
Domain Design for the Cops and Robbers Problem

Connor Little, Christian Muise
{ connor.little, christian.muise } @queensu.ca

Queen’s University
Kingston ON, Canada

Abstract

The cops and robbers problem is a well-researched problem
in graph theory. The problem consists of a robber and one or
more cops placed on a graph. Taking turns moving through-
out the graph, the cops try to capture the robbers. We model
a non-deterministic version of this problem using automated
planning. We then extend it using numerous variations within
the literature. These variations include the variable speed rob-
ber and the friendly robber. Given a class of graphs, we can
exhaustively generate domain-problem pairs for all problems
and use these pairs to test the properties of the class – a sys-
temic and exhaustive compilation of all planning models for
a class of graphs through an automatic translation. Our work
demonstrates planning is capable of solving the cops and rob-
bers problem efficiently.

Introduction
The cops and robbers problem is a popular problem in the
field of graph theory (Bonato 2011). It simulates a chase
between a robber and a specified number of cops across a
graph. The robber tries to avoid capture forever while the
cops want to catch the robber. Despite its simple rules, a
myriad of research has revolved around both techniques to
solve the game and variations on extending it.

To translate the problem to PDDL, we introduce a new
perspective on the problem: the non-deterministic cop.
This variation of the problem has each cop make non-
deterministic moves each turn. As such, the planner must
make policies for all reachable states as opposed to just a
single decisive policy. By coupling this with a neutral initial
state that allows the cops and robbers to choose their start-
ing configurations, we can search for a policy that considers
every configuration of a graph simultaneously. This allows
the model to test and explore the environment exhaustively.

More precisely, we translate the problem into a fully ob-
servable non-deterministic (FOND) problem. Under these
rules, all state information is known and there is no hidden
information. There is nothing to be gained by limiting what
information the cops and the robbers have access to, outside
introducing new variations. The outcomes of actions, how-
ever, are not known. The cop’s actions are non-deterministic
in that when moving a random, but not probabilistic, node is
chosen.

Unfortunately, FOND models are unable to be compared
in terms of optimality. Instead, we will take a subjective
approach to how these policies are utilized. The benefit of
automated planning is that it allows us to efficiently create
policies for the robber. If a policy exists such that the robber
can evade capture, we can determine many attributes of that
problem instance.

In addition to creating the problems and domains for the
standard version, we explore some of the common variations
of the cops and robbers’ problem. We have implemented two
versions: the friendly robber and the variable move speed
robber (Frieze, Krivelevich, and Loh 2012). The variable
move speed robber can take multiple moves per turn. This
allows the robber to cover more ground and avoid capture
where otherwise not possible. The friendly robber has the
objective to be captured as soon as possible. This inverts the
problem to be one of catching all possible cops instead of
avoiding all possible cops. Both variations have been cov-
ered in the literature, the former extensively.

Finally, we take classes of graphs and generate exhaus-
tive domains and problems for these classes. We use these
generated sets to test the graph properties. Our work shows
promising results for using mathematical planning to solve
and explore properties of classes of problems.

Background
The Cops and Robbers Problem
The cops and robbers problem is a variation on the pursuit
and evasion problem. It was first introduced into the liter-
ature by Nowakowski and Winkler (Nowakowski and Win-
kler 1983) in 1983, and by Quilliot (Quilliot 1986). It takes
place on a graph and with perfect information played with
two adversarial forces. The two main entities in which the
game revolves are the cops and the robbers. There is one rob-
ber and k ≥ 1 cops. Starting with the robber, they take turns
making moves across a connected graph. Each player can
only move to adjacent nodes and can only move unit length.
The robber’s goal is to avoid capture indefinitely, while the
cop’s goal is to capture the robber. Capture can be defined to
be when a robber’s only legal move is to move onto a node
occupied by a cop, or if they occupy the same node.

A larger goal of the game is to determine if the graph is a
cop-win or a robber-win. A robber-win is a graph such that



the robber has a strategy to avoid the cops indefinitely. The
cop-win graphs are those in which the cop(s) can always
capture the robber. Another common question is to deter-
mine the cop number of a graph. A cop number is the min-
imum number of cops required to capture the robber. One
can imagine putting a cop on every single node of the graph,
guaranteeing capture in one move. This would lead to the
upper bound of the cop number being the number of nodes
in a graph. The lower bound is often unknown.

