
Action Inheritance Within the Unified Planning Framework

Alan Lindsay, Ronald P. A. Petrick
Heriot-Watt University, Edinburgh, UK

alan.lindsay@hw.ac.uk

Abstract

The PDDL modelling problem is known to be challenging,
time consuming and error prone. This has led researchers
to investigate methods of supporting the modelling process.
This has included the Unified Planning Framework, which
allows planning structures to be specified and manipulated in
code. Another recent proposal involved extending the PDDL
modelling language with support for action inheritance. The
motivation in the extension is to help to organise and pro-
vide structure, with an aim to making PDDL models easier to
read, debug, and reuse. In this work we extend the Unified
Planning Framework in order to support action inheritance.
We consider whether action inheritance is useful in the con-
text of the framework; in particular, we compare the use of
action inheritance with the manipulation of PDDL structure
in the framework. We conclude with a case study, where we
demonstrate the benefit of multiple-inheritance.

Introduction
The problem of authoring PDDL domains has been identified
as a major bottleneck in the adoption of planning. Tradition-
ally authoring PDDL was carried out entirely in a text edi-
tor, but over the years tools and techniques have been devel-
oped to support the process. This includes a recent trend in
the research field to develop community frameworks, bring-
ing together tools and techniques for problem modelling,
planning, and related processes (Muise 2016; Dolejsi et al.
2019). A recent example is the Unified Planning Frame-
work1 (UPF), which provides an intuitive and planner inde-
pendent method for defining planning problems. Of particu-
lar relevance is that it provides access to planning structure
as first-class objects to be manipulated in code.

Planning models can involve substantial duplication (e.g.,
context dependent actions) and complexity (e.g., models for
real world applications). For example, context dependent ac-
tions are actions that can have several interpretations, or spe-
cific implementations, depending on the context that the ac-
tion is executed. In the barman domain, there are different
actions to fill a shot glass, which depend on whether the shot
glass is empty or not. Of course, the actions representing
these specific cases will typically share much of their repre-
sentation. Moreover, redundancy and complexity can reduce

1https://github.com/aiplan4eu/unified-planning

legibility and increase the chances of introducing errors dur-
ing model changes. In recent work, action inheritance was
proposed as an extension to PDDL to allow the relationships
between actions to be explicitly encoded. As a consequence,
related actions can build from a shared representation of a
more abstract action, allowing them to share structure. This
allows for a more concise representation.

In this paper we consider action inheritance in the con-
text of the UPF. In particular, we consider the comparison of
using action inheritance over modelling similar actions us-
ing features of the UPF directly. The paper is structured as
follows. We first introduce planning, PDDL, action inheri-
tance in PDDL, and the UPF. We then demonstrate how the
UPF can be extended to support single and then multiple ac-
tion inheritance, and discuss their use. We conclude with a
case study where we demonstrate how multiple inheritance
can be used in practice to assist in incorporating a model of
engagement into an existing planning model.

Related Work
There are various approaches to supporting authoring PDDL
models, including frameworks similar to IDEs for use by
software engineers, e.g., the GIPO (Simpson, Kitchin, and
McCluskey 2007), itSIMPLE (Vaquero et al. 2007) and
KEWI (Wickler, Chrpa, and McCluskey 2014) systems.
These modelling tools are useful for rapid development of
domains by an experienced domain modeller. Alternatively,
approaches to domain model acquisition aim to learn models
from observations, e.g., (Wu, Yang, and Jiang 2007; Mourao
et al. 2012; Lindsay et al. 2017) and approaches that pro-
vide assistance in refining (Lindsay et al. 2020) and extend-
ing (Porteous et al. 2021) existing planning models, each
aim to reduce the burden of modelling a complete domain
model.

The UPF is part of a recent trend in the automated plan-
ning research field to develop community frameworks. An
early example, ‘Planning.Domains’ (Muise 2016), brings to-
gether a collection of resources and tools, including an on-
line solver, and extensive sets of problem benchmarks. The
VS Code PDDL extension (Dolejsi et al. 2019) provides
functionality to support PDDL modelling in VS Code in a
similar manner to programming languages, such as Python.

Inheritance in PDDL is used in the type hierarchy (McDer-
mott et al. 1998). There are also approaches, e.g., (Hertle



(:action move
:parameters (?t - truck ?l1 ?l2 - location)
:precondition (and (at ?t ?l1)
(not (at ?t ?l2)))

:effect (and (at ?t ?l2) (not (at ?t ?l1))))

(:action constrained move
:super (move)
:precondition (connected ?l1 ?l2))

Figure 1: Example PDDL actions for the move action and
the constrained move refinement (inheriting) action.

