
Using Large Language Models to Extract Planning Knowledge
from Common Vulnerabilities and Exposures

Tim Oates1, Ron Alford2, Shawn Johnson2, Cory Hall3

1 University of Maryland, Baltimore County
2 The MITRE Corporation

3 Cyber Domain Ontology, Linux Foundation
oates@umbc.edu, ralford@mitre.org, spjohnson@mitre.org, cory.hall@cyberdomainontology.org

Abstract

Understanding attackers’ goals and plans is crucial for cyber
defense, which relies on understanding the basic steps that at-
tackers can take to exploit vulnerabilities. There is a wealth
of knowledge about vulnerabilities in text, such as Com-
mon Vulnerabilities and Exposures (CVEs), that is accessible
to humans but not machines. This paper presents a system,
called CLLaMP, that uses large language models (LLMs) to
extract declarative representations of CVEs as planning op-
erators represented using the Planning Domain Description
Language (PDDL). CLLaMP ingests CVEs, stores them in a
database, uses an LLM to extract a PDDL action that specifies
preconditions for, and the effects of, the exploit, and updates
the database with the action. The resulting planning opera-
tors can be used for automatically recognizing attacker plans
in real time. We propose metrics for evaluating the quality of
extracted operators and show the translation results for a set
of randomly selected CVEs.

Introduction
Some cyber-attacks are mostly automated, like denial-of-
service attacks in which large numbers of machines run
software that remotely consumes resources of target sys-
tems, denying access by legitimate users. Others, like ad-
vanced persistent threats, involve humans executing attack
plans with many phases and steps over long periods of time
(Korban et al. 2017). Successful defense against such attacks
requires recognizing activity as part of an attack plan, under-
standing what next steps may further the attackers’ goals,
and intervening to prevent those steps (Hoffmann 2015).
Said differently, plan recognition is a key element of what
humans do when defending cyber systems. But recogniz-
ing attackers’ plans requires deep domain knowledge, about
the system under attack, possible vulnerabilities, and possi-
ble sequences of actions in attack plans (Kouremetis et al.
2024).

In this paper we explore the possibility of automatically
extracting declarative representations of planning operators
– specifications of the conditions under which an attacker’s
actions can have an intended effect – from text describing

Copyright © 2024, The MITRE Corporation. All rights reserved.
Approved for Public Release; Distribution Unlimited. Public Re-
lease Case Number 24-1125

known vulnerabilities. Plans are sequences of actions (plan-
ning operators) such that when the preconditions of one ac-
tion are met, the attacker can change the state of the system
under attack, thereby enabling the next action in the plan to
succeed. Planning operators are the raw materials needed to
drive planning and plan recognition in any domain.

In particular, we focus on the vast amount of cybersecu-
rity knowledge captured in common vulnerabilities and ex-
posures (CVEs) and using large language models (LLMs) to
represent each CVE as a planning operator in the planning
domain definition language (PDDL) (Fox and Long 2003).
Consider the following description from CVE-2023-2387:

A vulnerability classified as problematic was found in
Netgear SRX5308 up to 4.3.5-3. Affected by this vul-
nerability is an unknown functionality of the file scgi-
bin/platform.cgi?page=dmz setup.htm of the compo-
nent Web Management Interface. The manipulation
of the argument winsServer1 leads to cross-site script-
ing. The attack can be launched remotely. The exploit
has been disclosed to the public and may be used. The
identifier VDB-227665 was assigned to this vulnera-
bility. NOTE: The vendor was contacted early about
this disclosure but did not respond in any way.

A human who wanted to use this knowledge to at-
tack a system would check to see if it is using any
version of the Netgear SRX5308 product, which is a
4-port SSL VPN firewall, up to and including version
4.3.5-3. They would then attempt to remotely access the
system to manipulate the winServer1 argument of scgi-
bin/platform.cgi?page=dmz setup.htm with the goal of be-
ing able to perform cross-site scripting. We will talk more
about the PDDL representation of planning knowledge in
the next section, but an action in PDDL that captures the
knowledge encoded in the CVE is shown below.
(:action EXPLOIT-CVE-2023-2387

:parameters (?s ?a)
:precondition (and (system ?s)

(attacker ?a)
(has_remote_access ?a ?s)
(has_component ?s ’Netgear SRX5308’)
(has_version ’Netgear SRX5308’ ’up to 4.3.5-3’)
(has_argument ... ?a)
(manipulates ?a ’winsServer1’))

:effect (and (gain-access ?a ?s ’cross site scripting’)))

The action above indicates that there must be a sys-
tem and an attacker, that the attacker must have remote

access to the system, that the system has a vulnera-
ble version of Netgear SRX5308, and that the attacker
manipulates the winServer1 argument of the file scgi-
bin/platform.cgi?page=dmz setup.htm.1 Doing so leads to
the effect that the attacker gains the ability to perform cross-
site scripting on the system. From the perspective of a de-
fender, the operator above can be used in several ways. For
example, the attack is only possible with certain versions of
Netgear SRX5308. If later versions are present, the attack
cannot proceed, and if a vulnerable version is present then
an upgrade is in order. Further, frequent manipulation of the
winServer1 argument of dmz setup.htm is an indicator that
the user doing so may be an attacker whose next step is to
exploit cross-site scripting.

