
Supporting Human-Aware Mission Specification and Explainable Planning for
Underwater Vehicles

Alan Lindsay1, Andrés A. Ramı́rez-Duque1, Bart Craenen1, Andrea Munafò2, Laurence Boé2,
Adam Campbell2, Ronald P. A. Petrick1

1Heriot-Watt University, Edinburgh, UK
2SeeByte, Edinburgh, UK

alan.lindsay@hw.ac.uk

Abstract
The problem of effectively supporting human operators as
they model missions, supervise their planning, and observe
execution, combines several open questions in human-aware
planning. These include how to provide support during the
mission modelling and specification phase, and how to pro-
vide effective assistance during the planning phase. In this
paper, we present ongoing work to create a tool for human
operators, which aims to support effective interactions, sup-
porting operator understanding and awareness throughout au-
tonomous underwater vehicle missions. We present an archi-
tecture which incorporates modelling assistance, plan gen-
eration, explanation, plan space exploration, and execution
monitoring. Our approach starts with a task-bot interface and
aims to provide modelling assistance during the mission spec-
ification step and comprehensible plan explanations during
planning while supporting the operator in exploring the plan
space. In addition, we demonstrate our system with an exam-
ple walk through to showcase the human-machine interaction
and explanation representations.

Introduction
The intention in this project is to design and develop a sys-
tem capable of providing effective support to a human op-
erator in the context of specification, planning, and mon-
itoring of surveillance missions for underwater and sur-
face bots. In these missions, the operator must take into
account various types of information, including topology,
weather, robot capabilities, mission objectives and param-
eters, and safety requirements. This makes specifying the
mission time-consuming, and potentially error-prone. Fur-
thermore, in the context of planning the mission, there are
various competing factors that must be considered, which
makes finding a satisfactory plan a process of trial and er-
ror. Finally, during deployment, the operator should be able
to monitor and query the system in order to understand the
specific execution as it unfolds.

Mission specification is time-consuming as there are vari-
ous types of information that must be captured in the model,
and specification typically requires carefully describing each
aspect. This includes aspects such as mission objectives,
launch points, and available assets, but also includes sand-
banks and exclusion zones. However, the various existing
information sources provide rich information about the de-
veloping mission, which could be used to provide assistance

in specification (e.g., specifying coordinates by exploiting
existing known positions), and even in anticipating potential
structures of the mission. For example, by using depth in-
formation it is possible to provide the user with the option
of automatically placing appropriate exclusion zones, where
the water is too shallow (e.g., sandbanks, around the coast).

Using the proprietary Seetrack software, mission plan-
ning utilises a two phase planning approach: resource al-
location (selecting behaviours to satisfy objectives, order
objectives, and allocate assets to objectives), and rehearsal
(similar to path planning). As part of this process, the op-
erator takes an active role in modifying the allocation, in
order to explore the plan space, and discover better trade-
offs. Within Explainable Planning (XAIP) techniques have
been developed that help the user in understanding the gen-
erated plans (Magnaguagno et al. 2017), and support their
exploration of the plan space (Krarup et al. 2021). However,
these are currently considered using the planning model, and
they do not consider how an operator will interact with the
concepts: how they will express queries, and understand the
generated explanations.

We are in the process of developing a system with the pur-
pose of supporting operators through each of the stages of a
mission. The system’s development so far has been guided
by Seebyte, one of the partners on the project, which is a
company specialising in command and control end-to-end
mission software. With this guidance we have developed a
prototype. Our starting point for the interaction is a task-bot,
which the user can use to interact with the system during
each of the three stages of the mission. From the task-bot
the operator can: build a mission; query the system about
and lead the exploration through alternative plans; and dur-
ing execution, the operator can monitor the mission. In this
paper, we focus on the mission specification and planning
phases. We present the main components of our system and
how the functions of the task-bot are realised in the system.
Finally, we present a walk through of the current system to
demonstrate its current capabilities.

Related Work
Existing research has considered the planning problem for
autonomous underwater vehicles, including problem formu-
lation (Rajan, Py, and Barreiro 2013), search strategies (Car-
reno et al. 2020), and monitoring information opportunities



during execution (Cashmore et al. 2017).
Human-aware planning is a growing field in automated

planning. Our work is related to existing research that at-
tempts to inform and support the user throughout the plan-
ning life-cycle, including modelling, planning, and execut-
ing. These include tools for providing explanations dur-
ing the modelling process (Sreedharan et al. 2020), plan-
ning (Sengupta et al. 2017), and more general frameworks,
e.g., (Chakraborti et al. 2018), which provides a panel of
alternative views on the developing information, including
the plan. There are also approaches that combine elicita-
tion and planning/execution within a single framework, such
as the factory setting, user tailoring, and execution tuning
(FUTE) framework (Canal, Alenyà, and Torras 2016). These
frameworks are typically iterative, specialising plan gen-
eration through either interleaving elicitation and planning
episodes (Sanneman 2019), or learning from observations
over time (Canal, Alenyà, and Torras 2016).

Research has considered how best to create effective ex-
planations for users, including considering various levels of
granularity (Canal et al. 2021), and approaches for sharing
explanations between related domains (Lindsay 2020). A
growing number of approaches to XAIP have used visual-
isations (Magnaguagno et al. 2017; Porteous, Lindsay, and
Charles 2023; De Pellegrin and Petrick 2021; Kumar et al.
2022), and these have proven successful in creating explana-
tions (Kumar et al. 2022). There are now several alternative
methods of plan visualising, e.g., (De Pellegrin and Pet-
rick 2021) that operate from the planning model, plan and
some form of metadata, which are used to parameterise the
visualisation system. Using a similar approach (Kumar et al.
2022) generates explanations for model reconciliation and
uses characterising traits of planning problems to simplify
the metadata specification.