Variations on the Cops and Problems
Frieze et al. (Frieze, Krivelevich, and Loh 2012) cover many
of the popular variations on the problem. The first variation
that is covered is that of the directed graph. In this varia-
tion, the graph has one-way edges and therefore has a much
more restricted search space. The second variation is the fast
robber. With this condition, the robber may move a variable
number of spaces each turn. The maximum distance is pre-
decided. This allows the robber much more maneuverability
when avoiding the cops. This can be extended into the in-
finitely fast robber, which may jump to any unimpeded node
on the graph.

The most similar variant that has been covered in the lit-
erature on the cops and robbers problem is the drunk rob-
ber variant. It was first introduced by Komarov and Winkler
(Komarov and Winkler 2013). In this variation, the robber
employs no strategy, instead wandering aimlessly through-
out the graph. This has been expanded to the ”tipsy cop and
drunk robber” in which the robber still moves aimlessly and
the cop may make knowledgable moves or may move ran-
domly (Harris et al. 2020). There is also the case of the invis-
ible robber by Kehagias et al. (Kehagias, Mitsche, and Prałat
2013). This variant has the robber’s position unknown until
capture. While this does make the cop’s movement more un-
predictable, there are still strategies they may employ. None
of these variations fully capture the non-deterministic cop.

Automated Planning and Evasion Problems
In the domain of automated planning work on the cops and
robbers problem, and similar games, is extremely limited.
Even outside the domain of automated planning, utilizing AI
to look into the cops and robbers problem has not been ex-
plored in depth. To our knowledge, there have been no such
attempts. Instead, we may focus on work in adjacent do-
mains, such as pursuit and evasion. Nussbaum and Yörükçü
(Nussbaum and Yörükçü 2015) worked on the problem of
Moving Target Search (MTS) in which an agent attempts
to capture another non-stationary agent. The key inclusion
in their algorithm was using environment abstraction to de-
crease the search space without compromising on the cost of
the algorithm. As such, they were able to improve upon all
compared algorithms in all tested environments.

Planning under visibility constraints is also a common oc-
currence in the pursuit-evasion planning literature. Guibas
et al. (Guibas et al. 1999) and Stiffler and Kane (Stiffler and
O’Kane 2020) both focus on the partially-observable pursuit
and evasion problem. Guibas et al. (Guibas et al. 1999) are
able to both introduce an algorithm for solving the problem

and also introduce bounds for necessary conditions to cap-
ture the evader. Their paper uses a polygonal environment
instead of a graph. Stiffler and Kane (Stiffler and O’Kane
2020) look at the domain of search and rescue. The evaders
are victims who must be caught (rescued) and may move
unpredictably. A key feature is that the algorithm must be
able to guarantee each evader is found. They utilize a for-
ward search style algorithm as well as an algorithm that can
simulate evader trajectories to aid in path computation.

Macindoe et al. (Macindoe, Kaelbling, and Lozano-Pérez
2023) do work on a variation of the cops and robbers prob-
lem within an automated planning framework. They work
on a partially observable Markov Decision Process to build
sidekicks for the cops. This turns it into a multi-agent prob-
lem. They aim to have their sidekick assist the cop in captur-
ing the robber by planning in belief space. Their sidekick is
able to interpret what a human player would aim to do and
assists in capturing the robber faster than simply committing
to a single path would succeed.

A Planning Model for Cops and Robbers
Our model uses the PDDL language and the PR2 planner
(Muise, McIlraith, and Beck 2023). Each problem is given
its own domain file to prevent exponential blow-up of the
search space. For every graph, the problem and domain files
are generated programmatically.

The model we present is for the non-deterministic cops
and robbers problem. No variations are included in this
model unless explicitly mentioned. The standard version of
cops and robbers starts with a graph G = {V,E}, where V
is a set of vertices and E is a set of edges. A robber is placed
on a vertex v. One or more cops are placed on vertices drawn
from V \{v}. On each iteration of the game the robber makes
a move along one of the edges, and then the robbers make
a move. This is done until the termination condition of the
robber being unable to traverse an edge without being on an
occupied node, or until the depth limit is reached.