The contributions of this paper include (1) a system ar-
chitecture for extracting structured planning operators from
CVEs, (2) definitions of metrics for evaluating various as-
pects of the quality of the extracted operators, (3) insights
about various ways of prompting LLMs for this use case and
the final prompt approach (included in Appendix A), and (4)
empirical results show the utility of the overall approach.

The remainder of this paper is organized as follows. The
next section describes background on CVEs, PDDL, and
LLMs, as well as related work in which LLMs are used in
various ways for planning tasks. That is followed by a de-
scription of our system – called CLLaMP2 – for extracting
planning operators from CVEs as well as the data that it in-
gests. The next two sections outline how such a system can
be evaluated and present an empirical analysis of the oper-
ators extracted by CLLaMP, respectively. The final section
concludes and points to ample future work.

Background and Related Work
Because CLLaMP uses CVEs (the C in CLLaMP) and large
language models (the LLaM) to extract planning operators
in PDDL (the P), this section briefly reviews all three topics.

Common vulnerabilities and exposures (CVEs) are main-
tained by an international community of members in the
CVE Program with the aim of cataloging publicly disclosed
vulnerabilities in a consistent manner. At the time this paper
was written there were more than 200K CVEs available for
search and download at cve.org. Each CVE is represented in
JSON format in a single file. The most important part of that
JSON for the purposes of this paper is the textual description
of the vulnerability, such as the one shown in the previous
section. Those descriptions are free form text and, despite ef-
forts at standardization, exhibit all the variation one expects
to see in natural language descriptions of real-world phe-
nomena like cybersecurity vulnerabilities. Figure 2 contains
a histogram of the lengths of CVE descriptions in characters.
Note that some are quite long (a few thousand characters)
but most are short, with fewer than 500 characters.

The CVE Program exists to capture information about
vulnerabilities so that cyber professionals can keep their sys-

1For readability, we use strings instead of object literals. The
file name was also omitted from the planning operator for the same
reason.

2Code available at https://github.com/ronwalf/CLLaMP

tems safe by exposing information about actions that attack-
ers may take to compromise those systems. Thus, the focus
on CVEs in this work.

A crucial prerequisite to enabling automated recognition
of attacker plans is creating declarative representations of
actions that attackers may take in the cybersecurity domain.
The Planning Domain Definition Language (PDDL) is a
family of standards for describing planning tasks (Fox and
Long 2003). It was initially developed in 1998 to enable a
planning competition, where groups with various planners
could ingest planning domain definitions in a common for-
mat and compare results.

Planning problems have common elements, such as ob-
jects in the domain of interest, predicates that specify prop-
erties of objects and relationships among objects, an initial
state, a goal state, and a set of actions. Consider the follow-
ing CVE (CVE-2017-4889):

VMware Workstation Pro/Player 12.x before 12.5.3
contains a security vulnerability that exists in the
SVGA driver. An attacker may exploit this issue to
crash the VM or trigger an out-of-bound read. Note:
This issue can be triggered only when the host has no
graphics card or no graphics drivers are installed.

It mentions objects like software (“VMware Worksta-
tion Pro/Player” and “SVGA driver”), version numbers
(“12.5.3”), and hardware (“graphics card”). It describes re-
lationships between objects, such as VMware Workstation
Pro/Player having a version before 12.5.3, and a host not
having a graphics card. If the system is in an initial state of
having a vulnerable version of the software without a graph-
ics card, then an attacker can take the action of exploiting
the SVGA driver to achieve the goal of crashing the VM.
This is all captured in the planning operator below (which
was extracted by an LLM) in PDDL format.
(:action EXPLOIT-CVE-2017-4899

:parameters (?s ?a)
:precondition (and (system ?s)

(attacker ?a)
(has_component ?s ’VMware Workstation Pro/Player’)
(has_version ?s ’12.x’)
(has_no_graphics_card ?s)
(has_no_graphics_drivers ?s))

:effect (and (crash-vm ?s ?a)
(trigger-out-of-bound-read ?s ?a)))

The action name associates the PDDL operator with the
exploitation of the vulnerability described in a particular
CVE. It takes two parameters denoted by the variables ?s
and ?a. The preconditions assert that the former must be a
system and the latter an attacker, that the system have a vul-
nerable version of the software, and that the system has no
graphics card and no graphics drivers. That is, the precondi-
tions ensure that the system under attack is vulnerable in the
way described by the CVE. The effects of the attacker’s ac-
tion, their short-term goal, is to crash the VM and/or trigger
an out-of-bound read.