In automated planning, modelling has been identified as
a bottleneck, due to the skills required to develop these
models. This has inspired a variety of methods for support-
ing the authoring of domain models, including frameworks
similar to Integrated Development Environments for use
by software engineers, e.g., the GIPO (Simpson, Kitchin,
and McCluskey 2007), itSIMPLE (Vaquero et al. 2007)
and KIWI (Wickler, Chrpa, and McCluskey 2014) systems.
These modelling tools are useful for rapid development of
domains by an experienced domain modeller. Another av-
enue of research to aid in the modelling process is based
on learning models from observations: namely that of do-
main model acquisition, e.g., (Wu, Yang, and Jiang 2007;
Mourão, Petrick, and Steedman 2010; Lindsay et al. 2017).
In this work we investigate how existing data sets can be
brought together in order to support the user in the mod-
elling process, which is related to work that builds the plan-
ning model from ontologies, e.g., (Wickler, Chrpa, and Mc-
Cluskey 2014; Crosby et al. 2017; Louadah et al. 2021).

Background
Following (Fox and Long 2003), a temporal planning prob-
lem can be defined as follows:

Definition 1. A Temporal Planning Problem is a planning

problem, P = ⟨F,A, I,G⟩, with propositional and numeric
fluents, F , actions, A, initial state, I , and goals, G. An ac-
tion, a, is defined by a duration (dur(a)), start (cond⊢(a)),
invariant (cond↔(a)) and end (cond⊣(a)) conditions, and
start (eff⊢(a)) and end (eff⊣(a)) effects, which each describe
the add and delete propositions, and numeric effects. A so-
lution (a plan) is a schedule σ, which is a sequence of pairs
⟨a, t⟩, where a ∈ A is an action, t ∈ R0+ is the action’s
start time, and G holds in the state after all actions have
completed. For each pair in the schedule we have action, a,
starting at time, t (requiring its start conditions are satisfied),
and ending at time, t+ dur(a) (requiring its end conditions
are satisfied), with any invariant conditions holding from t
to t+ dur(a). The start effects of a are applied at t, and the
end effects are applied at time t+ dur(a).

The aim in temporal planning is typically to find short
plans (time of final action to complete).

XAIP-as-a-Service
XAIP-as-a-service (Krarup et al. 2021) is an approach
within XAIP that operates from user queries about gener-
ated plans. The approach is based on taking the user’s query
about a feature of a plan and generating a plan that exhibits
the opposite feature. For example, taking the query, ‘Why is
action A in the plan?’, the approach generates a plan without
action A. It then compares the plans empirically and struc-
turally, demonstrating how the plan changes when action A
is not used. In (Krarup et al. 2021) they consider queries
including:
• Q1: ‘Why is A in the plan?’
• Q2: ‘Why is A not in the plan?’
• Q3: ‘Why is A used before B?’

The approach relies on mapping user queries into con-
straints that can be added to the planning model, forcing any
plans to exhibit the required property. For example, in the
case of Q3, the aim is to generate contrastive plans where B
is before A. To do this, we can use a proposition p to indicate
that action B has been applied and proposition q to indicate
that action A has been applied. This is achieved by adding
add effects to these actions. To force B to be used before A
we add p to the precondition of A and add q to the goal.

The Underwater Autonomous Vehicle Mission
Scenario

The scenario under investigation then revolves around one
or more underwater autonomous vehicles (UAV), or assets
for short (Ferri et al. 2017; Hamilton et al. 2020). Assets
can have different configurations, and this determines what
tasks they can perform, and how they behave when perform-
ing them. For example, an asset with a side-scanning sonar
can perform a sonar sweep of an area, while an asset with
a camera can take underwater images or ascertain the exact
location of a target.

In our scenario, a mission consists of assets performing
a number of subsequent tasks to achieve some objectives.
The first and last objective of each asset during a mission are
the launch and recovery objectives, respectively. In addition,



MIRIAM

XAIP

NewRegime

Topside

Wetside

Assets/UAVs

Figure 1: Diagram of the system architecture

there are two main objectives the assets can be set: to survey
an area (for example with a sonar); and to acquire (the ex-
act location of) a target. Since these objectives are normally
placed in different locations, the assets must also be capable
of travelling from one location to another, i.e., performing
a transit task. Transit generally takes place on a path along
several locations, called waypoints. Finally, part of the area
in which the mission takes place can be dangerous for the as-
sets to operate in, for example, when a sandbank is present.
These areas can be declared off-limit to the asset by defining
exclusion zones.

Tasks and objectives can be achieved in different ways,
also depending on the configuration of the asset tasked to
achieve them. This can be done by specifying a behaviour
(or sequence of behaviours) to the asset for a task or objec-
tive. For example, an area can be surveyed using a lawn-
mower pattern behaviour, or by using spiral pattern be-
haviour. An asset can also be asked to exhibit certain be-
haviours at a waypoint, e.g., always getting a fix on its exact
location before attempting to acquire a target.

Given the above, an example scenario for a single asset
could then be for it: to be launched; to transit to a survey area
while avoiding an exclusion zone; to survey an area using the
lawnmower pattern behaviour; to transit to a waypoint to get
an exact fix of its location; to attempt to acquire the exact
location of a target; to transit back to a recovery location; to
be recovered there.

The problem of effectively supporting human operators
as they plan UAV missions and observe their execution
combines several open questions in human-aware planning.
These include how to provide support during the mission
specification phase, and how to provide effective assistance
during the planning phase. In this work we are developing a
framework for supporting human operators throughout un-
derwater autonomous vehicle missions.

