On Automating Video Game Regression Testing by Planning and Learning

Tomas Balyo, G. Michael Youngblood, Filip Dvorak, Lukas Chrpa, and Roman Bartak

Filuta AI, Inc., 199 Water St Fl 34, New York, NY 10038
{tomas, michael, filip, lukas, roman} @filuta.ai

Abstract

In this paper, we propose a method and workflow for automat-
ing regression testing of certain video game aspects using
automated planning and incremental action model learning
techniques. The basic idea is to use detailed game logs and
incremental action model learning techniques to maintain a
formal model in the planning domain description language
(PDDL) of the gameplay mechanics. The workflow enables
efficient cooperation of game developers without any expe-
rience with PDDL or other formal systems and a person ex-
perienced with PDDL modeling but no game development
skills. We describe the method and workflow in general and
then demonstrate it on a proof-of-concept example — a sim-
ple role-playing game provided as one of the tutorial projects
in the popular game development engine Unity. This paper
presents the first step towards minimizing or even eliminating
the need for a modeling expert in the workflow, thus making
automated planning accessible to a broader audience.

Introduction

Game testing is a vital yet complex component of video
game development, focusing on identifying and resolving
bugs, performance issues, and ensuring a high-quality user
experience. This multifaceted process involves testing di-
verse game scenarios, enhancing user interface and playabil-
ity, and maintaining stability and efficiency. It also includes
compliance with standards and regulations, especially for
games with online components. Modern game testing com-
bines automated and manual methods, often engaging pro-
fessional testers and the gaming community, to not only fix
issues but also elevate overall player satisfaction and game
quality. However, automation of testing methods still has a
long way to go, especially for techniques that do not signifi-
cantly disrupt developer workflow (Politowski, Guéhéneuc,
and Petrillo 2022). This paper focuses on a contribution to
those automated methods by leveraging planning.
Automated Planning is a less common skill game devel-
opers utilize but can be a powerful tool for game testing.
One key aspect of that difficulty comes from the autho-
rial burden of writing domain and problem descriptions in
PDDL (Planning Domain Definition Language) (Ghallab

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

et al. 1998). Good PDDL modeling is a rare skill that devel-
ops over time, so an efficient use of modelers by enabling
them to be more effective is another key to adoption. Al-
though there are Knowledge Engineering tools that aim at
supporting PDDL modeller effort (Simpson, Kitchin, and
McCluskey 2007; Vaquero et al. 2013), the modelling pro-
cess is still a sort of “black art” (McCluskey, Vaquero, and
Vallati 2017).

Our work addresses these critical issues to help game de-
velopers utilize planners for generating test scripts driven
by PDDL through automation support. We accomplish this
by taking the game logs, produced in software development,
providing easy-to-implement guidance to augment the log-
ging for action model capture, and performing automated
domain synthesis to generate PDDL models easily validated,
verified, and adjusted by the game developer. These good
PDDL examples also improve the developers’ understand-
ing and authorial abilities in PDDL in the flow. Goal tem-
plates are then used to formulate domain problems of inter-
est for testing. We demonstrate our approach and process on
a simple RPG game in the ubiquitous Unity game engine
(Unity Technologies 2023).

Motivation

We will focus on regression testing during game devel-
opment, i.e., running frequent tests to ensure that recent
changes did not introduce unintended breaks and the game
still performs as expected. This is a particularly repetitive
and dull task for a human tester but crucial for efficient de-
velopment. It is often the case, that the longer the time dif-
ference between the introduction and discovery of the bug,
the harder it is to fix.

What can be tested with Planning

The most obvious and important usage is to test whether the
game can be completed, i.e., each intended objective can
be achieved from the starting state of each scenario. Next,
we can generate a large amount of random test scenarios.
This approach is beneficial if we can execute and evaluate
test scenarios automatically. Furthermore, we can search for
dead-ends in the game, i.e., states that can be reached but are
impossible to continue from or to win. In modern game de-
sign, such states are most undesirable and annoying for the

players. If the PDDL model is detailed enough, one can de-
tect such dead ends by running planners from random reach-
able states. Last but not least, one can prove that undesired
shortcuts are impossible through regular gameplay using op-
timal planners.