Given a collection of planning operators in this format, a
standard planner, and a corresponding PDDL problem file
that describes the objects in, and initial state of, compute in-
frastructure, one can either plan attacks or recognize attacker
plans.

Figure 1: CLLaMP system architecture

Figure 2: Histogram of CVE description lengths in charac-
ters.

A difficult part of making this work is turning CVE de-
scriptions into structured PDDL representations. To that end
we are exploiting large language models (LLMs) which have
shown to be effective creating PDDL (Guan et al. 2024; Os-
wald et al. 2024), and other tasks such as turning natural lan-
guage queries into SQL queries (Li et al. 2024) and turning
natural language descriptions of functionality into program
code (Jin et al. 2023). That is possible because the corpora
used to train the LLMs contain large amounts of source code
(e.g., from GitHub™) and examples of SQL queries (e.g.,
from web pages documenting SQL or posts on Stack Ex-
change™answering questions about how to write queries).
Both interest in PDDL and examples of PDDL are signifi-
cantly more sparse, so there is far less work with LLMs and
PDDL, and it was not clear a priori how much LLMs know
about the structure of PDDL. Of note, in the previous ex-
ample ChatGPT is willing to assume the existence of string
literals in PDDL, a common language feature which is not a
part of the PDDL standards.

System and Data
The architecture of CLLaMP is shown in Figure 1. Data
in the form of CVEs is ingested into an operator store.
The CVEs used in this paper were downloaded from
https://www.cve.org/ on September 7, 2023 in CVE JSON
5.0 format. They are then stored in the NoSQL database
MongoDB, which is a good match for the JSON format of
the underlying CVEs.

When new CVEs are added to the collection, an LLM
is triggered to extract planning operators, one per CVE, as
done in similar text-to-PDDL approaches (Guan et al. 2024;
Oswald et al. 2024). We used OpenAI’s gpt-3.5-turbo model
for this work. The LLM uses a hand-crafted prompt to drive
the extraction process. The PDDL content expressing the
planning operator is parsed from the LLM’s response to the
prompt, which is then added to the document containing the
original CVE. Special purpose code was written to manage
OpenAI API timeouts, which can be frequent depending on
factors such as the number of concurrent users and OpenAI’s
internal resources devoted to handling API requests.

Documents in the MongoDB collection have the form
shown in Figure 3. Each document corresponds to a CVE
and has the unique CVE ID, the date it was published, and
the date that it was ingested into the system database. The
entire raw JSON file is stored in the database so that it is
available for fast reprocessing as the system’s code changes.
The text that describes the vulnerability is stored in its own
field for ease of access. Another field is created when the
CVE’s description is converted to PDDL, which contains the
corresponding planning operator as a formatted text string
and the date the operator was extracted.

A significant amount of work went into designing the
prompt used by the LLM. The simple approach of “Below
is a CVE, please turn it into an action in PDDL” did not
work. The LLM clearly had knowledge of CVEs and PDDL,
but the prompt was not specific enough. The LLM created
a wide array of predicates, often ignored crucial informa-
tion in the CVE, and tended to create actions for report-
ing the CVE instead of capturing how it could be exploited.
Our next attempt included chain-of-thought prompting (Wei

{
cve_id: ID assigned to the CVE, e.g., CVE-2022-0991
raw_data: The raw contents of the file containing the CVE as a string
date_published: The date the CVE was originally published
date_inserted: The date the CVE was inserted into the database
description: The text of the description of the CVE

pddl {
operator: The planning operator extracted from the CVE
date_inserted: The date the operator was inserted into the database

}
}

Figure 3: Structure of documents in the MongoDB collection

et al. 2023) to get the LLM focused on the right information,
such as asking for a table of system components and version
numbers before asking for the planning operator. Though the
LLM produced the table, it would still not include that in-
formation in the operator. Requests specifically asking for
the table contents to appear in the operator’s preconditions
were ignored. LLMs are known to have problems with in-
structability.

The approach that finally worked was in-context learn-
ing (Dong et al. 2022), i.e., giving several examples of CVE
descriptions and the desired PDDL output. One version of
such a prompt is shown in Appendix A. The advantage of
this few-shot learning approach is that it is easy to address
extraction errors (see the architecture diagram) by having
humans review planning operators and updating the prompt
with additional examples.

Finally, given the store of planning operators and a PDDL
problem file built from an existing cyber-system, such as a
computer network, that describes the existing objects and
their properties/relations, it is possible to reason automati-
cally about red team (attacker) goals, plans, and intents.