System Architecture
The system architecture we present in this section builds
on existing proprietary software (SeeTrack (SeeByte 2018b)
and Neptune (SeeByte 2018a)) and components (Wetside
and Topside), and extends these with three components
(NewRegime, MIRIAM, and a planning and XAIP mod-
ule) specifically designed to support a human operator in the
UAV mission scenario (see Figure 1). The system used for

setting up missions, or defining scenarios, consists of sev-
eral parts. At the bottom layer are the assets themselves; i.e.,
the underwater autonomous vehicles (UAVs) with their spe-
cific hardware configurations. Running on the assets is what
is called the Wetside component from the Neptune software,
which connects the various components of the assets with
a queue of actions, tasks, and behaviours. These are down-
loaded from above, from the Neptune software, from what is
called the Topside component. The SeeTrack software pro-
vides a user-interface to an operator, allowing them to spec-
ify launch, recovery, survey, and target objectives, as well as
exclusion zones etc. into the Topside component. The Top-
side component subsequently allows operators to allocate
assets to the mission, providing a visual rehearsal of what
would happen if the mission was run as it was defined thus
far. Using this feedback, the operator can then adjust the
mission plan until, eventually, they can use Topside to up-
load the mission plan to the Wetside software on the assets.
The Topside software can also be used to monitor a mission
in progress.

As part of this project, we have developed additional com-
ponents to support modelling and planning. Connected to
Topside through a gRPC interface is a middleware soft-
ware called NewRegime. NewRegime provides, through in-
terfaces, the capability to programmatically apply similar
functions that the operator would apply through the Topside
user-interface, e.g., adding or removing objectives, allocat-
ing resources, changing behaviours, etc. NewRegime also
makes available extra or external information to the plan-
ning process, e.g., locations of hazardous areas (e.g., sand-
banks) etc. This allows for (parts of) the mission specifica-
tion process to be automated, or supported by other systems
or information sources.

On top of NewRegime, we developed a task-bot assis-
tant based on the MIRIAM (Multimodal Intelligent inteRac-
tIon for Autonomous systeMs) system (Hastie et al. 2017),
which guides operators in a planning-oriented interaction to
actively shape the underlying task.

Finally, we have developed a component for supporting
the operator in understanding plans and exploring alternative
plans. We have developed this component in order to decou-
ple the new features from the proprietary software, which
allows us to exploit a concise representation of the planning
problem, and its clean separation from the solver. Within
this component we use a PDDL planner to solve the prob-
lems extracted through NewRegime. The extracted models
are also used to support query interpretation, and are used
to construct answers to the operator queries, and generate
explanations of the plans.

Natural and Visual Language Interface
As the operator and the system have their own models of
the scenario, it is important that the system can facilitate
their communication. As a consequence, we have focused on
developing approaches for both mapping natural language
queries onto the machine’s problem representation and mis-
sion concepts, and providing visual and textual methods of
communicating the results back to the operator. These ap-
proaches extend the MIRIAM system (Hastie et al. 2017),



allowing the operator to benefit from support during model
specification, and to both deepen their understanding of the
trade-offs between different planning decisions, and also to
influence the eventual mission plan, by adding additional
(soft) constraints that were missing from the initial problem
specification.

User Input and Mapping
MIRIAM core is based on Keith Sterling’s chatbot frame-
work, programm-y1. This framework leverages the benefits
of using Artificial Intelligence Mark-up Language (AIML)
to quickly generate representations of task-specific index-
able knowledge for chatbot QA and command and control
(C2) interaction. The MIRIAM interface has two main com-
ponents (Hastie et al. 2017). Firstly, an AIML-based Nat-
ural Language Processing (NLP) engine parses the user’s
input for the category, a basic unit of knowledge, formal-
ising it as a semantic representation. In addition, each cat-
egory designed is complemented by a series of reductions
and recursion to add flexibility to the pattern-matching and
normalisation-denormalisation process. Secondly, a set of
extension libraries written in Python3 create a suitable reply
by processing and retrieving the relevant information from
the NewRegime and XAIP modules.

During execution, the NLP engine analyses the user in-
put to categorise it, identifies the relevant parameters in the
query, and populates the slots with this information. Then,
the system matches each identified category with a function
from the extensions library and processes the filled slots ac-
cordingly.

The extension library currently supports the execution of
functions grouped into three topics: mission planning, mis-
sion monitoring, and plan contrastive explainability. Using
MIRIAM, the operator can create and manipulate any ob-
jective, assign tasks to available assets, and monitor the as-
sets’ behaviours, properties, and progress after they have
been launched. Possible natural language interactions in-
clude asking about the asset’s current status, the mission and
its current objectives, the asset’s estimated arrival time at
specific locations, and the mission’s objectives completed.
For example, given a user input ‘Could you show me the
current mission progress, please?’, the NLP engine will first
normalise and remove punctuation and, subsequently, will
perform a word-level search on the pattern tree. Once a pat-
tern is detected, the AIML interpreter matches wild cards,
invokes the Python extension and passes them through. Fig-
ure 2 shows two simplified examples of category definition
and the AIML interpreter process.

While operators create the mission, MIRIAM provides
them access to NewRegime shortcut functions, locations
database, and previous mission information, such as haz-
ardous areas, the target’s location, and survey areas. Off-
shore wind farms are an example of underwater mission in-
spection, where relevant locations are known and stored in
a database. In that scenario, an operator could upload the
locations into NewRegime and access them using the ex-

1A fully compliant AIML 2.1 chatbot framework written in
Python3: https://github.com/keiffster/program-y

<category>
<pattern># MISSION PROGRESS ˆ</pattern>
<template>
<extension
path="miriam2_bot.extensions.core.mission.MissionExtension">
MISSION_PROGRESS <star/>
</extension>

</template>
</category>
>> Normalising input from
[Could you show me the current mission progress , please ?]
to
[COULD YOU SHOW ME THE CURRENT MISSION PROGRESS , PLEASE ?]