Applicability

The classical planning-based testing approach is most suit-
able for games with many discreet causal interactions such
as role-playing games (RPG), point-and-click adventures,
strategy games, visual novels, or puzzle games. It is less suit-
able for fast-paced action-oriented games such as shooters
or driving games. For such games, reinforcement learning-
based approaches, that have been studied in recent works,
seem to be more suitable (see the Related Work Section
of this paper). Overall, we observe that the reinforcement
learning and the planning-based approaches can comple-
ment each other rather well.

Preliminaries

The planning problem is to find a plan — a sequence of
grounded actions that transform the world from an initial
state to a goal state, i.e., a state where all goal conditions
are satisfied. A planning problem instance consists of a do-
main definition and a task definition. The domain definition
describes possible actions with their preconditions and ef-
fects. In STRIPS planning (Fikes and Nilsson 1971), both
preconditions and effects are sets of predicates and negated
predicates connected by a conjunction. The task definition
contains the descriptions of the initial state and the goal con-
ditions.

Planning action model learning (AML) involves synthe-
sizing a domain definition from logs with state sequences.
Many algorithms have been published for this task (Wang
1996; Aineto, Celorrio, and Onaindia 2019; Zhuo et al.
2010; Yang, Wu, and Jiang 2007; Juba, Le, and Stern 2021),
and a recent overview and new implementations of multiple
techniques are provided in the MacQ project (Callanan et al.
2022). For the evaluation in this paper we use our own new
action learning method (Balyo et al. 2024).

Related Work

Planning is rooted in search and, as such, has had a long
history with games. At the beginning of Al, the focus was
on games like chess (Newell, Simon et al. 1972) and check-
ers (Samuel 1959), which initially relied on the search for
solutions. Planning continued to dominate in the 80s and
90s with checkers and chess with Deep Blue (Hsu et al.
1990) and Chinook (Schaeffer et al. 1996). Agent architec-
tures and production systems added value, and soon, plan-
ning started to add value in games like bridge (Smith, Nau,
and Throop 1998) and the class of Real-Time Strategy (RTS)
games (Chung, Buro, and Schaeffer 2005). In (Duarte et al.
2020), they survey the history of planning and learning in
games, covering the spectrum as well as diving into the
lineage of planning from search, minimax and alpha-beta
pruning, hierarchical task networks, and Monte Carlo Tree

search, through classical planning, rapidly-exploring ran-
dom trees, case-based planning, and behavior trees. Most of
the work is focused on creating Al-driven opponents (Wur-
man et al. 2022), which are sometimes used to play both
sides for evaluation, Al training, and testing.

Automated testing with Al has been a rising research
focus more recently with work that has focused on
agent-based approaches that include navigation mesh path-
finding (Shirzadehhajimahmood et al. 2021), reinforcement
learning agents for finding design and environmental de-
fects (Ariyurek, Betin-Can, and Surer 2019; Ferdous et al.
2022), reinforcement learning for load testing (Tufano et al.
2022), modeling of user interaction for boundary test-
ing (Owen, Anton, and Baker 2016), search for test case
generation (Ferdous et al. 2021b), and search for automated
play testing (Ferdous et al. 2021a). Despite planning use in-
game Al, we do not see its use in-game testing more broadly
beyond back to search. However, as evidenced by Bram Rid-
der’s (Al Programmer for Rebellion) keynote talk at the
2021 AIIDE Conference on “Improved Automated Game
Testing Using Domain-Independent Al Planning” (Riddler
2021) and his 2021 GDC AI Summit talk “Automated Game
Testing Using a Numeric Domain Independent Al Planner,”
planning techniques for game testing are beginning to be
used in the games industry mixed in with calls for more Al
automation of testing (Fray 2023).

In (Volokh and Halfond 2023) the authors proposed an
automated approach for determining actions when conduct-
ing automated exploration for games. It is based on program
analysis (slicing) of the game code. Although they are not
using the usual planning formalism (like PDDL), they work
with symbolic representation of states and actions and rely
on SMT (satisfaiblity module theories) solvers to determine
the set of applicable actions in a given state.