4. Experiment Plan
This section describes how we evaluated the output of the

LLM, which is by constructing gold standard actions for a
set of CVEs not included in the LLM’s prompt. Actions in
PDDL refer to objects and predicates in a logical structure.
These elements were evaluated using the following metrics.

• Object recall: Let OG be the set of domain objects men-
tioned in the gold standard operator. Let OL be the set
of domain objects mentioned in the operator extracted by

the LLM. Object recall is defined as |OG∩OL|
|OG| . That is the

fraction of objects mentioned in the gold standard that are
also mentioned in the extracted operator. Note that object
mentions occur as arguments to predicates.

• Object precision: The fraction of domain objects men-
tioned in the extracted operator that are also mentioned

in the gold standard is |OG∩OL|
|OL| .

• Predicate recall: Let PG be the set of partially instan-
tiated predicates (predicate name and arity, ignoring ar-
gument values) in the gold standard operator. Let PL be

the set of partially instantiated predicates mentioned in
the operator extracted by the LLM. Predicate recall is de-

fined as |PG∩PL|
|PG| .

• Predicate precision: Similarly, predicate precision is
|PG∩PL|

|PL| .
• Logic edit distance: To measure the quality of the struc-

ture of the planning operator we compute the edit dis-
tance between the gold standard structure and the ex-
tracted structure. This metric ignores predicate names
and arguments, and simply seeks to ensure that the predi-
cates are present in the correct logical form. The example
below should clarify how this is computed.

Consider the following gold standard action for the ex-
tracted operator shown earlier:
(:action EXPLOIT-CVE-2017-4899

:parameters (?s ?a)
:precondition (and (system ?s)

(attacker ?a)
(has_component ?s ’VMware Workstation Pro/Player’)
(has_version ?s ’before 12.5.3’)
(manipulates ?a ’SVGA driver’)
(or (has_no_graphics_card ?s)
(has_no_graphics_drivers ?s)))

:effect (and (crash-vm ?s ?a)
(trigger-out-of-bound-read ?s ?a)))

The extracted operator is shown here for convenience:
(:action EXPLOIT-CVE-2017-4899

:parameters (?s ?a)
:precondition (and (system ?s)

(attacker ?a)
(has_component ?s ’VMware Workstation Pro/Player’)
(has_version ?s ’12.x’)
(has_no_graphics_card ?s)
(has_no_graphics_drivers ?s))

:effect (and (crash-vm ?s ?a)
(trigger-out-of-bound-read ?s ?a)))

In terms of the notation above:
• OG = {‘‘VMware Workstation
Pro/Player’’, ‘‘before 12.5.3’’,
‘‘SVGA driver’’}

• OL = {‘‘VMware Workstation
Pro/Player’’, ‘‘12.x’’}

• OG ∩ OL = {‘‘VMware Workstation
Pro/Player’’}

Therefore, object recall is 1/3 and object precision is 1/2.
Likewise, consider the sets of predicates below where “ ” is
used to denote an argument:

• PG = {(system), (attacker
), (has component),
(has version), (manipulates

), (has no graphics card),
(has no graphics drivers), (crash-vm

), (trigger-out-of-bound-read)}
• PL = {(system), (attacker),
(has component), (has version

), (has no graphics card),
(has no graphics drivers), (crash-vm

), (trigger-out-of-bound-read)}
• PG ∩ PL = {(system), (attacker),
(has component), (has version

), (has no graphics card),
(has no graphics drivers), (crash-vm

), (trigger-out-of-bound-read)}
Therefore, predicate recall is 8/9 and predicate precision is
8/8. That is, the extracted LLM missed one predicate but the
ones that it contained had the right form.

Finally, for logic edit distance, note that the extracted op-
erator missed a disjunction in the preconditions. That’s an
edit distance of 1.

Our approach to evaluating and improving extraction is to
ingest CVEs, use the current prompt to extract planning op-
erators for a random subset of them, edit the operators into
gold standard form, and compute the metrics. Editing ex-
tracted operators has the advantage of standardizing on pred-
icate and variable names. As errors are discovered through
this process, the prompt is refined and evaluation is repeated
with the hope of leading to fewer errors in the future.

Empirical Results
This section reviews 10 CVEs and the planning operators
extracted by CLLaMP to understand the kinds of errors that
it commits, and to highlight the need for guidelines on what
to include in operators and how. Each CVE/action pair is
shown, with a discussion of the errors found in the action
and ways of addressing them in the prompt. The 10 CVEs
were chosen at random from the entire collection of more
than 200k total CVEs.

CVE-2018-25041
“A vulnerability was found in uTorrent. It has been rated as
critical. Affected by this issue is some unknown functional-
ity of the component JSON RPC Server. The manipulation
leads to privilege escalation. The attack may be launched re-
motely. The exploit has been disclosed to the public and may
be used. It is recommended to upgrade the affected compo-
nent.”