1 def get traversal model():

2 ...

3 Location = UserType(’Location’)

4 Truck = UserType(’Truck’)

5 at = Fluent(’at’, BoolType(), t=Truck, l=

Location)

6 move = InstantaneousAction(’move’, t=Truck,

l1=Location , l2=Location)

7 t = move.parameter(’t’)

8 l from = move.parameter(’l1’)

9 l to = move.parameter(’l2’)

10 move.add precondition(at(t, l from))

11 move.add effect(at(t,l from), False)

12 move.add effect(at(t,l to), True)

Figure 2: Example Python code for specifying location and
truck types, a located predicate, and a move action in UPF.

et al. 2012), that support inheritance in an alternative rep-
resentation language, which is subsequently compiled into
PDDL. Linking supporting modules into PDDL has also been
utilised in PMT (Gregory et al. 2012) and PDDL/M (Dorn-
hege et al. 2009). However, in these cases modularity was
introduced to mitigate language limitations, or to connect to
external functions. In (Lindsay 2023) action inheritance was
proposed as an extension to PDDL. In this work we have con-
sider this work in the context of the UPF, and extend action
inheritance to multiple inheritance.

Background
A classical planning problem can be defined as follows:

Definition 1. A Classical Planning Problem is a planning
problem, P = ⟨F,A, I,G⟩, with fluents, F , actions, A, ini-
tial state, I , and goals, G. A solution (a plan) is a sequence
of actions, π = a0, . . . , an, that transform the initial state, I ,
to a state, sn, that satisfies the goals, G ⊆ sn.

An action, a, is defined by a precondition (Precs(a)) and
an effect, which we assume can be separated into sets of
add (Adds(a)) and delete (Dels(a)) effects. An action is
applicable in a state if its precondition is satisfied by the
state. The aim in classical planning is typically to find short
plans (unit cost).

Action Inheritance It is typical in planning to use action
schema to specify planning actions (McDermott et al. 1998)

1 def make restricted move model()

2 connected = Fluent(’connected’, BoolType(),

l from=Location, l to=Location)

3 constrained move = InstantaneousAction(’

constrained move’, super=move)

4 constrained move.add precondition(connected(

move.parameter(’l1’),

5 move.parameter(’l2’)))

6
7 traversal problem = get traversal problem()

8
9 with OneshotPlanner(problem kind=

traversal problem.kind) as planner:

10 result = planner.solve(traversal problem)

11 print("%s returned: %s" % (planner.name,

result.plan))

Figure 3: Example Python code defining the
constrained move action, which inherits from the
move action. The code also defines the connected
predicate and uses it to add a constraint to the new action.

(e.g., Figure 1 top). These schema detail the action’s name,
and first order precondition, and effect. They typically also
include an ordered set of parameters (variables), which can
used in the precondition and effect. Notice that on making
a complete assignment of objects to variables leads to an
action (as defined above). In (Lindsay 2023) they presented
an extension that supports the use of action inheritance when
specifying the planning model. This introduces an optional
super slot, which can be used to indicate the super-action.
For example, Figure 1 presents a PDDL representation of the
move action, and the constrained move action, which
refines the move action with a constraint over traversable
edges. If an action a inherits from aS then the parameters,
precondition, and effect of aS are added to those of a. Please
refer to (Lindsay 2023) for more details.

Unified Planning Framework
The Unified Planning Framework (UPF) was developed as
part of the AIPlan4EU project2, and aims to provide an in-
tuitive and planner independent method for defining plan-
ning problems. It is provided as a Python library, allowing
the user to define the domain and problem structure using a
high-level API. For example, Figure 2 demonstrates how to
specify the types, predicate and action for a simple traversal
domain (e.g., line 6 defines a new action, defining its name
and several typed parameters). UPF provides a convenient
front-end to a collection of solvers, and gathers together
functions, including model transformations, planning, and
plan validation.

Inheritance in the Unified Planning
Framework

In this section we present an extension to the standard UPF
that allows an inheritance relationship to be defined between

2https://www.aiplan4eu-project.eu/



actions (e.g., as was shown in Figure 1). Our approach ex-
tends the action definition in the UPF with a super field: if
the action has a super action then this field is an action ob-
ject, otherwise it is None. This field can be populated as part
of the action’s instantiation, using a named argument.