The General Workflow

The general workflow is visualized in a flowchart in Fig-
ure 1. Each task requires a person (or a group) having one of
the following two skill sets:

* A game developer or a game designer (Developer for
short). This is someone familiar with the rules of the
game and the ability to modify the source code of the
game to add log generation functionality. Also, they need
to be able to play the game in such a way that all the
available game mechanics are utilized. Lastly, they must
be capable of (automatically) evaluating whether a given
test script is consistent with the game’s rules.

* A person with PDDL modeling skills (Modeller for
short). This is someone who knows PDDL and has some
experience with modeling planning scenarios in this lan-
guage.

We start by writing an informal but structured description
of all the legal player moves/actions. For each player action,
we need to provide a name and list of preconditions (what
conditions need to be valid in order to allow the player to
play this action) and effects (what changes after the action is
played out) written in natural language. This task should be

Start Here

Write an informal but
structured description of the
available player actions

t Unprecise desc.———@—— Buggy Logging

Use the model with a

scripts (plans)

planner to generate test

Are the

executable?

Yes

test scripts valid and

Identify the set of predicates
that need to be logged

Implement the logging of
changes connected to those
predicates

—»

j

Are you
happy with PDDL
model?

Manually evaluate and
compare the learned PDDL
model to the informal action

description

Play the game to collect logs

Apply action model learning
on the logs

Adjust the PDDL model

Incremental action model
learning check if the current
PDDL fits the logs

Does the model
fit the logs?

No

Figure 1: The overview of the workflow for acquiring PDDL domain models based on logs from the game execution. Tasks
with a white background should be done by game developer(s). The tasks and decisions with a blue background should be done
by the PDDL modeller. The light green tasks can be done automatically.

O 001NN B W=

2023-08-15
2023-08-15
2023-08-15
2023-08-15
2023-08-15
2023-08-15
2023-08-15
2023-08-15
2023-08-15
2023-08-15
2023-08-15
2023-08-15
2023-08-15
2023-08-15
2023-08-15

2023-08-15
2023-08-15
2023-08-15
2023-08-15

19:
19:
19:
19:
19:
19:
19:
19:
19:
19:
19:
19:
19:
19:
19:

19:
19:
19:
19:

31:
31:
31:
31:
31:
31:
31:
31:
31:
31:
31:
31:
31:
31:
31:

31:
31:
31:
31:

20
21
21
21
24
24
24
24
24
24
24
24
24
24
24

29
30
30
30

697
916
916
917
315
315
316
574
574
574
598
598
598
598
598

816
055
056
056

; NEXT-STATE
(not

(questState apples—quest started),start_quest

; NEXT-STATE
(not

(location player 8,-4)),move

(location player 9,-4) ,;move

; NEXT-STATE
(not

(location player 9,-4)) ,;move

(location player 10,-4) ,;move

; NEXT-STATE
not (collected apples 0)

(
(
(not
(

; NEXT-STATE

; NEXT-STATE
(not

) ;pickup

collected apples 1) ,pickup
(location golden-appleO 10,-4)),pickup
location golden-appleO none) ,;pickup

(questState apples—quest ready)),;start_quest

(questState apples—quest started)),;complete_quest

(questState apples—-quest complete),;complete quest

; NEXT-STATE

Figure 2: A fragment of the log file created by playing the game and used for action model acquisition.

easily doable by the developer. It requires no PDDL mod-
eling experience, even though the required structure of the
action is very similar to that of an STRIPS action.

Next, the informal action descriptions are handed to a
modeler. The modeler’s task at this point is only to identify
a set of predicates required to formally describe all the prop-
erties mentioned in the preconditions and effects sections of
the action descriptions.

Then, the set of predicates is given to a developer who
needs to extend the game’s source code to facilitate the log-
ging of changes to those predicates. Now, we are ready to
play the game while collecting logs. The logs are passed to
an action model learning (AML) tool, and a PDDL model is
automatically generated.

Many games already produce logs, so why cannot we just
use existing logs instead of modifying the code and creating
new ones? In principle, we could do that. However, in our
experience, the existing logs (if they are available at all) usu-
ally only contain method calls and error messages and do not
record changes in state variables. Those kinds of logs unfor-
tunately cannot be used to learn action models because the
required information (state changes) is not present in them.

