob-
served after initializing the OpenAI Gym simulator, and
the new problem file with the pre-defined transition model
in PDDL+ is solved in Nyx. The planner utilizes domain-
specific heuristics to solve the problem. All the results have
been run on Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz.

Mountain Car is an OpenAI Gym problem, in which a
cart has to be pushed on a sinusoidal curve to a specific
height. There are three possible actions in each position –
push car left, push car right, do nothing. Observation from
the simulator returns position and velocity of the cart (in x
direction only). An episode ends either when the cart reaches

Figure 5: Modeling accuracy comparing state variables with the feature vector from OpenAI Gym. Mountain Car (left): position
(x) and velocity (v). Cartpole (right): position of cart (x) and angular displacement of pole (θ).

Average Reward 200± 0.0
Completion 100%

Planning time 0.21669± 0.021982 secs
Best RL agent reward4 195

Table 3: Cartpole results over 100 episodes.
the flag position (0.5) or the episode is truncated in 200 time
steps. Table 2 presents results over 100 episodes. Our heuris-
tic was calculated using – hmc=0.07−1000∗fapp∗vcart
where hmc represents the heuristic value, fapp is the force
applied to the cart with direction and vcart is the velocity of
the cart. In essence, it prioritizes states in which the force
applied was in the direction of the motion to increase veloc-
ity. The agent is penalized (-1) for each action taken. Current
state-of-the-art RL agents achieve an average score of -110,
whereas our agents achieved an average score of -128.86.

Cartpole is commonly known as inverted pendulum, in
which the agent has to balance a pole on the cart. A state
in the Cartpole is represented as a vector with values of
position and velocity of the cart and angle of divergence,
with angular velocity of the top point of the pole. There
are two possible actions – push cart left, and push cart
right. An episode ends if the agent is able to balance the
pole for 200 steps (or 4.0 seconds) or if the angular dis-
placement of the pole is greater than 12◦, or position of
the cart has diverged greater than 2.4m from the center.
The score per episode is the number of steps (out of 200)
that the agent is able to balance the pole without violat-
ing the termination constraints. Table 3 shows the average
score and the completion rate in comparison to best RL
agent available. A domain-specific heuristic is calculated as
hcp =

√
x2+ẋ2+ẍ2+θ2+θ̇2+θ̈2∗(tep−telapsed) where x

represents the position of the cart and θ represents the angu-
lar displacement, ẋ represents velocity, ẍ represents acceler-
ation, and tep is the duration of the episode, and telapsed is
the time elapsed. The heuristic prioritizes safe, controllable
states (i.e., with low velocities/accelerations, and far from
termination boundaries) that are further in time.

State modeling comparison. To evaluate the modeling
capability of Nyx, we compare the expected and observed
values of the state predicates as calculated by Nyx and the

simulator. Figure 5 (left) shows the comparison observed
and expected values of of position (x) and velocity (v) in
mountain car. The values differ from each other in the or-
der of magnitude of 10−9 for x and 10−10 for v. Thus, the
lines for observed and expected value are overlapping in the
figure. Similarly, figure 5 (right) shows the comparison of
observed and expected values of position of cart (x) and an-
gular displacement of pole (θ). Nyx is able to model Cart-
pole accurately to the order of 10−3, that is far greater than
the mountain car values especially for rotational functions.
This difference accumulates over time for the θ value of the
pole. Thus, there is a need to replan after 100 steps as the er-
ror in difference accumulates and the transition values differ
causing the pole to fall early. Without replanning the average
reward for Cartpole is approximately 157 points.

Conclusion & Future Work
This paper presented Nyx, a novel PDDL+ planner for real-
world planning problems. Currently available PDDL+ plan-
ners have a steep learning curve and require expert knowl-
edge. Nyx aims to increase the accessibility to AI planning,
particularly for realistic feature-rich domains. Nyx’s design
facilitates adaptability to tackle novel classes of domains,
and accessibility to promote AI Planning as a viable and
usable method for solving interesting real-world problems.
We also present the precondition tree, a promising new ap-
proach for efficiently evaluating preconditions. Nyx intro-
duces features that support reasoning advanced features be-
yond the scope of PDDL+. Specifically, Nyx allows straight-
forward implementation of new mathematical expressions to
be used in PDDL+ domains, as well as support for seman-
tic attachments for features that cannot be feasibly included
in the PDDL model directly. By discussing the fuel system
model, we show that Nyx enables AI Planning to reason
with real-world problems. In future work, we will continue
exploring different configurations of the precondition tree
and analyze impact of different orderings of preconditions in
the tree. Most importantly, since developing model-specific
heuristics for complex real-world problems is difficult and
requires expert knowledge, further work will focus on devel-
oping domain-independent approaches that can readily solve
emerging classes of problems.