To begin, we define the following predicates:

• (at ?x - entity ?y - location)
– This fluent is true if the entity occupies said location.

• (edge ?x ?y - location)
– This fluent defines the architecture of the graph.

• (turn ?x - cop)
– This fluent determines which entities may make a

move. It is the robber’s turn if all turns are set to false.
• (caught)

– This fluent is true the robber is ever caught.
• (survived)

– This fluent determines if the robber is still alive.
• (done)

– This fluent is a flag for ending the game.
• (nil)

– This fluent does nothing. It is a placeholder for the
identity action.



• (move0), (move1), etc

– These fluent counts the number of moves a robber may
make.

Next, we may define some of the important actions.

Algorithm 1: Robber Movement

1: (:action robber move
2: :parameters (?x ?y - location)
3: :precondition (and
4: (at rob1 ?x)
5: (edge ?x ?y)
6: (forall (?c - cop) (not (turn ?c)))
7: :effect (and
8: (when (exists (?c - cop) (at ?c ?y)) (caught))
9: (not (at rob1 ?x))

10: (at rob1 ?y)
11: (when (move0) (and (not move0) (move1)
12: (when (moveK) (and (not moveK) (forall (?c -

cop) (turn ?c)))
13: (oneof (survived) (nil))
14: )
15: )

Algorithm 1 defines the movement of the robber. Since
there is only 1 robber only the locations are needed as a pa-
rameter. Line 4 ensures the robber is at the first location.
Line 5 ensures there is a connection between nodes. Line
6 ensures it is not the cop’s turn. The effect is as follows.
Line 8 checks for collision between the robber and the cop,
to determine the end of the game. Lines 9 and 10 remove
the robber from the first node and place them at the second.
Line 11 increments the move counter for the robber. On the
last move, on line 12, all cops have their turn set to be true.
Lastly, line 13 non-deterministically ends the game. This is
necessary as we don’t want the game to end once the robber
is caught. The objective of the algorithm is to generate a plan
for the robber to avoid as long as possible. By choosing this
method, the robber is incentivized to continuously avoid the
cop without directly declaring a utility or reward function.

To add the variation of multiple moves, an additional set
of statements are added. Each move is given a fluent: move0,
move1, ..., moven. The first time a robber makes a move,
move0 will be the only fluent set to true. For each move, a
line is called that increments the move fluents. The first iter-
ation will set move0 to false and move1 to true, the second
will set move1 to false and move2 to true, and so on. Only
on the last call will the cops’ turns be set to true. In addition,
each cop now must set move0 to be true. This adds some
redundant computation, but as we demonstrate in the results
is still an efficient implementation of this variation.

Algorithm 2 defines the movement of the cop. The num-
ber of nodes that a node can have adjacent is bounded.
We need to numerically quantify how many edges a node
has before problem creation. The number of edge precondi-
tions will grow linearly with the number of adjacent nodes.
The number of inequality preconditions will grow quadrat-
ically with respect to the triangle numbers. The number of

Algorithm 2: Cop Movement Unoptimized

1: (:action cop move
2: (?c - cop ?x ?y ?z - location)
3: :precondition (and
4: (turn ?c)
5: (num edges ?x 2)
6: (at ?c ?x)
7: (edge ?x ?y)
8: (edge ?x ?z)
9: (not (= ?y ?z))

10: :effect (and
11: (not (turn ?c))
12: (move0)
13: (not (at ?c ?x))
14: (oneof
15:
16: (and (at ?c ?y) (when (at rob1 ?y) (caught)) )
17:
18: (and (at ?c ?z) (when (at rob1 ?z) (caught)) )
19: )
20: )
21: )

Algorithm 3: Cop Movement

1: (:action cop move node 2
2: (?c - cop)
3: :precondition (and
4: (turn ?c)
5: (at ?c node2)
6: :effect (and
7: (not (turn ?c))
8: (move0)
9: (not (at ?c node2))

10: (oneof
11:
12: (and (at ?c node1) (when (at rob1 node1)

(caught)) )
13:
14: (and (at ?c node3) (when (at rob1 node3)

(caught)) )
15: )
16: )
17: )



branches in the oneof clause will also grow linearly. To avoid
this growth, we use the programmatically generated version
for each graph. This creates an action for every node that a
cop may take by making each problem have a custom do-
main. Algorithm 3 shows an example of node2 with connec-
tions to node1 and node3. Both versions have some slight
redundancy in that they always set move0 to be true. This is
required to let the robber’s move cycle restart.