Now, it is the modeler’s turn again, as they need to exam-
ine and evaluate the generated PDDL model manually. Due
to the imprecise nature of AML algorithms, the generated
model often needs minor corrections and adjustments. Af-
ter such adjustments, it is possible to verify automatically
whether the new PDDL model is still consistent with the
logs. Note that the first model coming from the AML is al-
ways consistent with the logs (this is a property of the used
action model learning algorithm (Balyo et al. 2024)). If the
model is consistent with the logs, the modeler can either con-
tinue editing or decide that it is good enough and can be
passed to the planning step. On the other hand, if the model
is inconsistent with the logs, we need to either change the
PDDL model or the logs. Changing the logs may be required
because they are inconsistent due to bugs in the implementa-
tion of the logging process or because we are not logging the
proper predicates. In the latter case, we may need to go back
all the way to the beginning of the process and adjust the
informal description, update the set of required predicates,
and repeat all the follow-up steps (see Figure 1).

If the logs are consistent with the current domain model
and the modeler believes it is accurate, we can use a planner
to create a collection of plans. These plans are then handed
over to the developers, who can check whether they are con-
sistent with the game’s rules following some simple goal
templates. This process can be done manually or automat-
ically if the game can execute test scripts. If no problems
are discovered with the generated plans/test scripts, we are
finished, and we have obtained a PDDL model representing
the game’s rules. If we discover any problems, we handle
the situation the same way as in the case of having a domain
inconsistent with the logs (see Figure 1).

Proof of concept: A Simple RPG Game

We will demonstrate our workflow on the tutorial project of
“Creator Kit: RPG” (Unity Technologies 2019), available in

Move hero
Hero is at the goal tile

Hero is at the start tile
Start and goal tiles
are neighbours

Pick up quest item
Hero is at the same The item is gone
location as the item
The quest related to
this item is active

The hero has one more of
this kind of item

Start quest
The quest is active

The quest is ready
Hero is at the same location
as the quest giver

Complete quest
The quest is done

The quest is active

The hero has enough items
of the required type

Hero is at the same location
as the quest giver

Table 1: Structured informal description of player actions.
The left column is the preconditions, right is the effects.

the popular video game engine Unity (Unity Technologies
2023) versions 2019.1 — 2021.3.

It is a basic single-player RPG with a 2D environment
viewed from above. The player controls a hero character us-
ing the arrow keys. The hero can talk to non-player charac-
ters (NPCs) on the map. Some NPCs can provide a “quest”
(a task for the hero to complete) when spoken to. The quests
all follow the pattern of: “collect n items of type 7. After a
quest is activated, the relevant items appear on the map. To
pick up an item, the hero only needs to walk near it. When
the required amount of items is collected, the player must
visit the NPC who provided the quest to complete it. There
are two quests in the demo: “collect 3 golden apples” and
“collect 10 chickens”.

Following the workflow defined above (in Figure 1), we
need to start by providing an informal but structured descrip-
tion of the possible actions. For our simple example, we only
require four actions described in Table 1.

In this example, the modeller decided to use a grid-based
(i.e., via tiles) abstraction of locations' and came up with the
following list of properties that should be logged:

¢ location of the hero (tile),

* Jocations of each item (tile or none),

* the state of each quest (ready, active, done),
* the location of each quest-giving NPC (tile),
* number of items of each kind the hero has.

Additionally, we will need to know the following static prop-
erties of the environment and quests:

!Using the grid abstraction turned out to be rather inconvenient.
The reasons are that it is not very robust if the items are not aligned
to the grid and it is hard to determine which tiles are connected. In
a game with free movement such as our example, it would be bet-
ter to use a navigation-mesh-based abstraction (Shirzadehhajimah-
mood et al. 2021).

O 001NN B W=

(define (domain rpg)
(:requirements :strips :typing :negative-preconditions)

collected ?t - typename ?n - number)
questItemCount ?g — quest ?n — number)

(:types
number state location locatable typename - object
quest item hero - locatable

)

(:constants

active ready done - state

)

(:predicates
(next ?nl - number ?n2 - number)
(connected ?11 - location ?12 - location)
(questState ?g - quest ?s - state)
(itemType ?1 - item ?t - typename)
(questItemType ?g — quest ?t - typename)
(location ?1 - locatable ?loc - location)
(
(