References
Alur, R.; Courcoubetis, C.; Halbwachs, N.; Henzinger, T.;
Ho, P.; Nicolin, X.; Olivero, A.; Sifakis, J.; and Yovine, S.
1995. The Algorithmic Analysis of Hybrid Systems. Theo-
retical Computer Science, 138: 3–34.
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. OpenAI
Gym. arXiv:1606.01540.
Cashmore, M.; Fox, M.; Long, D.; and Magazzeni, D. 2016.
A Compilation of the Full PDDL+ Language into SMT. In
ICAPS, 583–591.
Della Penna, G.; Intrigila, B.; Magazzeni, D.; and Mercorio,
F. 2010. A PDDL+ benchmark problem: The batch chemical
plant. In ICAPS. Citeseer.
Della Penna, G.; Magazzeni, D.; Mercorio, F.; and Intrig-
ila, B. 2009. UPMurphi: a tool for universal planning on
PDDL+ problems. In ICAPS.
Dornhege, C.; Eyerich, P.; Keller, T.; Trüg, S.; Brenner, M.;
and Nebel, B. 2009. Semantic attachments for domain-
independent planning systems. In Nineteenth International
Conference on Automated Planning and Scheduling.
Fikes, R. E.; and Nilsson, N. J. 1971. STRIPS: A new ap-
proach to the application of theorem proving to problem
solving. Artificial intelligence, 2(3-4): 189–208.
Fox, M.; and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. Journal
of Artificial Intelligence Research, 20: 61–124.
Fox, M.; and Long, D. 2006. Modelling mixed discrete-
continuous domains for planning. Journal of Artificial Intel-
ligence Research, 27: 235–297.
Fox, M.; Long, D.; and Magazzeni, D. 2012. Plan-based
Policies for Efficient Multiple Battery Load Management.
J. Artif. Intell. Res. (JAIR), 44: 335–382.
Fox, M.; Long, D.; Tamboise, G.; and Isangulov, R. 2018.
Creating and executing a well construction/operation plan.
US Patent App. 15/541,381.
Fredkin, E. 1960. Trie memory. Communications of the
ACM, 3(9): 490–499.
Hansen, E. A.; Zilberstein, S.; and Danilchenko, V. A. 1997.
Anytime heuristic search: First results. Univ. Massachusetts,
Amherst, MA, Tech. Rep, 50.
Henzinger, T. A. 2000. The theory of hybrid automata.
In Verification of digital and hybrid systems, 265–292.
Springer.
Hertle, A.; Dornhege, C.; Keller, T.; and Nebel, B. 2012.
Planning with Semantic Attachments: An Object-Oriented
View. volume 242.
Howey, R.; Long, D.; and Fox, M. 2004. VAL: Automatic
Plan Validation, Continuous Effects and Mixed Initiative
Planning Using PDDL. In IEEE ICTAI, 294–301. IEEE.
IEEE Spectrum. 2022. Top Programming Languages.
Kiam, J. J.; Scala, E.; Javega, M. R.; and Schulte, A. 2020.
An AI-based planning framework for HAPS in a time-
varying environment. In ICAPS, volume 30, 412–420.

McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL - The
Planning Domain Definition Language.
McDermott, D. V. 2003. Reasoning about Autonomous Pro-
cesses in an Estimated-Regression Planner. In ICAPS, 143–
152.
OpenAI. 2016a. CartPole. https://gymnasium.farama.org/
environments/classic control/cart pole/. [Online; accessed
04-April-2024].
OpenAI. 2016b. Mountain Car. https://gymnasium.farama.
org/environments/classic control/mountain car/. [Online;
accessed 04-April-2024].
Pednault, E. P. 1989. ADL: Exploring the Middle Ground
Between. In International Conference on Principles of
Knowledge Representation and Reasoning, 324.
Piotrowski, W.; Fox, M.; Long, D.; Magazzeni, D.; and Mer-
corio, F. 2016. Heuristic Planning for PDDL+ Domains. In
IJCAI, 3213–3219.
Piotrowski, W.; Stern, R.; Klenk, M.; Perez, A.; Mohan,
S.; et al. 2021. Playing Angry Birds with a Domain-
Independent PDDL+ Planner. In International Conference
on Automated Planning and Scheduling (Demo Track).
Piotrowski, W. M. 2018. Heuristics for AI Planning in Hy-
brid Systems. Ph.D. thesis, King’s College London.
Roberts, M.; Piotrowski, W.; Bevan, P.; Aha, D.; Fox, M.;
Long, D.; and Magazzeni, D. 2017. Automated planning
with goal reasoning in minecraft. In Proceedings of ICAPS
workshop on Integrated Execution of Planning and Acting.
Scala, E.; Haslum, P.; Thiébaux, S.; and Ramirez, M. 2016.
Interval-based relaxation for general numeric planning. In
Proceedings of the Twenty-second European Conference on
Artificial Intelligence, 655–663.
Stern, R.; Piotrowski, W.; Klenk, M.; de Kleer, J.; Perez, A.;
Le, J.; and Mohan, S. 2022. Model-Based Adaptation to
Novelty in Open-World AI. Bridging the Gap Between AI
Planning and Reinforcement Learning (PRL), ICAPS.
TIOBE. 2022. TIOBE Index.
Vallati, M.; Magazzeni, D.; Schutter, B. D.; Chrpa, L.; and
Mccluskey, T. L. 2016. Efficient Macroscopic Urban Traffic
Models for Reducing Congestion: A PDDL+ Planning Ap-
proach. In AAAI Conference. AAAI Press.
Vouros, G.; Papadopoulos, G.; Bastas, A.; Cordero Garcia,
J.; and Rodrigez, R. 2022. Automating the resolution of
flight conflicts: Deep reinforcement learning in service of air
traffic controllers. In Prestigious Applications of Intelligent
Systems, IJCAI.