- Removing punctuation...
- Topic pattern detected = [MONITORING]
- Matching [COULD YOU SHOW ME THE CURRENT MISSION PROGRESS PLEASE]
- Matches...
- 1: Match=word Node=ZEROORMORE [#] Matched=COULD YOU SHOW ME THE CURRENT
- 2: Match=word Node=WORD [MISSION] Matched=MISSION
- 3: Match=word Node=WORD [PROGRESS] Matched=PROGRESS
- 4: Match=word Node=ZEROORMORE [#] [PROGRESS] Matched=PROGRESS
- AIML Parser evaluating template resolved to [MISSION_PROGRESS]
- Importing module [miriam2_bot.extensions.core.mission.MissionExtension]
- [[EXTENSION miriam2_bot.extensions.core.mission.MissionExtension]]

resolved to
[Up to this point, 35 percent of the mission has been executed]
[and the estimated time remaining is 45 minutes]

...
<category>

<pattern># CREATE # TARGET *</pattern>
<template>
<srai> CREATE TARGET CARRIED OUT

<extension path="miriam2_bot.extensions.core.planning.PlanningExtension">
CREATE_OBJECTIVE <denormalize><star index="2"/></denormalize> target
</extension>

</srai>
</template>

</category>
>> Normalising input from
[Let’s create a Target for pile]
to
[LET CREATE A TARGET FOR PILE]

- Removing punctuation...
- Topic pattern detected = [PLANNING]
- Matching [LET CREATE A TARGET FOR PILE]
- Matches...
- 1: Match=word Node=ZEROORMORE [#] Matched=LET
- 2: Match=word Node=WORD [CREATE] Matched=CREATE
- 3: Match=word Node=ZEROORMORE [#] Matched=A
- 4: Match=word Node=WORD [TARGET] Matched=TARGET
- 5: Match=word Node=ONEORMORE [*] Matched=FOR PILE
- AIML Parser evaluating template resolved to [CREATE_OBJECTIVE]
- Importing module [miriam2_bot.extensions.core.planning.PlanningExtension]
- [[EXTENSION miriam2_bot.extensions.core.planning.PlanningExtension]]

resolved to
[<srai> CREATE TARGET CARRIED OUT true </srai>]

- SRAI resolved to
[The operation create target was carried out successfully]

Figure 2: World-level matching pattern process: a funda-
mental task of the NLP Engine.

tension libraries available on MIRIAM. Additionally, dur-
ing the planning phase, MIRIAM provides the user with ac-
cess to essential functions using NL to explore the planning
model, one function for each type of XAIP query, and ad-
ditional functions to, for example, force the plan to keep or
drop any constraints and to show the current plan.

Rendering System Responses
To provide a mechanism for the user to understand and ex-
plore the planning task using different multimedia resources,
we developed a web-based user interface as the front end
of the MIRIAM interface. MIRIAM exposes an input text
channel as an RESP endpoint using standard HTTP requests
to allow the user NL interaction. Then, after the backend
NLP engine processes the query, the answer is sent back
to the client, where the response’s elements are rendered as
embedded images, verbalised text and extended NL expla-
nations.

Regarding the XAIP module, when the user asks
MIRIAM to explain some actions presented in the plan, the
XAIP extension response is rendered by applying visual and
textual representations as follows:

Textual Representation Our approach to rendering plans
in text follows (Canal et al. 2021) and relies on an annotated
domain file to generate relevant sets of candidate rules for



matching action descriptions. Each action is associated with
tags detailing verbs and prepositions that might be used in
describing the action. For example, for the move action, we
include ‘move’, ‘navigate’, ‘go’, and ‘drive’ as alternative
verbs, and prepositions such as ‘from [the] from’, ‘starting
at [the] from’, and ‘from [the] ?from’. We also support sum-
marising rules, which allow certain chains of actions to be
condensed where an effect summarisation exists (e.g., as in
the case of sequences of transit actions).

Visual Representation The plans are plotted over a top-
down view, identifying the mission’s key aspects, land-
marks, areas, objectives, etc. Each asset is depicted using
an individual line. This representation is based on the vi-
sual language that operators are familiar with, and as such,
should support effective communication of the plans.

Supporting Mission Specification in
NewRegime

NewRegime sits between the taskbot interface and the mis-
sion system. During modelling, NewRegime can exploit its
access to additional information, such as the topology of
the seabed, weather and current information, etc., so that
while the operator builds the model through the taskbot,
NewRegime is proactively interrogating the partially spec-
ified mission in order to identify potential missing structure,
which it can then propose that it adds. For example, in a
mission where the assets are supposed to survey areas deep
underwater, the location of dangerous shallow waters, e.g.,
sandbanks, will have a major effect on the mission specifi-
cation. It could lead to the software suggesting the addition
of an exclusion zone over the sandbank.

Exclusion zones come with their own set of rules as well,
and NewRegime is capable of checking whether they are sat-
isfied or violated. Assets, for example, are to avoid entering
(or going too near to) an exclusion zone while attempting an
objective, or while in transit from one objective to the next.
Launch and recovery locations cannot be inside exclusion
zones either, nor can a survey area be entirely encompassed
inside an exclusion. And if an exclusion zone partially over-
laps a survey area, only the part outside the zone will be sur-
veyed. Likewise, the location of an acquire objective cannot
be inside an exclusion zone.

As such, the addition of an exclusion zone, simply to en-
sure that assets do not go near to a dangerous part of the
operation area, can have a profound effect on what the even-
tual specification of the plan. And NewRegime can respond
re-actively, or pro-actively to this use of extraneous infor-
mation. It can respond re-actively by alerting the operator
to a violation of the rules, e.g., by explaining that part of a
survey area is now covered by an exclusion zone, and will
therefore not be surveyed during the mission. Or it can re-
spond pro-actively by, e.g., moving the launch and recovery
locations of the mission out of the newly added exclusion
zone to new locations; locations selected based on operator
supplied parameters or some other logic.

20

5 20

54

31

33

69

59

20
5

37

14
51 40

20

30

30

34

11
50 38

23

419

22

29 22

11

58 27

36

90

91 115

116

15

120

48 96

44

97

94

93
117

118

70

48

74

48

16

53

47

45 68

71

32

95

35

56

29

17

7

21

27

71

40

75
52

50

51
75

74

24

12

22 33

26

26

10 26

24
33

23

26

22

11

10

launch0 recovery0

launch1 recovery1

Target1 Target2 Target3

Survey1:494

Figure 3: An example structure extracted from the mission
model and represented in PDDL.