)
(:action start_quest
:parameters (?quest - quest ?hero - hero ?location - location)
:precondition (and
(questState ?quest ready)
(location ?hero ?location)
(location ?quest ?location)
)
ceffect (and
(not (gquestState 7?quest ready))
(questState ?quest active)
)
)
(:action complete_qguest
:parameters (?quest — quest ?hero - hero ?typename - typename
?number - number ?location - location)
:precondition (and
(questState ?quest active)
(location ?hero ?location)
(location ?quest ?location)
(collected ?typename ?number)
(questItemType ?quest ?typename)
(questItemCount ?quest ?number)
)
ceffect (and
(not (questState ?quest active))
(questState ?quest done)

Figure 3: First half of the RPG domain PDDL description.

1 (:action pickup

2 :parameters (?hero - hero ?item - item ?location - location
3 ?number-1 ?number-2 - number ?typename - typename ?quest - quest)
4 :precondition (and

5 (collected ?typename ?number-1)

6 (location ?item ?location)

7 (location ?hero ?location)

8 (itemType ?item ?typename)

9 (questItemType ?quest ?typename)

10 (questState ?quest active)

11 (next ?number-1 ?number-2)

12)

13 :effect (and

14 (not (collected ?typename ?number-1))

15 (not (location ?item ?location))

16 (collected ?typename ?number-—2)

17)

18)

19 (:action move

20 :parameters (?hero - hero ?location-1 ?location-2 - location)
21 :precondition (and

22 (location ?hero ?location-1)

23 (connected ?location-1 ?location-2)

24)

25 :effect (and

26 (not (location ?hero ?location-1))

27 (location ?hero ?location-2)

28)

29)

30 |)

Figure 4: Second half of the RPG domain PDDL description.

« initial locations of each item (tile),

* type of each item (apple, chicken, ...),

* type of item required for a quest (apple, chicken, ...),
* number of items required to fulfill the quest,

» which tiles are neighbours.

To see the concrete predicate declarations corresponding to
these properties see Figure 3.

The developers then implemented logging and provided
logs for learning (see Figure 2). The modeller refined
the PDDL domain synthesized from the logs (see Fig-
ures 3 and 4) and used a planner to generate a plan to win
the game (see Figure 6). We used the FF planner (Hoffmann
and Nebel 2001) which worked very well for our problem
and found a plan in 0.01 seconds.

In order to test whether a generated plan (test script) is
valid?, we implemented automatic test script execution. In
this case, it was very easy, since the game is controlled just
by moving the hero. Quests are activated/completed auto-
matically when their requirements are fulfilled and the hero
comes near their NPC. Also, items are picked up automati-
cally just by walking up to them. Therefore, to execute the
test scripts we only need to execute the Move actions. We
did that by simulating the pushing of the arrow buttons in

2A test script is valid if it is executable in a bug-free implemen-
tation of the game. If a test script is valid, but not executable, then
a bug in the game is indicated

the directions of the next goal tile until we are close enough
to the center of that tile?.

Usage During Development

The process we described should be applied at the beginning
of the development process when the game is simple and
only contains a few game mechanics like our RPG demo.
As the game is developed and new features are added, the
PDDL model should be developed together with the game.
Using incremental action model learning can aid the devel-
opers in maintaining the PDDL model.

Challenges with Fully Automated Logging for
Learning

Deciding which properties/predicates should be logged and
then implementing the logging into the game code can be
complex and time-consuming. Therefore, automating this
part of the workflow would be very beneficial. This sec-
tion will discuss some examples of issues and challenges
that need to be solved to achieve full automation.

In general, logging must be detailed enough to capture all
the game mechanics precisely; therefore, it is necessary to
log the values and changes of all variables, arrays, and other
data structures of selected game-play-related classes in the

3 A recording of the plan execution within the game is available
here: https://www.youtube.com/watch?v=BASKvQAbG04

O 01NN B W~

(define (problem levell)

(:domain rpgqg)

(:objects
player - hero
ready - state
apples chicken - typename
apples—quest chicken-quest - quest
chickenO ... chicken9 - item
golden-apple0 ... golden-apple2 - item
n-1x-7 ... n9x2 - location
n0 ... n9 - number

)

(:init

(collected apples n0)