In addition to these actions, some supplementary actions
are provided. The terminate game action requires ’survived’
and not ’caught’. It will return ’done’. The robber is also
allowed to stay in place with a stay action. Each variant of
the problem adds or alters one of the actions as well. The
friendly variant creates a new terminal action with just re-
quires ’caught’, while a variable speed robber increases the
number of move fluents required.

When running the algorithm a strong cyclic or strong
acyclic solution corresponds to a robber win, while no strong
solution found corresponds to a cop win. In practice, the re-
sult will always be a strong cyclic and not a strong acyclic
as the game only is a robber win if they can avoid capture in
all possible states. For a non-cyclic solution to be found the
graph would need to be infinitely large.

Furthermore, to generate the domains for each instance,
we also define the problem files for each of the problems.
This comes with some customization to control what we
solve for. The first addition is the inclusion of a node n0
that is outside of the graph. This node has a unidirectional
connection with all possible nodes and cannot be returned
to. Beginning with all of the cops, all entities make a move
starting at n0 and placing themselves on the graph. With the
non-deterministic properties of the cops, this allows all start-
ing configurations of cops to be tested in implicit parallel.
The problem files can be generated with known starting lo-
cations as well. We also allow the user to generate instances
with variable numbers of cops and robbers. Lastly, digraphs
and unconnected nodes are permitted.

Evaluation
All experiments were conducted on a Dell XPS 17 9720. A
12th Gen Intel(R) Core(TM) i7-12700H was used with 32
GB of available RAM.

An evaluation of the cops and robber’s problem with plan-
ning will be broken into two sections. The first section will
apply the technique to classes of problems to see how the
planner fares empirically, as well as demonstrate the tool’s
usefulness for property testing and generation. The second
part will look at individual problems. This section will be
devoted to interpreting the policy output as well as deter-
mining the limits of the algorithm.

Property Testing
Many of the open questions regarding cops and robbers are
whether certain classes of graphs obey certain properties. A
specific example would be whether or not a specific group of
graphs has a cop number k (Berarducci and Intrigila 1993).
We can evaluate questions of this nature through exhaus-
tive exploration of all configurations of the cops and robbers
problem.

We evaluated our algorithm on 2 different classes of
graphs: Seven vertex-connected graphs and 6 vertex Eule-
rian digraphs. Eulerian graphs are graphs that have the prop-
erty that all nodes have an even number of connections. The
exhaustive list of graphs comes from a database constructed
by McKay (McKay 2023). These classes were chosen based
on their size, as well as some properties they hold. Both
classes are connected, which means that every node is reach-
able from every other node. Without this property, the cops
and robbers problem would not work as the robber could
hide on a disconnected graph. The Eulerian graph was also
chosen to test digraphs within our methodology. Digraphs
are graphs that have directed edges instead of undirected
ones. Backtracking is not allowed on these graphs. Finally,
both classes of graphs have no reflexive edges.

Each class of graphs is explored with various variations
applied. In all variations, each entity starts outside the map
and chooses a location with the robber choosing last. This
allows every variation of the game to be considered. The
standard variation involves the robber having one move and
avoiding the cops. The friendly variation incentivizes the
robber to be caught. Each additional move is an extra move
a robber may do. Lastly, we increase the number of cops to
determine the cop number. The results can be found in Ta-
bles 1 and 2.

Each run measures the following statistics. The first is the
amount of time it takes to run all graphs in the class exhaus-
tively. The next column keeps track of the number of robber
win graphs. This is the number of graphs in which a robber
can win by avoiding the cop indefinitely. The robber can al-
ways win in the friendly variation as there is a finite number
of states that can be reached. Every state has a possible state
that can be reached in which the robber wins, so all states
can eventually lead to a win. This is a safe problem. The
next column measures the total number of weak searches
that are called on average. This is a measure of how many
fast downward planner calls are needed. As the number of
moves increases, so too does the number of weak searches
on average. Solution size is the average number of states in
the controller. This can represent how complex the policies
are. FOND problems have no definition of optimality other
than one policy dominating another, so this gives some in-
sight into how our policy is but it cannot be used to defini-
tively say one area is better than another. The next column
is the number of rounds that are computed on average. This,
much like the total time, is another measure of computation.
A round is determined by restarting the search on a new in-
cumbent solution with the knowledge learned from previous
searches. The more rounds that need to be computed, the
more computation is done. The last two columns are forbid-
den state-action pairs (FSAPs) and poison count. The former
is the number of pairs of states and actions that we penalize
the algorithm for choosing. The latter is the number of states
that have their descendants poisoned. The poisoning process
disincentives searching down bad paths.