Supporting Plan Understanding and Plan
Space Exploration

To decouple from the proprietary planning system, we built a
separate planning module based on a temporal PDDL model.
NewRegime extracts the key mission data, and MIRIAM
uses it to populate a readable structure for XAIP to define
a problem model. From this model, we can use a general-
purpose planner to generate plans, use existing explainabil-
ity techniques to explain the plan and allow the user to ex-
plore the plan space.

Problem Extraction and Plan Generation
The main mission elements are gathered from the mission
specification, and used to define a planning model (see Fig-
ure 3). The first step is to extract the main coordinates for the
mission, including exclusion zones, objectives, asset launch
and recovery points, and transponder positions. These co-
ordinates are used to define a basic topology: each pair of
points is determined as a traversable edge if it does not pass
through an exclusion zone. Time to traverse is determined
based on the edge lengths. Objects are included to represent
underwater vehicles, waypoints, and objectives. A goal is
made for each objective (e.g., observation points, and survey
areas), and for each vehicle to be at its recovery position. Fi-
nally, the overall metric is specified, e.g., to minimise time,
or to balance asset use.

We have defined a domain model that represents the
necessary actions: navigation, diving, climbing, surveying,
and observing. These actions are sufficient to consider the
general differences between allocating resources to objec-
tives, and varying the order that objectives are satisfied. The
propositions and functions of the model capture the sce-
nario: the topology, the actions’ durations, and which ob-
jectives have been satisfied, and each robots’ positions (rep-
resented by waypoints), its height.

Our approach uses the OPTIC planner (Benton, Coles, and
Coles 2012), which is sensitive to alternative metric func-
tions.

Plan Understanding and Plan Space Exploration
An important part of the human-machine interaction is in the
planning of the mission. The standard method requires the
operator to detail the mission, and its properties. They then



launch0 recovery0

launch1 recovery1
avehicle2

avehicle2

avehicle2

avehicle2

target3

avehicle2

survey1:494

target1

avehicle2

avehicle2 target2
avehicle2

avehicle2
avehicle2

avehicle2

launch0 recovery0
avehicle1

avehicle1

launch1 recovery1

avehicle1
avehicle1

avehicle1

avehicle1

avehicle1

avehicle1

avehicle1

survey1:494

target1 target2 target3

avehicle1 avehicle2

avehicle1

avehicle1

avehicle1

avehicle1

avehicle1

survey1:494

Figure 4: The figure compares the partial plans for two assets. For avehicle2, the plans are identical. For avehicle1, the plans
differ in the specific survey activity (shown in the inset).

have a hands-on approach, allocating assets to objectives,
and creating the order in which they should be attempted.
We are investigating using XAIP techniques to provide the
operator with support as they attempt to understand the plan
space. This process has been considered in the context of
user queries. Our system can generate explanations of the
current plan, or it can use the query to generate an alterna-
tive constrastive plan. In the latter case, through a series of
operator queries, the system can allow the user to guide a
joint exploration through the plan space.

The most appropriate type of explanation will, of course,
depend on the type of the user’s query. The first type of ex-
planation that we support relies on a causal graph analysis,
which justifies an action in a plan by demonstrating how it
forms part of a chain of actions that supports part of the goal.
This type of query is particularly useful in explaining which
goals a particular action is supporting. For example, here is
an example textual description – a graphical presentation is
also provided to the user.

User: Which goals does surveying with avehicle2 support?
MIRIAM: It leads directly to achieving the goal fact:

* area_surveyed survey1
Overall, the action is in the causal chain of the
following goals:
* area_surveyed survey1
* loc_at avehicle2 recovery1

<Causal analysis figure link>

We also support contrastive explanations (following the ap-
proach in (Krarup et al. 2021)), which allow the operator to
explore and understand the space of possible plans by ask-
ing queries to the system. For example, the operator can ask
a query, such as ‘why is avehicle1 being used to survey area
1?’. In this case, the system uses the query to generate a
plan where the opposite is true. For example, in the exam-
ple above, a plan would be generated where avehicle1 is not
used to survey area 1. These new plans can be used to gen-
erate an explanation, such as ‘If avehicle2 is used to sur-
vey area 1 then the plan becomes 10 steps longer’. Through
chaining queries together, the operator can influence the next
generated plan, and build an understanding of the plan space.

Understanding the Difference Between Plans
We observe that it is natural in this domain to view the as-
sets as agents, even if it is necessary to plan all of the agents
together. We have implemented a plan comparison visuali-
sation, which exploits the multi-agent nature of the plans, by
plotting the plan comparison in a series of separate visuali-
sations – one per asset. For example, Figure 4 presents the
visualisation for avehicle1 (left) and avehicle2 (right). For
a particular asset, ϕi, we can extract the parts of plan that
are relevant, denoted πϕi . For the original plan (π0) and the
new plan (π1), and asset ϕi, we can identify the pair of as-
set specific partial plans: πϕi

0 and πϕi

1 . We then use the plan
to generate three line segments: the parts where the plans
match (presented in blue); the part of the original plan πϕi

0

that is not in the new plan πϕi

1 (in green), and the part of the
new plan πϕi

1 , which is not in the old plan (in red). To do
this, we used the Levenshtein distance (Levenshtein 1966):
the distance between two-word sequences which provides a
measure of the edit difference between the sequences while
also respecting order. In our case, we use unique words for
each ground action and extract the best match between the
two action sequences. In the figure, the partial plan on the
right is plotted entirely in blue, meaning that the plans are
the same. On the left, the specific survey start/stop points
have changed (this is shown in the inset).

Generating Explanations for Queries With
Unknowns

When creating explanations, it has generally been assumed
that a specific target is identified. For example, it is assumed
in (Krarup et al. 2021) that the parameters (e.g., actions A
and B in queries of type Q1-3), are known. However, a key
issue with user queries is that when describing actions, peo-
ple tend to miss out details, e.g., (Lindsay et al. 2017), such
as the starting location of a move action. As a consequence
it is not always possible to fully specify the query’s parame-
ters (i.e., identify specific actions) from the user’s input. As
part of our solution we have generalised the definition of the
mapping between actions and constraints to include partially



‘Why not move avehicle2 from survey1_2 to target3?’