(collected chicken n0)
(questItemCount apples—-quest n3)
(questItemCount chicken-quest nl0)
(questItemType apples—quest apples)
(questItemType chicken—-quest chicken)
(questState apples—quest ready)
(questState chicken—-quest ready)
(location player n4x10)

(location apples—quest n8x-—4)
(location chicken-quest n—-6x7)
(connected n-1x-7 n-2x-7)

(itemType chickenO chicken)
(location chickenO n-1x3)

(itemType golden-appleO apples)
(location golden-apple0 nl0x-4)

(next n0 nl)

)
(:goal (and
(questState apples—quest done)
(questState chicken-quest done)
))

Figure 5: The problem file for the RPG demo. Some of the objects and initial state predicates are redacted to shorten the listing.

O 01NN B W~

22
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:

MOVE PLAYER N10X-4 N9X-4

MOVE PLAYER N9X-4 N8X-4

START_QUEST APPLES-QUEST PLAYER N8X-4

MOVE PLAYER N8X-4 N9X-4

MOVE PLAYER N9X-4 N10X-4

PICKUP PLAYER GOLDEN-APPLE(O N10X-4 NO N1 APPLES APPLES-QUEST
MOVE PLAYER N10X-4 N10X-3

MOVE PLAYER N10X-3 N10X-2

MOVE PLAYER N10X-2 N10X-1

MOVE PLAYER N10X-1 N10XO

PICKUP PLAYER GOLDEN-APPLEl N10X0 N1 N2 APPLES APPLES-QUEST
MOVE PLAYER N10XO0 N11XO

MOVE PLAYER N11X0 N11X-1

PICKUP PLAYER GOLDEN-APPLE2 N11X-1 N2 N3 APPLES APPLES-QUEST
MOVE PLAYER N11X-1 N11X-2

MOVE PLAYER N11X-2 N10X-2

Figure 6: A fragment of the plan to solve the demo level of the game.

code. On the other hand, for automated planning to be effi-
cient, we must work with an abstraction of the game rules.
We need high-level predicates describing world states for
this. The level of abstraction also cannot be too high; oth-
erwise, the learned domain would be useless since it could
only generate nonspecific and broad test scenarios. Those
would be very difficult to execute automatically.

Precisely, we must map all numeric variables, arrays,
strings, and custom data structures to predicates. This step
is required because we cannot automatically decide what is
necessary to describe all game-play rules fully. Interestingly,
mapping all available variables is both too detailed and not
necessarily sufficient at the same time. To completely model
the behavior of a general computer program, we would also
need to represent the “hidden” data like stack traces, the in-
struction pointer, the variables in the game engine, the op-
erating system, and properties that are implied by the level
design or interactions in the physics engine that are not rep-
resented in the code. For example, it is possible to jump from
one location to another.

Furthermore, we would like to (1-to-1) map planning ac-
tions to certain significant functions and methods in the code
that represent player actions. The reason is that we want to
call these methods from the plans obtained by the learned
model. This step is problematic since STRIPS actions have
a very limited structure. On the other hand, functions in
code are usually much more complex. They contain branch-
ing, loops, other function calls, recursion, and other ele-
ments a STRIPS action cannot do. Therefore, mapping most
functions from the program code one to one is impossible
with the planning actions. One solution would be to break
up game-code functions into simpler elements that can be
mapped to planning actions. We would also need to use addi-
tional helper predicates to express the stack traces, program
pointers, etc. The disadvantage is that the generated plans
would then contain these elementary actions instead of the
high-level ones we desired.

Alternatively, we could achieve a “one to many” mapping
where one function from the program code gets mapped to
a couple of planning actions, which altogether represent the
whole original function. This step can be done easily and
automatically, but from our experience, many very specific
planning actions are learned, and the model does not gener-
alize well. It is somewhat similar to the situation known as
overfitting in machine learning.

We could mitigate these problems by supporting addi-
tional PDDL features like conditional effects and universal
quantifiers so that more code functions can be mapped to
a single (or at least fewer than before) planning action(s).
This process is complicated since most action model learn-
ing methods only support STRIPS-like action definitions.

Conclusion
In this paper, we presented a workflow that applies research
from the areas of automated planning and action model
learning in order to help with the automation of regression
testing during video game development. We demonstrated
it with a proof-of-concept project and discussed what chal-
lenges need to be addressed to further automate its steps.