Some interesting patterns emerge when examining the
different variations. One of the largest outliers is the effect
of adding an additional cop. One additional cop more than
tripled the runtime for the standard version in the first trial.



Variation Total Time Robber Wins Weak Searches Solution Size Rounds FSAPS Poison Count
Standard 37m39.610s 450/853 361.17 54.21 10.09 197.42 158.48
Friendly 33m51.066s 853/853 13 10 1 0 0
2 Moves 45m18.327s 503/853 618.94 66.59 14.09 85.23 174.83
3 Moves 48m7.595s 528/835 998.47 84.13 16.61 96.01 212.66
2 Cops 115m30.003s 0/835 454.44 228.56 5.70 4139.79 403.86

Table 1: Results over all 7 vertex connected graphs

Variation Total Time Robber Wins Weak Searches Solution Size Rounds FSAPS Poison Count
Standard 89m12.562s 86/2162 71.82 32.59 4.09 397.92 45.95
Friendly 92m49.273s 2162/2162 23.68 10.95 1.35 3.69 6.49
2 Moves 108m47.285s 91/2162 303.78 48.52 10.64 85.79 160.13
3 Moves 144m34.607s 115/2162 849.92 64.02 22.73 138.47 329.89
2 Cops 1075m48.238s 0/2162 527.64 278.06 4.76 12952.74 460.23

Table 2: Results over all 6 vertex Eulerian Digraphs

It also greatly increased the search space while requiring far
fewer searches and rounds. This is in part because of the sig-
nificant number of FSAPS. When adding a cop to the 6 node
digraphs the runtime increased by a factor of 10.

Comparatively, increasing the number of moves the rob-
ber can make had a far lesser impact on the computational
burden. It added an additional standard variation worth of
weak searches, which makes sense intuitively. Interestingly,
the number of FSAPs decreased. Our guess as to why this
happens is that you can enter and leave a forbidden zone
without causing a loss as you get two moves.

Lastly, increasing the number of cops on each version
gives us the ability to calculate the cop number for the
graphs. 403 connected 7 vertex graphs have a cop number
of 1 and the rest have a cop number of 2. The digraph results
also reveal that they have a maximum cop number of 2.

Individual Problems
Next, we narrow the focus to individual problems to more
thoroughly examine their output. By focusing on singular
problems we can evaluate the policies directly in terms of
human intuition and interpretability. Here we would like to
highlight 4 different problems that each offer a unique in-
sight into how the algorithm generates policies. This will
allow better utilization of the policies in practice. The first
problem to look at is a single line in which the cop must
chase the robber to the end. This one is important for under-
standing the robber’s survivability as well as how to com-
pute friendly robbers. The second is a square graph. This
one again offers insight into the friendly robber and whether
or not the robber can take advantage of hiding on a square.
The third is a tree. This problem demonstrates the issue with
backtracking as well as tests the limits of survivability. The
fourth is a tree with a cyclic ring that can only be reached
through backtracking. This tests whether or not a planner
can form policies that backtrack if they lead to eventual suc-
cess. Each problem discussed will be very small so that the
policy may be interpretable.

The first problem to examine is the line chase problem.

This problem starts with 6 nodes. The cop begins on the first
not and the robber begins on the second. The policy can be
seen in Figure 1.

The policy can be read in the following way. The policy
begins with the action in the square box. From there one of
two results can happen. Either the game ends as the robber
survives, leading to the terminate node, or the cop must now
make a move. After the cop moves, the robber may make a
choice depending on the move that was made. If a node con-
taining -1 is reached that means that the robber was caught
and no strong cyclic solution exists.