(:action EXPLOIT-CVE-2018-25041
:parameters (?s ?a)
:precondition (and (system ?s)

(attacker ?a)
(has_remote_access ?a ?s)
(has_component ?s ’uTorrent’)
(has_version ?s ’unknown’)
(manipulates ?a ’component JSON RPC Server’))

:effect (and (gain-access ?a ?s ’privilege escalation’))) \\

The translation above is correct except for the inclusion of
the (has version ?s unknown) predicate. It is true that there

is no version mentioned for uTorrent, but the LLM is picking
up on the use of the word “unknown” which was mentioned
in relation to the functionality of the JSON RPC server. A
better operator would not include any mention of versions
that are not mentioned in the CVE, allowing systems with
uTorrent to match regardless of the version. Including CVE
examples in the prompt (shown in Appendix A) with no ex-
plicit version numbers should help here, although the current
prompt uses about a third of GPT 3.5’s available context.
The operator has an object precision of 1, and object recall
of 3/4, a predicate precision/recall of 1 and 6/7, and a logic
edit distance of 0.

CVE-2022-47474
“In telephony service, there is a missing permission check.
This could lead to local information disclosure with no ad-
ditional execution privileges needed.”

(:action EXPLOIT-CVE-2022-47474
:parameters (?s ?a)
:precondition (and (system ?s)

(attacker ?a)
(has_local_access ?a ?s)
(has_component ?s ’telephony service’)
(missing_permission_check ?s))

:effect (and (gain-access ?a ?s ’local information disclosure’)))

The CVE itself is so nonspecific that the operator
may not be useful. The LLM invented two predicates
not in any of the prompts (“has local access” and “miss-
ing permission check”). The operator has an object preci-
sion/recall of 2/3 and 1 and a predicate precision/recall of
2/3. The logic edit distance is 0.

CVE-2005-1636
“mysql install db in MySQL 4.1.x before 4.1.12 and 5.x up
to 5.0.4 creates the mysql install db.X file with a predictable
filename and insecure permissions, which allows local users
to execute arbitrary SQL commands by modifying the file’s
contents.”

(:action EXPLOIT-CVE-2005-1636
:parameters (?s ?a)
:precondition (and (system ?s)

(attacker ?a)
(has_local_access ?a ?s)
(has_component ?s ’MySQL’)
(has_version ?s ’4.1.x’ ’before 4.1.12’

’or’ ’5.x’ ’up to 5.0.4’)
(modifies_file ?a ’mysql_install_db.X’)
(insecure_permissions ?a ’mysql_install_db.X’))

:effect (and (execute-sql ?a ?s)))

The translation above invents several predicates (“mod-
ifies,” “insecure,” and “execute”) not found in the prompt.
The versioning should be broken out into a logical “or”
rather than trying to push it into a single has version pred-
icate. Including examples of CVEs with multiple, disjoint
versions affected could help with the versioning disjunction.
The object precision/recall is 5/6 and 5/7, the predicate pre-
cision/recall is 4/7 and 1/2, and the logic edit distance is 2
(the disjunction for the verisions, plus a conjunction for the
5.x up to 5.0.4 constraint).

CVE-2023-20922
“In setMimeGroup of PackageManagerService.java, there is
a possible crash loop due to resource exhaustion. This could

lead to local denial of service with no additional execution
privileges needed. User interaction is not needed for ex-
ploitation. Product: AndroidVersions: Android-11 Android-
12 Android-12L Android-13Android ID: A-237291548”

(:action EXPLOIT-CVE-2023-20922
:parameters (?s ?a)
:precondition (and (system ?s)

(attacker ?a)
(has_component ?s ’PackageManagerService.java’)
(has_version ?s ’Android-11’)
(has_version ?s ’Android-12’)
(has_version ?s ’Android-12L’)
(has_version ?s ’Android-13’)
(manipulates ?a ’setMimeGroup’))

:effect (and (gain-access ?a ?s ’local denial of service’)))

The Android versions are listed as a conjunction, and
would need to be refactored into a logical “or”. “Package-
ManageService.java” and “setMimeGroup” are descriptions
of the attack mechanism, and would be present on any An-
droid device. Omitting them from the action would be eas-
ier than populating the planning state with such fine-grained
components. All objects and predicates are present, giving
the operator perfect object and predicate precision and re-
call, but a logic edit distance of 1.

CVE-2020-0838
“An elevation of privilege vulnerability exists when NTFS
improperly checks access, aka ’NTFS Elevation of Privilege
Vulnerability’. ”
(:action EXPLOIT-CVE-2020-0838

:parameters (?s ?a)
:precondition (and (system ?s)

(attacker ?a)
(has_component ?s ’NTFS’)
(improperly_checks_access ?s))

:effect (and (gain-privilege ?a ?s)))

This is another CVE where the vagueness of
the description is a challenge. However, the novel
improperly checks access predicate should
be omitted or replaced with manipulates, and the
gain-privilege predicate should be replaced with
gain-access as in the example CVEs. This gives an
object precision or 1/3, an object recall of 1, and a predicate
precision/recall of 3/5. The logic edit distance is 0.