In Figure 3, we present part of a script that extends
the move action defined in Figure 2, with a connected
predicate, which restricts the valid ground actions. In line
2 the connected predicate is defined, with two pa-
rameters of type Location. Then the constrained ac-
tion is defined (line 3), using the optional super key-
word argument to define the constrained move ac-
tion as inheriting from the move action. Our implemen-
tation makes the action hierarchy accessible, supporting a
gather supers function for action types, which returns
the hierarchy of super actions, ordered from most general
to most specific. The hierarchy can be reported in text us-
ing the get action hierarchy function. For exam-
ple, the function returns ‘constrained move←move’
for the constrained move action.

In line 4, the connected predicate is used to add a pre-
condition, restricting the valid constrained move ac-
tions. A traversal problem is then generated (line 6), which
creates a simple chain of connected locations, with a random
initial state and goal location for the traverser. Lines 8-10
demonstrate typical code for selecting a planner and gener-
ating a plan using the UPF. Selecting an appropriate planner
(line 8) relies on analysing the problem structure and deter-
mining the requirements of the model. This analysis was ex-
tended to consider the action hierarchies (the chain of super
actions) for each action in the problem.

The problem is then solved using the planner (line 9). As
part of the solve function, the problem is checked for action
inheritance (e.g., it determines whether any actions have su-
per actions), and if they do then the model is compiled be-
fore planning. This involves creating an action that includes
the parameters, preconditions, and effects of all the actions
in the action’s inheritance hierarchy (see (Lindsay 2023) for
more details). After compilation, the resulting model will
not use action inheritance, and standard planners can be
used.

In this case, the plan generated by Fast Down-
wards (Richter and Westphal 2010) was:
• constrained move(r0, l5, l6)
• constrained move(r0, l6, l7)
• constrained move(r0, l7, l8)

which is an optimal plan given the connection constraints.

Multiple-Inheritance in the Unified Planning
Framework

In this section, we consider the extension of action inher-
itance to allow an action to inherit from multiple actions.
The approach builds from the previous section, and the su-
per field becomes either an action, a list of actions, or None.
The main implementation change is in the definition of the
gather supers function (see ‘Inheritance in the Unified
Planning Framework’), which determines how the parame-
ters, preconditions, and effects are composed. In the case of

1 def gather supers(a):

2 hierarchy = list()

3 dfs(a, hierarchy)

4 return hierarchy

5
6 def dfs(a, hierarchy):

7 early visit(a)

8 for sa in get supers(a):

9 dfs(sa, hierarchy)

10 late visit(a, hierarchy)

11
12 def get supers(a):

13 if a.super == None:

14 return []

15 if isinstance (a, Action):

16 return [a.super]

17 return a.super

18
19 def late visit(a, hierarchy):

20 hierarchy.append(a)

Figure 4: Example code using a depth first search to gather
the action hierarchy in the hierarchy variable.

preconditions and effects this should make no difference (al-
though it might vary in practice (Vallati et al. 2015)). Our
choice is to gather the super actions using a depth first search
–using the ordering in the declaration of the actions to de-
termine the order at each node. Figure 4 shows the Python
code to gather the actions in order. It is based on a depth
first search (lines 6-10), with the actions gathered when the
algorithm has finished with the action (lines 19-20). The in-
tuition here is so that the parameters for related aspects are
grouped together in the action’s parameters. To compile an
action once the actions in the hierarchy are gathered, the pa-
rameters, preconditions, and effects are composed and a new
compiled action is created. We assume that all actions (and
their parameters) in the hierarchy are unique.

In the following section we provide an example from a
recent Human-Robot Interaction (HRI) project.

Case-Study: Engagement in Human-Robot
Interaction
In a related project, we are developing a plan-based social
robot system for use in a medical setting (Lindsay et al.
2022; Foster et al. 2023; Lindsay et al. 2024; Ramı́rez-
Duque et al. 2024). As part of that project we have developed
a planning model that captures the human-robot interaction.
This model was modelled using action inheritance and mod-
ularity (Lindsay 2023). The generated interactions capture
alternative interaction sequences based on input from the
user’s preferences and choices, variation in the medical path-
way, and sensed valuation of the user’s anxiety level. As ex-
amples, the model includes an introduction action (intro)
and a calming action (am calm), which is intended to be
used as part of an anxiety management intervention – useful
in the type of interactions we are considering. In recent work
[submitted], we have also extended this planning model, and



(:action point of engagement
:precondition (not (engaged))
:effect (engaged))

(:action sustain engagement
:precondition (engaged))

(:action disengagement
:precondition (engaged)
:effect (not (engaged)))

Figure 5: PDDL representations of the three actions in the
engagement model presented in (O’Brien and Toms 2008).