The robber begins by moving away from the cop and
down the line. The cop will then chase the robber down. The
robber once again moves away from the cop and then the
non-deterministic action is taken and the cop either moves
towards the robber or back to the beginning. If the cop moves
back to the beginning then the robber will move back to-
wards the cop. The planner always tries to return to known
states to minimize the solution space.

One notable aspect of this problem is the use of the wait
action. The robber correctly stays at the final node unless it is
safe for 2 actions to move toward the cop. This ensures that
it survives until the cop reaches the final node. This is the
optimal behavior in terms of surviving as long as possible.

This problem has unique considerations when consider-
ing the friendly robber. Due to the nature of the planner to
return to known locations, the robber does not take the short-
est path towards the robber. Instead, they repeatedly return
to known positions until the cop makes novel choices. To
avoid this scenario and generate the shortest plans, the addi-
tional parameter ”–localize-enabled 0” may be added to the
PR2 planner (Muise, McIlraith, and Beck 2023). This dis-
ables the check for known states and instead, the policy is
returned where the robber moves down the line each move.

The second notable plan is the square. This is the shortest
possible cyclic plan in which the robber has a winning strat-
egy. A triangle is infeasible as it is a fully connected graph.

This graph shows that the robber is capable of waiting on
its initial state to act on the cop’s action. It will always stay



Figure 1: Policy to avoid capture on a straight line

in the opposite corner, which is intended behaviour. The full
policy can be seen in Figure 2. This problem also gives in-
teresting behavior when the robber is given multiple moves.
If given 2 moves the robber will always wait on its second
move, as a move would make it get captured the following
turn. If given an odd number of moves, such as three, the
robber will be instructed to make 2 moves which cancel each
other out. It will move to a node only to move back. This pat-
tern seems to be repeated in most multiple-move graphs. The
planner’s additional goal of returning to a goal state makes
the addition of additional moves often negligible as the rob-
ber is incentivized to waste them, unless necessary.

The addition of a cycle also affects how the friendly vari-
ation works. We cannot use the additional parameter ”–
localize-enabled 0” as before. Because it’s always possible
for the cop to move away from the robber, we have to rely on
returning to additional states. Unrolling the complete paths
can lead to paths infinitely long, which is beyond the scope
of this planner.

The third problem worth inspecting is a branching tree
problem. This problem tests the robber’s ability to make
long-term decisions even if the outcome is the same. That
is, can the robber choose the longest branch even if, in all
cases, it will eventually be a cop win? The answer is yes,
and the policy can be seen in Figure 3

The robber begins at the root of the tree, and the cop be-
gins adjacent to the robber on the shortest branch. From this
scenario, the robber is given the option of which branch to
hide down. The robber picks the longest branch and success-
fully evades capture for the longest possible time.

The 4th problem to look at changes the prior problem in
2 different ways. Both involve making the branch the cop
starts on the longest. The first version simply makes it the

Figure 2: Policy to avoid capture on a square

longest by adding nodes so that the line is longer. The second
version adds a loop of cycle 4 to the branch. This not only
makes it the longest but ensures that if the robber were to
reach the cycle they have a guaranteed win.

Unfortunately, the implementation of the domain and
problem make the robber incapable to computing the back-
tracking required to descend down this path. The way to ac-
cess the longest branch would be to wait for the cop to de-
scend down a branch the robber did not access and backtrack
to the longer one. In both cases the planner failed to discover
this policy.

This failure to generate the policy also extended through
parameter tuning. Increasing the depth of the search and the
number of trials, as well as disabling known state returns all
failed to cause the planner to backtrack. This proves that in
its current state, the planner will not survive for the longest
possible time.

This does not suggest that the planner cannot find solu-
tions, however. In all backtracking cases, there is a possibil-
ity of guaranteed failure should a cop immediately descend
down the chosen branch of the robber. Due to this, there is no
strong cyclic solution that exists. We were unable to develop
a problem that requires backtracking but also has a strong
cyclic solution. Therefore, it is inconclusive if any solutions
may be missed due to this aspect of the program.