CVE-2018-15459
“A vulnerability in the administrative web interface of Cisco
Identity Services Engine (ISE) could allow an authenticated,
remote attacker to gain additional privileges on an affected
device. The vulnerability is due to improper controls on cer-
tain pages in the web interface. An attacker could exploit
this vulnerability by authenticating to the device with an ad-
ministrator account and sending a crafted HTTP request. A
successful exploit could allow the attacker to create addi-
tional Admin accounts with different user roles. An attacker
could then use these accounts to perform actions within their
scope. The attacker would need valid Admin credentials for
the device. This vulnerability cannot be exploited to add a
Super Admin account.”
(:action EXPLOIT-CVE-2018-15459

:parameters (?s ?a)
:precondition (and (system ?s)

(attacker ?a)
(has_remote_access ?a ?s)
(has_component ?s

’Cisco Identity Services Engine (ISE)’)
(has_version ?s ’unknown’)
(manipulates ?a ’administrative web interface’)
(has_valid_credentials ?a ?s ’Admin’))

:effect (and (gain-privileges ?a ?s ’additional Admin accounts’)))

Most of the CVE is a detailed description of the attack and
its consequences. In extracting an operator, the LLM invents
a version string of ‘unknown’, and adds a new predicate, po-
tentially useful predicate for has valid credentials.
The effect predicate is again changed out, too. The operator
as an object precision of 1 and recall of 3/5, and a predicate
precision and recall of 3/5. The logic edit distance is 0.

CVE-2021-40309
“A SQL injection vulnerability exists in the Take Attendance
functionality of OS4Ed’s OpenSIS 8.0. allows an attacker
to inject their own SQL query. The cp id miss attn param-
eter from TakeAttendance.php is vulnerable to SQL injec-
tion. An attacker can make an authenticated HTTP request
as a user with access to “Take Attendance” functionality to
trigger this vulnerability.”
(:action EXPLOIT-CVE-2021-40309

:parameters (?s ?a)
:precondition (and (system ?s)

(attacker ?a)
(has_remote_access ?a ?s)
(has_component ?s "OS4Ed’s OpenSIS")
(has_version ?s ’8.0’)
(manipulates ?a ’cp_id_miss_attn’))

:effect (and (gain-access ?a ?s ’SQL injection’)))

This is one of the rare CVEs whose PDDL action fully
matches the pattern used in the prompt.

CVE-2017-12167
“It was found in EAP 7 before 7.0.9 that properties based
files of the management and the application realm configu-
ration that contain user to role mapping are world readable
allowing access to users and roles information to all the users
logged in to the system.”
(:action EXPLOIT-CVE-2017-12167

:parameters (?s ?a)
:precondition (and (system ?s)

(attacker ?a)
(has_component ?s ’EAP’)
(has_version ?s ’before 7.0.9’)
(has_file ?s ’management.properties’)
(has_file ?s ’application.properties’)
(world_readable ?s ’management.properties’)
(world_readable ?s ’application.properties’))

:effect (and (gain-access ?a ?s ’user and role information’)))

The has file and world readable predicates are
novel and should be omitted, and it lacks the “manipulates”
predicate of the model operators. The version specification is
missing a rectriction to 7.x. The operator’s object precision
and recall is 3/5 and 3/7, where predicate precision and recall
is 5/6 and 5/7, respectively. The logic edit distance is 1 for
the version specification.

CVE-2021-46595
“This vulnerability allows remote attackers to disclose sensi-
tive information on affected installations of Bentley Micro-
Station CONNECT 10.16.0.80. User interaction is required
to exploit this vulnerability in that the target must visit a
malicious page or open a malicious file. The specific flaw
exists within the parsing of 3DS files. The issue results from

the lack of proper validation of user-supplied data, which
can result in a read past the end of an allocated buffer. An
attacker can leverage this in conjunction with other vulnera-
bilities to execute arbitrary code in the context of the current
process. Was ZDI-CAN-15389.”
(:action EXPLOIT-CVE-2021-46595

:parameters (?s ?a)
:precondition (and (system ?s)

(attacker ?a)
(has_remote_access ?a ?s)
(has_component ?s ’Bentley MicroStation CONNECT’)
(has_version ?s ’10.16.0.80’)
(user_interaction_required ?s)
(visits_malicious_page ?a ?s)
(opens_malicious_file ?a ?s)
(parsing_3ds_files ?s)
(lack_of_validation ?s)
(read_past_end_of_buffer ?s))

:effect (and (execute_arbitrary_code ?a ?s)))

The LLM generates a number of novel predicates for this
action, mostly keying off the detailed exploit description.
Even if the predicates were used, however, the roles are con-
fused, as the victim and not the attacker must visit the ma-
licious web page. The operator has an object precision and
recall of 1/2 and 1, and a predicate precision/recall of 5/7
and 5/12. The logic edit distance is 0.