1 def extend hri model with engagement()

2 ...

3 po eng = eng domain.action(’point of eng’)

4 intro = hri domain.action(’intro’)

5 eng intro = InstantaneousAction(’eng intro’,

super=[po eng ,intro])

6
7 sus eng = eng domain.action(’sustain eng’)

8 am calm = hri domain.action(’am calm’)

9 eng calming = InstantaneousAction(’

eng amcalm’, super=[sus eng ,am calm])

Figure 6: Python code extending actions from the
hri domain with an engagement model (eng domain).

the robot system in order to support the management of user
engagement. In this section, we use the example of extend-
ing the existing planning model with a model of engage-
ment, as a demonstration of the use of multiple inheritance.

Model of Engagement
The starting point for this is an existing model of en-
gagement (O’Brien and Toms 2008), which identifies three
stages: point of engagement, sustained engagement, and
disengagement. We can represent the three stage model
of engagement in a planning model by using a repre-
sentation of the user’s engagement: the engaged propo-
sition that is true when the user is engaged. In Fig-
ure 5 we present a PDDL representations of the three
stages. The point of engagement action has the pre-
condition of engaged being false and transitions it to
true. The sustain engagement action simply insists
that the engaged proposition holds. And finally, the
disengagement action transitions the engaged propo-
sition back to false.

Extending an Interaction with Engagement
In Figure 6, we present Python code that defines new ac-
tions that inherit from both the HRI and engagement mod-
els. In lines 3-4, the intro and point of engagement
actions are identified, and in line 5 these are used in
the definition of a new action, which inherits from both.
In lines 7-9, a specific engaged calming action is cre-
ated, both inheriting from the am calm action, and the

sustaining engagement action. The generated type
tree for the eng amcalm action is shown here:

eng_amcalm <- sustainengagement
amcalm <- calming <- doactivity

This was generated using an extension to the code in Fig-
ure 4 using the early visit function.

Discussion
It is worth considering what is natively possible in the UPF
without using action inheritance. For example, consider the
action move from the example above in the context of sin-
gle inheritance. If we want to extend this action with a
connected predicate we can clone the move action, and
then add a connected predicate. In this way the UPF li-
brary provides a natural method of sharing structure within
and between models.

However, from a representational perspective, this ap-
proach does not make explicit the connection between
the actions. As a consequence, if later the move ac-
tion is changed, the changes will not be reflected in the
constrained move action. Internally the PDDL structure
is duplicated, and if the user wants the model recorded in an
external representation (e.g., PDDL) then this representation
will also duplicate the structure. Notice in (Lindsay 2023), it
is also demonstrated that the action hierarchy can be useful
in reducing the effort of specifying behaviours, and improv-
ing the robustness, in a robot system.

The extension to multiple inheritance generalises the ap-
proach, allowing an action to inherit from multiple actions.
This can allow richer relationships to be represented explic-
itly, which could lead to more concise representations, and
more reuse. As an example, we demonstrated how multiple
inheritance can be used to combine two planning models, by
extending the actions of an interaction model for HRI with
appropriate transitions from a model of user engagement. In
this work we have assumed that the actions and parameters
are unique in the hierarchy. Further work is required to iden-
tify appropriate relaxations of this constraint.

Conclusion
In this paper we have considered action inheritance in the
context of the Unified Planning Framework (UPF). We pre-
sented an extension to the UPF that supports action inher-
itance. We extended the approach to allow multiple inher-
itance, which supports declaring inheritance relationships
between actions and sets of actions. The UPF gives access
to planning model structure, and can therefore be used to
manipulate the structures directly in code. In this work, we
observed that even in this context that establishing the ex-
plicit inheritance relationship between actions is still a use-
ful modelling concept, which can help in action reuse, de-
bugging, and making a concise representation. We used a
case study from human-robot interaction to demonstrate the
use of multiple inheritance to demonstrate how an existing
planning model can be extended using a model of user en-
gagement.
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