Why not A?Why A? Why A before B?

move avehicle2 from survey1_2 to target3

Action parsing using verbs and prepositions

(move avehicle2 survey1_2 target3)

M
IR

IA
M

IN
P

U
T

Template matching

Figure 5: Templating is used to select the appropriate func-
tion for a user query (top). Each action description within
the query is then individually processed to (partially) spec-
ify an action header.

specified actions. In this section, we describe how our sys-
tem supports natural language user queries.

Action Specification
The MIRIAM system uses the AIML-NLP engine to parse
the user queries with an appropriate category (see ‘User In-
put and Mapping’). As part of this process, we expect that
the appropriate query type (e.g., ‘Why A?’) has been iden-
tified and the action descriptions have been extracted. We
then further process these action descriptions to identify the
appropriate ground actions relevant to the user’s query. This
process is achieved within the planning component, which
allows us to exploit naming information from the specific
mission, including assets, landmarks, and objectives.

As with for plan description generation (see ‘Textual Rep-
resentation’), our approach follows (Canal et al. 2021) and
relies on an annotated domain file to generate relevant sets
of candidate rules for matching action descriptions. We can
exploit the same tagging information for verbs and preposi-
tions. As with (Canal et al. 2021) the verbs are then extended
using mlconjug3 (Diao 2023), which can be used to pro-
vide alternative verb conjugations, supporting user input in
various tenses.

This information is used in a simple matching algorithm
to determine the best matching action for the description.
For each action the approach attempts to fill as many of
the parameters as possible. The sentence is examined in the
context of each preposition, and the number of covered pa-
rameters are noted. A parameter is covered if the sentence
includes a preposition followed by an object name of the
correct type. This score is combined with a score indicat-
ing whether an appropriate verb was used. The action with
the highest score is selected. Figure 5 (bottom) demonstrates
the approach. In the top, the ‘Why not A?’ template was se-
lected. The appropriate part of the sentence is identified and
the prepositions and verbs are matched to the move action.
The final step is to build the action template by extracting the
objects that were identified by prepositions. We also force in
any additional objects referenced in cases where there is no
ambiguity (i.e., they are the only object referenced with an

appropriate type for a parameter). Notice that because we
attempt to match with each action in turn, the approach can
work even if the user does not use an anticipated verb.

Partial Action Specification Typically, these action de-
scriptions will not fully describe one single instance of an
action. For example, if the planner generates the plan:
• move truck1 from loc1 to loc2
• ...
• move truck1 from loc2 to loc3
• move truck1 from loc3 to loc2.

The user might ask ‘why did truck1 go to loc2?’, which does
not have sufficient information to fully describe an action.
In the matching approach above, when a parameter is not
indicated by a relevant preposition, and the parameter can-
not be unambiguously forced, then the parameter is marked
as unknown (denoted ‘ ’). In the example above, the action
description does provide enough information to describe a
partial move action header, e.g., (move truck1 loc2), where
the second parameter is unknown.

Matching Actions With Unknowns
The interpretation of a partially specified action header relies
on defining the space of all possible actions, the subset of
possible actions in a specific plan π, and the actions that are
possible, but not in the plan.
Definition 2 (Possible Actions). The set of actions that are
reachable from the initial state.
Definition 3 (Plan Actions). The set of actions that are in a
plan, π.
Definition 4 (Non-Plan Actions). The set of actions that are
not in a plan, π (i.e., the difference between the sets of pos-
sible and plan actions).

Given a query of ‘Why A?’ or ‘Why A then B’ type, we ex-
pect that the action descriptions for A and B will exist in the
Plan Actions set. In the case of ‘Why not A?’ then we would
expect the action A to be in the Non-Plan Actions set. This
provides the scope for interpreting the action descriptions of
partially specified actions. Of course, there may be incor-
rectly formed queries, and if they can be identified (e.g., a
‘Why A?’ query and A is not in Plan Actions) then they can
be addressed separately.

Depending on the context of the action in the query there
are different interpretations available given a partially spec-
ified action header as part of a query:
• Use the partially specified action header,
• Disambiguate – More information from the user,
• Disambiguate – Use the plan (‘Why A?’ or ‘Why A then

B?’ only).
In our current system we use the first and last of these de-
pending on the type of query.

Causal Graph Explanation In order to generate a causal
graph explanation —a type of explanation that is only gen-
erated for an action in the plan— then we use the plan to
disambiguate. In our current approach we simply generate
the explanation based on the first action that satisfies the par-
tially specified action.



User: First, create a new mission
MIRIAM: OK, it’s called Scenario 1
User: OK, please move the view to the NnG offshore wind farm location.
MIRIAM: OK, the view location is 56.26 degrees north -2.34 degrees east.
User: Let’s create a Target for pile_1, pile_2 and pile_3

<Looking up pile locations in NnG db>
MIRIAM: The targets have been created successfully
User: Add an exclusion zone over the sandbank_1 300 meters south of the pile_3

<Looking up sandbank_1 location in NnG db>
MIRIAM: I have added an exclusion zone south of the piles successfully
User: Please create a launch and recovery point

<Looking up objectives’ default locations in NnG db>
MIRIAM: I have created launch and recovery points outside the exclusion zone
User: can you move objective launch1 500 meters south from target pile_1?
MIRIAM: The launch1 objective has been moved successfully

...
User: Does the mission look OK?
MIRIAM: Do you want to put a boundary around the mission?
User: Yes, please.
MIRIAM: OK, I have created boundary exclusion zones around the mission.

...
User: Let’s allocate assets vehicle1 and vehicle2 and then do a rehearsal.
MIRIAM: OK done! Here’s my current plan.

<Shows plan>
User: Why not move vehicle2 from survey1_2 to target3?
MIRIAM: Well, the plan becomes 30 seconds longer if we use that action.