CVE-2001-0992
“shopplus.cgi in ShopPlus shopping cart allows remote at-
tackers to execute arbitrary commands via shell metacharac-
ters in the “file” parameter.”
(:action EXPLOIT-CVE-2001-0992

:parameters (?s ?a)
:precondition (and (system ?s)

(attacker ?a)
(has_remote_access ?a ?s)
(has_component ?s ’ShopPlus shopping cart’)
(manipulates ?a ’parameter file’))

:effect (and (gain-access ?a ?s ’execute arbitrary commands’)))

This action appropriately drops the version predicate,
which isn’t specified in the CVE text. Object and predicate
precision and recall are all 1, and logic edit distance is 0.

Result Metrics
Overall, the average object precision and recall is .79 and
.85, while the average predicate precision and recall is .8
and .74. The average logic edit distance is .4. Only two of
the ten operators did not need edits.

Discussion and Future Work
This paper described and evaluated CLLaMP, a system that
uses large language models to extract planning operators
in PDDL format from CVEs. The goal of CLLaMP is to
support reasoning about attacker plans in cybersecurity do-
mains. The system was evaluated against gold standard plan-
ning operators using several metrics related to precision, re-
call, and edit distance defined for structured PDDL represen-
tations. Empirical results showed the potential effectiveness
of the approach. Given the level of accuracy, the LLM could
function as a code assistant to help users translate from the
CVE to PDDL.

There is significant future work that can be done. This in-
cludes improving the accuracy of the translating, which a
necessary component to scale up extraction of PDDL from

all of the 200K+ currently available CVEs. Potential im-
provements could come from trying other LLMs such as
Hugging Face’s StarCoder which was trained to focus on
coding tasks, refinements to the prompt in response to errors
over larger sets of extracted operators. Other required tasks
include mapping string representations of objects to tokens
as required by PDDL syntax, and merging predicate and ob-
ject names to standardize terms (e.g., cross-site scripting vs
XSS vs basic cross-site scripting).

Appendix A: LLM Prompt
I want to convert CVEs into planning operators in PDDL.
The preconditions will test whether a system is vulnerable
to the attack described in the CVE. The effects will indicate
what the attacker gains.

I’m going to show you example CVEs and their correspond-
ing planning operators in the format I want.

Below is an example CVE:

CVE-2023-2387

A vulnerability classified as problematic was found in
Netgear SRX5308 up to 4.3.5-3. Affected by this vul-
nerability is an unknown functionality of the file scgi-
bin/platform.cgi?page=dmz setup.htm of the component
Web Management Interface. The manipulation of the argu-
ment winsServer1 leads to cross-site scripting. The attack
can be launched remotely. The exploit has been disclosed to
the public and may be used. The identifier VDB-227665 was
assigned to this vulnerability. NOTE: The vendor was con-
tacted early about this disclosure but did not respond in any
way.

Here is the corresponding planning operator:
(:action EXPLOIT-CVE-2023-2387

:parameters (?s ?a)
:precondition (and (system ?s)

(attacker ?a)
(has_remote_access ?a ?s)
(has_component ?s ’Netgear SRX5308’)
(has_version ’Netgear SRX5308’ ’up to 4.3.5-3’)
(manipulates ?a ’argument winsServer1’))

:effect (and (gain-access ?a ?s ’cross site scripting’)))

Here is another CVE:

CVE-2023-2738

A vulnerability classified as critical has been found in
Tongda OA 11.10. This affects the function actionGetdata
of the file GatewayController.php. The manipulation leads
to unrestricted upload. It is possible to initiate the attack re-
motely. The exploit has been disclosed to the public and may
be used. The identifier VDB-229149 was assigned to this
vulnerability. NOTE: The vendor was contacted early about
this disclosure but did not respond in any way.

Here is the corresponding planning operator:
(:action EXPLOIT-CVE-2023-2738

:parameters (?s ?a)
:precondition (and (system ?s)

(attacker ?a)
(has_remote_access ?a ?s)
(has_component ?s ’Tongda OA’)
(has_version ’Tongda OA’ ’11.10’)
(manipulates ?a ’actionGetdata’))

:effect (and (gain-access ?a ?s ’unrestricted upload’)))

Here is another CVE:

CVE-2023-2368

A vulnerability was found in SourceCodester Faculty
Evaluation System 1.0. It has been declared as critical.
This vulnerability affects unknown code of the file in-
dex.php?page=manage questionnaire. The manipulation of
the argument id leads to sql injection. The attack can be ini-
tiated remotely. The exploit has been disclosed to the public
and may be used. The identifier of this vulnerability is VDB-
227644.