Future Work

We plan to evaluate and refine the workflow on larger and
more complex games. We are currently experimenting by
applying it to a real-time strategy game. We also want to
run proper user studies to quantify the usefulness of the pro-
posed workflow compared to just creating the domains man-
ually. Furthermore, we want to address and resolve the chal-
lenges related to further automating the synthesis of PDDL
domains mentioned in the previous section.

References
Aineto, D.; Celorrio, S. J.; and Onaindia, E. 2019. Learning
action models with minimal observability. Artificial Intelli-
gence, 275: 104-137.
Ariyurek, S.; Betin-Can, A.; and Surer, E. 2019. Automated
video game testing using synthetic and humanlike agents.
IEEE Transactions on Games, 13(1): 50-67.
Balyo, T.; Suda, M.; Chrpa, L.; §afrének, D.; Dvorék, F.;
Bartdk, R.; and Youngblood, G. M. 2024. Learning Planning
Action Models from State Traces. arXiv:2402.10726.
Callanan, E.; De Venezia, R.; Armstrong, V.; Paredes, A.;
Chakraborti, T.; and Muise, C. 2022. MACQ: a holis-
tic view of model acquisition techniques. arXiv preprint
arXiv:2206.06530.
Chung, M.; Buro, M.; and Schaeffer, J. 2005. Monte
Carlo Planning in RTS Games. In Proceedings of the 2005
IEEE Symposium on Computational Intelligence and Games
(CIGOS). IEEE.
Duarte, F. F.; Lau, N.; Pereira, A.; and Reis, L. P. 2020. A
survey of planning and learning in games. Applied Sciences,
10(13): 4529.
Ferdous, R.; Kifetew, F.; Prandi, D.; Prasetya, I.; Shirzade-
hhajimahmood, S.; and Susi, A. 2021a. Search-based auto-
mated play testing of computer games: A model-based ap-
proach. In International Symposium on Search Based Soft-
ware Engineering, 56—71. Springer.
Ferdous, R.; Kifetew, F.; Prandi, D.; Prasetya, I. S. W. B.;
Shirzadehhajimahmood, S.; and Susi, A. 2021b. Search-
Based Automated Play Testing of Computer Games: A
Model-Based Approach. In Search-Based Software Engi-
neering: 13th International Symposium, SSBSE 2021, Bari,
Italy, October 11-12, 2021, Proceedings, 56—71. Berlin,
Heidelberg: Springer-Verlag. ISBN 978-3-030-88105-4.
Ferdous, R.; Kifetew, F.; Prandi, D.; and Susi, A. 2022. To-
wards Agent-Based Testing of 3D Games Using Reinforce-
ment Learning. In Proceedings of the 37th IEEE/ACM Inter-
national Conference on Automated Software Engineering,
1-8.
Fikes, R. E.; and Nilsson, N. J. 1971. STRIPS: A new ap-
proach to the application of theorem proving to problem
solving. Artificial intelligence, 2(3-4): 189-208.
Fray, A. 2023. Automated Testing Roundtables GDC
2023. https://autotestingroundtable.com/. (Accessed on
12/12/2023).
Ghallab, M.; Howe, A.; Knoblock, C.; Mcdermott, D.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL—
The Planning Domain Definition Language.

Hoffmann, J.; and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research, 14: 253-302.

Hsu, F.-h.; Anantharaman, T. S.; Campbell, M. S.; and
Nowatzyk, A. 1990. Deep thought. In Computers, Chess,
and Cognition, 55-78. Springer.

Juba, B.; Le, H. S.; and Stern, R. 2021. Safe Learning of
Lifted Action Models. In Proceedings of the 18th Interna-
tional Conference on Principles of Knowledge Representa-
tion and Reasoning, 379-389.

McCluskey, T. L.; Vaquero, T. S.; and Vallati, M. 2017. En-
gineering Knowledge for Automated Planning: Towards a
Notion of Quality. In Corcho, ().; Janowicz, K.; Rizzo, G.;
Tiddi, I.; and Garijo, D., eds., Proceedings of the Knowl-
edge Capture Conference, K-CAP 2017, Austin, TX, USA,
December 4-6, 2017, 14:1-14:8. ACM.