Do you want to see the comparison?
<Loading comparison visualisation>

Figure 6: An example interaction using the system. The op-
erator first specifies the mission, then positions the view lo-
cation over a wind farm. Next, inspecting tasks are added for
three pylons. Then, the operator adds hazardous areas, such
as sandbanks, and creates an exclusion zone around them.
After modelling is completed, the operator conducts a re-
hearsal and queries the generated plan using XAIP.

Contrastive Explanations In the case of contrastive ex-
planations, we assume that the use of the partially specified
action header will result in the clearest explanation. For ex-
ample, in the case of ‘Why A?’ queries, the use of the par-
tially specified action header is translated into a constraint
that prevents any of the possible actions that is consistent
with the partial action header.

The mappings between queries and constraints defined
in (Krarup et al. 2021) (overview in the ‘Background’ Sec-
tion) are extended to allow them to use partially specified ac-
tion headers. Each partially specified action can be used with
the possible actions set in order to make a set of all actions
that are consistent with the partially specified action header.
In the original approach, propositions are used in the model
to either force or prevent the use of actions in the model. In
our approach, these propositions are used similarly, except
they force the use of any of a set of actions, or prevent the
use of any of a set of actions.

The use of partial action headers would allow the user
to be precise about the query that they want to express, as
they can include the parameters that they want to be part
forced in the constraint. In a future elicitation exercise we
will interview operators in order to ascertain how to make
the mapping between specific user action descriptions and
the precise constraint generated intuitive.

Interaction Walk Through
In Figure 6, we present an example walk through, demon-

strating how the interface can be used to support the user in
specifying a mission by supporting the necessary functions
and incorporating appropriate defaults where possible. For
example, after setting up a mission, the operator positions
the simulator’s view at the centre of the target area, in this
case, the wind farm of interest. Next, the operator adds an
inspecting task for three pylons and assigns a target to each

one. The locations of the pylons have already been stored
in a database. The operator then uses information from the
database again to identify hazardous areas, such as sand-
banks and proceeds to create an exclusion zone around them.
After other default interactions, such as defining launch and
recovery points and bounding the area, the operator decides
to conduct a rehearsal, ending the modelling stage. At this
point, everything is ready for planning and XAIP.

Once modelling is complete, the planning component
pulls the relevant structure from the mission and makes a
plan. The user can then use MIRIAM to examine the plan.
They can ask for a visualisation, a comparison, or an ex-
planation. The explanation queries will either be one of the
three (Q1-Q3) introduced in ‘XAIP-as-a-Service’ or will ask
for a causal explanation. In each case, MIRIAM identifies
the appropriate type of query and requests the appropriate
function. Finally, in order for the appropriate parameters to
be extracted, we have detailed above how we extract the in-
formation from user action descriptions.

In the example from Figure 6, the user queries why a par-
ticular transit was not used (i.e., moving avehicle2 from
survey1 2 to target3). The system first extracts an appro-
priate action header as a parameter for the Q2 query; in this
case (move avehicle2 survey1 2 target3). It then adds a
constraint to the planning model in order to force the planner
to select this action as part of any valid plan. It then gener-
ates a new plan and uses the original and new plan as the
basis of a comparison. The new plan, in this case, is longer.
The user can view a comparison visualisation (e.g., similar
to Figure 4).

Conclusion and Future Work
In this paper, we have presented ongoing work that aims to
build a tool to support human operators to improve plan-
ning understanding and awareness throughout underwater
autonomous vehicle missions. We presented our architec-
ture, which incorporates modelling assistance, plan gener-
ation, explanation, plan space exploration, and execution
monitoring. We have developed a user interface that extends
the task-bot interface with visual content. Our system ex-
ploits existing information resources to provide modelling
assistance, making suggestions to the operator to reduce the
aspects of the model that must be specified. Our planning
support component uses textual and visual explanation ap-
proaches and exploits explainable planning techniques in or-
der to facilitate the operator’s explanation and understand-
ing of the plan space. One aspect of the work so far has in-
volved dealing with incomplete user queries, and we demon-
strate how this is managed through a generalisation of exist-
ing explainable planning approaches. We presented a walk-
through to demonstrate the main features of our system. We
are currently in the process of designing an elicitation exer-
cise, where we will conduct partially structured interviews
with expert operators of the mission software. Our main ob-
jective in this study is to establish how the system and opera-
tor can communicate effectively: what types of explanations
are useful, how they would prefer information presented to
them, and how they will communicate with the system.



Acknowledgments
This work was partially supported by EPSRC Grant No.
EP/V05676X/1 through the HUME Prosperity Partnership.

References
Benton, J.; Coles, A.; and Coles, A. 2012. Temporal planning with preferences and
time-dependent continuous costs. In Proceedings of the International Conference on
Automated Planning and Scheduling, volume 22, 2–10.

Canal, G.; Alenyà, G.; and Torras, C. 2016. Personalization framework for adaptive
robotic feeding assistance. In International Conference on Social Robotics.

Canal, G.; Krivic, S.; Luff, P.; and Coles, A. 2021. Task Plan verbalizations with
causal justifications. In ICAPS 2021 Workshop on Explainable AI Planning (XAIP).

Carreno, Y.; Pairet, È.; Petillot, Y.; and Petrick, R. P. 2020. A decentralised strat-
egy for heterogeneous auv missions via goal distribution and temporal planning. In
Proceedings of the international conference on automated planning and scheduling,
volume 30, 431–439.

Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; and Ridder, B. 2017. Opportunistic
Planning in Autonomous Underwater Missions. IEEE Transactions on Automation
Science and Engineering, 15(2): 519 – 530.

Chakraborti, T.; Fadnis, K. P.; Talamadupula, K.; Dholakia, M.; Srivastava, B.;
Kephart, J. O.; and Bellamy, R. K. E. 2018. Visualizations for an Explainable Plan-
ning Agent. In Proceedings of the Twenty-Seventh International Joint Conference on
Artificial Intelligence, IJCAI-18.