Here is the corresponding planning operator:

(:action EXPLOIT-CVE-2023-2368
:parameters (?s ?a)
:precondition (and (system ?s)

(attacker ?a)
(has_remote_access ?a ?s)
(has_component ?s

’SourceCodester Faculty Evaluation System’)
(has_version

’SourceCodester Faculty Evaluation System’
’1.0’)

(manipulates ?a ’argument id’))
:effect (and (gain-access ?a ?s ’sql injection’)))

Here is another CVE:

CVE-2023-2041

A vulnerability classified as critical was found
in novel-plus 3.6.2. Affected by this vulnerabil-
ity is an unknown functionality of the file /catego-
ry/list?limit=10&offset=0&order=desc. The manipulation
of the argument sort leads to sql injection. The attack can
be launched remotely. The exploit has been disclosed to
the public and may be used. The associated identifier of
this vulnerability is VDB-225919. NOTE: The vendor was
contacted early about this disclosure but did not respond in
any way.

Here is the corresponding planning operator:

(:action EXPLOIT-CVE-2023-2041
:parameters (?s ?a)
:precondition (and (system ?s)

(attacker ?a)
(has_remote_access ?a ?s)
(has_component ?s ’novel-plus’)
(has_version ’novel-plus’ ’3.6.2’)
(manipulates ?a ’argument sort’))

:effect (and (gain-access ?a ?s ’sql injection’)))

Now convert the following CVE to a planning operator.

References
2024. CVE. https://www.cve.org/. Accessed: 2024-03-05.
Dong, Q.; Li, L.; Dai, D.; Zheng, C.; Wu, Z.; Chang, B.;
Sun, X.; Xu, J.; and Sui, Z. 2022. A survey on in-context
learning. arXiv preprint arXiv:2301.00234.
Fox, M.; and Long, D. 2003. PDDL2. 1: An extension to
PDDL for expressing temporal planning domains. Journal
of artificial intelligence research, 20: 61–124.
Guan, L.; Valmeekam, K.; Sreedharan, S.; and Kambham-
pati, S. 2024. Leveraging pre-trained large language models
to construct and utilize world models for model-based task
planning. Advances in Neural Information Processing Sys-
tems, 36.

Hoffmann, J. 2015. Simulated penetration testing:
From“Dijkstra” to “Turing test++”. In Proceedings of the in-
ternational conference on automated planning and schedul-
ing, volume 25, 364–372.
Jin, M.; Shahriar, S.; Tufano, M.; Shi, X.; Lu, S.; Sundare-
san, N.; and Svyatkovskiy, A. 2023. Inferfix: End-to-end
program repair with LLMs. In Proceedings of the 31st ACM
Joint European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering, 1646–
1656.
Korban, C. A.; Miller, D. P.; Pennington, A.; and Thomas,
C. B. 2017. APT3 adversary emulation plan. Technical re-
port, MITRE.
Kouremetis, M.; Lawrence, D.; Alford, R.; Cheuvront, Z.;
Davila, D.; Geyer, B.; Haigh, T.; Michalak, E.; Murphy, R.;
and Russo, G. 2024. Mirage: cyber deception against au-
tonomous cyber attacks in emulation and simulation. Annals
of Telecommunications.
Li, J.; Hui, B.; Qu, G.; Yang, J.; Li, B.; Li, B.; Wang, B.; Qin,
B.; Geng, R.; Huo, N.; et al. 2024. Can LLM already serve
as a database interface? A big bench for large-scale database
grounded text-to-sqls. Advances in Neural Information Pro-
cessing Systems, 36.
Oswald, J.; Srinivas, K.; Lee, J.; Katz, M.; and Sohrabi, S.
2024. Large Language Models as Planning Domain Gener-
ators. In The 34th International Conference on Automated
Planning and Scheduling. AAAI.
Wei, J.; Wang, X.; Schuurmans, D.; Bosma, M.; Ichter, B.;
Xia, F.; Chi, E.; Le, Q.; and Zhou, D. 2023. Chain-of-
Thought Prompting Elicits Reasoning in Large Language
Models. arXiv:2201.11903.

Notice
This software was produced for the U. S. Government un-
der Contract No. FA8702-19-C-0001, and is subject to the
Rights in Noncommercial Computer Software and Noncom-
mercial Computer Software Documentation Clause DFARS
252.227-7014 (FEB 2014)

©2024 The MITRE Corporation All rights reserved. Ap-
proved for Public Release; Distribution Unlimited. Public
Release Case Number 24-1125