Newell, A.; Simon, H. A.; et al. 1972. Human problem solv-
ing, volume 104:9. Prentice-hall Englewood Cliffs, NJ.
Owen, V. E.; Anton, G.; and Baker, R. 2016. Modeling user
exploration and boundary testing in digital learning games.
In Proceedings of the 2016 conference on user modeling
adaptation and personalization, 301-302.

Politowski, C.; Guéhéneuc, Y.-G.; and Petrillo, F. 2022. To-
wards automated video game testing: still a long way to go.
In Proceedings of the 6th International ICSE Workshop on
Games and Software Engineering: Engineering Fun, Inspi-
ration, and Motivation, 37-43.

Riddler, B. 2021. Improve Automated Game Testing Us-
ing Domain Independent AI Planning - YouTube. https:
/lwww.youtube.com/watch?v=2KXmxuCjjCw. (Accessed
on 12/12/2023).

Samuel, A. L. 1959. Some studies in machine learning using
the game of checkers. IBM Journal of research and devel-
opment, 3(3): 210-229.

Schaeffer, J.; Lake, R.; Lu, P.; and Bryant, M. 1996. Chinook
the world man-machine checkers champion. Al magazine,
17(1): 21-21.

Shirzadehhajimahmood, S.; Prasetya, I.; Dignum, F.; Das-
tani, M.; and Keller, G. 2021. Using an agent-based ap-
proach for robust automated testing of computer games.
In Proceedings of the 12th International Workshop on Au-
tomating TEST Case Design, Selection, and Evaluation, 1—
8.

Simpson, R. M.; Kitchin, D. E.; and McCluskey, T. L. 2007.
Planning domain definition using GIPO. Knowl. Eng. Rev.,
22(2): 117-134.

Smith, S. J.; Nau, D.; and Throop, T. 1998. Computer
bridge: A big win for Al planning. Al magazine, 19(2): 93—
93.

Tufano, R.; Scalabrino, S.; Pascarella, L.; Aghajani, E.;
Oliveto, R.; and Bavota, G. 2022. Using reinforcement
learning for load testing of video games. In Proceedings of
the 44th International Conference on Software Engineering,
2303-2314.

Unity Technologies. 2019. Creator Kit: RPG - Unity Learn.
https://learn.unity.com/project/creator-kit-rpg. (Accessed
on 12/09/2023).

Unity Technologies. 2023. Unity Real-Time Development
Platform — 3D, 2D, VR & AR Engine. https://unity.com/.
(Accessed on 12/09/2023).

Vaquero, T. S.; Silva, J. R.; Tonidandel, F.; and Beck, J. C.
2013. itSIMPLE: towards an integrated design system for
real planning applications. Knowl. Eng. Rev., 28(2): 215—
230.

Volokh, S.; and Halfond, W. G. 2023. Automatically Defin-
ing Game Action Spaces for Exploration Using Program
Analysis. Proceedings of the AAAI Conference on Artificial

Intelligence and Interactive Digital Entertainment, 19(1):
145-154.

Wang, X. 1996. Learning planning operators by observation
and practice. Ph.D. thesis, Citeseer.

Wurman, P. R.; Barrett, S.; Kawamoto, K.; MacGlashan, J.;
Subramanian, K.; Walsh, T. J.; Capobianco, R.; Devlic, A.;
Eckert, F.; Fuchs, F.; Gilpin, L.; Khandelwal, P.; Kompella,
V.; Lin, H.; MacAlpine, P.; Oller, D.; Seno, T.; Sherstan, C.;
Thomure, M. D.; Aghabozorgi, H.; Barrett, L.; Douglas, R.;
Whitehead, D.; Diirr, P.; Stone, P.; Spranger, M.; and Kitano,
H. 2022. Outracing champion Gran Turismo drivers with
deep reinforcement learning. Nat., 602(7896): 223-228.
Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning action mod-
els from plan examples using weighted MAX-SAT. Artificial
Intelligence, 171(2-3): 107-143.

Zhuo, H. H.; Yang, Q.; Hu, D. H.; and Li, L. 2010. Learning
complex action models with quantifiers and logical implica-
tions. Artificial Intelligence, 174(18): 1540-1569.