Crosby, M.; Petrick, R.; Rovida, F.; and Krueger, V. 2017. Integrating mission and
task planning in an industrial robotics framework. In Proceedings of the International
Conference on Automated Planning and Scheduling.

De Pellegrin, E.; and Petrick, R. P. 2021. Automated Planning and Robotics Simula-
tion with PDSim. In Proceedings of the ICAPS Workshop on Knowledge Engineering
for Planning and Scheduling (KEPS).

Diao, S. 2023. mlconjug3. GitHub. Note: https://github.com/Ars-
Linguistica/mlconjug3 Cited by.

Ferri, G.; Munafò, A.; Tesei, A.; Braca, P.; Meyer, F.; Pelekanakis, K.; Petroccia, R.;
Alves, J.; Strode, C.; and LePage, K. 2017. Cooperative robotic networks for under-
water surveillance: an overview. IET Radar, Sonar & Navigation, 11(12): 1740–1761.

Fox, M.; and Long, D. 2003. PDDL2.1: An extension to PDDL for expressing tempo-
ral planning domains. J. Artif. Intell. Res. (JAIR), 20: 61–124.

Hamilton, A.; Holdcroft, S.; Fenucci, D.; Mitchell, P.; Morozs, N.; Munafò, A.; and
Sitbon, J. 2020. Adaptable Underwater Networks: The Relation between Autonomy
and Communications. Remote Sensing, 12(20).

Hastie, H.; Garcia, F. J. C.; Robb, D. A.; Patron, P.; and Laskov, A. 2017. MIRIAM: a
multimodal chat-based interface for autonomous systems. In Proceedings of the 19th
ACM International Conference on Multimodal Interaction.

Krarup, B.; Krivic, S.; Magazzeni, D.; Long, D.; Cashmore, M.; and Smith, D. 2021.
Contrastive explanations of plans through model restrictions. J. Artif. Intell. Res.
(JAIR).

Kumar, A.; Vasileiou, S. L.; Bancilhon, M.; Ottley, A.; and Yeoh, W. 2022. VizXP: A
Visualization Framework for Conveying Explanations to Users in Model Reconcilia-
tion Problems. In Proceedings of the International Conference on Automated Planning
and Scheduling.

Levenshtein, V. I. 1966. Binary codes capable of correcting deletions, insertions and
reversals. Cybernetics and Control Theory, 10: 707–710.

Lindsay, A. 2020. Using Generic Subproblems for Understanding and Answering
Queries in XAIP. In ICAPS 2020 Workshop on Knowledge Engineering for Planning
and Scheduling (KEPS).

Lindsay, A.; Read, J.; Ferreira, J. F.; Hayton, T.; Porteous, J.; and Gregory, P. J. 2017.
Framer: Planning models from natural language action descriptions. In Proceedings
of the International Conference on Automated Planning and Scheduling (ICAPS).

Louadah, H.; Papadakis, E.; Mccluskey, T. L.; Tucker, G.; Hughes, P.; and Bevan,
A. 2021. Translating ontological knowledge to PDDL to do Planning in Train De-
pot Management Operations. In 36th Workshop of the UK Planning and Scheduling
Special Interest Group. AAAI press.

Magnaguagno, M. C.; Pereira, R. F.; Móre, M. D.; and Meneguzzi, F. 2017. WEB
PLANNER: A tool to develop classical planning domains and visualize heuristic state-
space search. In Proceedings of the Workshop on User Interfaces and Scheduling and
Planning, UISP, 32–38.

Mourão, K.; Petrick, R. P. A.; and Steedman, M. 2010. Learning action effects in
partially observable domains. In Proc. 19th European Conference on AI (ECAI). IOS
Press.

Porteous, J.; Lindsay, A.; and Charles, F. 2023. Communicating agent intentions for
human-agent decision making under uncertainty. In Proceedings of the International
Conference on Autonomous Agents and Multiagent Systems.

Rajan, K.; Py, F.; and Barreiro, J. 2013. Marine Robot Autonomy, chapter Towards
Deliberative Control in Marine Robotics. Springer New York.

Sanneman, L. 2019. Preference Elicitation and Explanation in Iterative Planning. In
Proceedings of the International Joint Conference on Artificial Intelligence.

SeeByte. 2018a. Neptune Technical Whitepaper. Accessed March, 2024. https://www.
seebyte.com/media/1427/neptune-technical-whitepaper.pdf.

SeeByte. 2018b. SeeTrack v4 Technical Whitepaper. Accessed March, 2024. https:
//www.seebyte.com/media/1136/seetrack-v4-technical-whitepaper.pdf.

Sengupta, S.; Chakraborti, T.; Sreedharan, S.; Vadlamudi, S. G.; and Kambhampati,
S. 2017. Radar—a proactive decision support system for human-in-the-loop planning.
In 2017 AAAI Fall Symposium Series.

Simpson, R. M.; Kitchin, D. E.; and McCluskey, T. L. 2007. Planning domain defini-
tion using GIPO. Knowledge Engineering Review.

Sreedharan, S.; Chakraborti, T.; Muise, C.; Khazaeni, Y.; and Kambhampati, S. 2020.
–D3WA+–A Case Study of XAIP in a Model Acquisition Task for Dialogue Planning.
In Proceedings of the International Conference on Automated Planning and Schedul-
ing.

Vaquero, T. S.; Romero, V.; Tonidandel, F.; and Silva, J. R. 2007. itSIMPLE 2.0:
An Integrated Tool for Designing Planning Domains. In International Conference on
Automated Planning and Scheduling, 336–343.

Wickler, G.; Chrpa, L.; and McCluskey, T. L. 2014. KEWI - A Knowledge Engineer-
ing Tool for Modelling AI Planning Tasks. In International Conference on Knowledge
Engineering and Ontology Development, 36–47.

Wu, K.; Yang, Q.; and Jiang, Y. 2007. ARMS: An automatic knowledge engineering
tool for learning action models for AI planning. The Knowledge Engineering Review.