Summary
The cops and robbers problems are a class of problems
that are of significant interest in graph theory. This paper
presents 3 main results. The first is the creation and im-
plementation of a PDDL version of the cops and robbers
problem through automatic domain and problem engineer-
ing. The addition of the non-deterministic cop and variable
starts allows for an exhaustive exploration of the problem
proposed. The second contribution is a proof of concept and
exploration of property testing for classes of problems. We
design a generation of domain problems based on graphs and
exhaustively cover the search space. The planner is able to
run on classes of instances and test hypotheses. It can also be



Figure 3: Policy to avoid capture on a Tree

Figure 4: Policy to avoid capture on a tree with backtracking



Figure 5: Policy to avoid capture on a tree with a cycle

used to determine bounds. The implementation is efficient
when applied to small instances to explore entire classes or
large individual problems. The final contribution is regard-
ing policy interpretation. The policies can be extracted and
understood while being intuitive. They follow the rules one
would expect a robber to follow.

Ultimately, we have demonstrated how a systematic plan-
ning modeling of a mathematical problem setting can be
used to explore properties of interest to the mathematics
community. Our approach to the cops and robbers problem
offers a unique perspective on the problem and allows re-
searchers to prove properties of problems.

Moving forward we hope to explore additional variants of
the cops and robbers problem. In this paper, we cover the
friendly robber and the variable speed robber. While some
variants such as the drunk robber would be superfluous with
our implementation, most others should be integratable into
our framework without substantial adjustment, such as a dy-
namic cop problem or an infinite speed robber. Many more
variants are included in the literature and pose interesting
problems in their own right. Further optimizations to the
plan generation would also allow larger search spaces to be
explored. Improving the implementation to explore larger
classes of problems would provide much stronger use cases
for the model. The current model is only tested on graphs
with small nodes, and while graphs that contain more nodes
are feasible, the time complexity of the problem is exponen-
tial and solving the whole class of graphs becomes difficult.
We have shown that there are some cases in which human
intuition does not match the plan, such as in the tree search

with backtracking. With further exploration, we believe this
can be improved.

References
Berarducci, A.; and Intrigila, B. 1993. On the Cop Number
of a Graph. Advances in Applied Mathematics, 14(4): 389–
403.
Bonato, A. 2011. The game of cops and robbers on graphs.
American Mathematical Soc.
Frieze, A.; Krivelevich, M.; and Loh, P. S. 2012. Variations
on cops and robbers. Journal of Graph Theory, 69: 383–402.
Guibas, L. J.; Latombe, J.-C.; LaValle, S. M.; Lin, D.; and
Motwani, R. 1999. A visibility-based pursuit-evasion prob-
lem. International Journal of Computational Geometry &
Applications, 9(04n05): 471–493.
Harris, P.; Insko, E.; Prieto-Langarica, A.; Stoisavljevic, R.;
and Sullivan, S. 2020. Tipsy cop and drunken robber: a vari-
ant of the cop and robber game on graphs.
Kehagias, A.; Mitsche, D.; and Prałat, P. 2013. Cops and in-
visible robbers: The cost of drunkenness. Theoretical Com-
puter Science, 481: 100–120.
Komarov, N.; and Winkler, P. 2013. Capturing the Drunk
Robber on a Graph. Electronic Journal of Combinatorics,
21.
Macindoe, O.; Kaelbling, L. P.; and Lozano-Pérez, T. 2023.
POMCoP: Belief Space Planning for Sidekicks in Coopera-
tive Games.



McKay, B. 2023. Combinatorial Data. http://users.cecs.anu.
edu.au/∼bdm/data/. Accessed: 2023-11-12.
Muise, C.; McIlraith, S. A.; and Beck, J. C. 2023. PRP Re-
booted: Advancing the State of the Art in FOND Planning.
(arXiv:2312.11675). ArXiv:2312.11675 [cs].
Nowakowski, R.; and Winkler, P. 1983. VERTEX-TO-
VERTEX PURSUIT IN A GRAPH.
Nussbaum, D.; and Yörükçü, A. 2015. Moving Target
Search with Subgoal Graphs*.
Quilliot, A. 1986. Some Results about Pursuit Games on
Metric Spaces Obtained Through Graph Theory Techniques.
European Journal of Combinatorics, 7(1): 55–66.
Stiffler, N. M.; and O’Kane, J. M. 2020. Planning for robust
visibility-based pursuit-evasion. In 2020 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS),
6641–6648.


