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Abstract 
This industrial case study describes the customization of an 
existing general scheduling framework that generates solu-
tions for the specialized and highly constrained problem of 
prototype vehicle test scheduling.  In addition to creating op-
timized solutions, the deployed scheduling system both sup-
ports novice planners and integrates with existing processes. 
Going beyond the prior work, this case study focuses on the 
challenges encountered, updated implementation, and les-
sons learned from six years of operational use. 

Introduction 
Vehicle testing is an essential part of building new cars and 
trucks. Whether an auto manufacturer refreshes an existing 
model or builds a new one, the model will undergo hundreds 
if not thousands of tests. Some tests are exciting, such as a 
56 km/h frontal flat barrier crash test measuring the impact 
on the crash-test dummies. Other tests are not quite as sen-
sational but still important, like testing the heating and air 
conditioning system.  
 What these tests have in common is that they are gener-
ally carried out on hand-built prototype vehicles because the 
new factory lines for the models do not exist yet. These ve-
hicles can each cost as much as a Bentley or Lamborghini, 
which results in pressure to reduce the number of vehicles. 
There are two additional complications with the test vehi-
cles. First, the hand-built vehicles take time to build and are 
not all available at once, but instead become available 
throughout the testing process based on the build pitch of 
the test vehicles. An example of this is one new test vehicle 
being made available each weekday. Second, there are many 
particular types of a model, and each test might require a 
particular type or any of a set of types (e.g., any all-wheel-
drive vehicle). There may be dozens of types of a particular 
vehicle model to choose from, varying by frame, market, 
drivetrain, and trim. 
 At the same time, market forces dictate when new or re-
freshed models must be released. The result is additional 

pressure to complete testing by certain dates so model pro-
duction can begin.  
 Finally, testing personnel and facilities are limited re-
sources. For example, it would be desirable to schedule all 
the crash tests at the very end of the project so other tests 
could be carried out on those vehicles first. However, there 
aren’t enough crash labs or personnel to support this so the 
crashes must be staggered throughout the project. 
 This case study builds on prior work  (Ludwig et al., 
2016) that describes how an existing intelligent scheduling 
software framework was modified to include domain-spe-
cific algorithms and heuristics used in the vehicle test plan-
ning process.  
 The framework combines graph analysis techniques with 
heuristic scheduling techniques to quickly produce an effec-
tive schedule based on a defined set of activities, prece-
dence, and resource requirements. These heuristics are 
tuned on a domain-specific basis to ensure a high-quality 
schedule for a given domain. An outer optimization loop 
embeds this tuned scheduling system. The heuristic-guided 
optimization incrementally attempts to remove vehicles, 
scheduling in between, to determine whether a lower vehicle 
count is feasible. 
 The resulting domain-specific scheduler is named Hot-
shot. The end product of this work is a deployed system that 
automatically generates a valid schedule from a set of con-
straints provided by the planner. The generated test schedule 
will complete the work in a given project time window and 
enforce all of the scheduling constraints if possible.  
 The schedule optimization process includes determining 
which vehicle types are built and the order in which they are 
built while minimizing the total number of vehicles required 
for the entire test schedule. Results using the deployed sys-
tem were presented as part of Ludwig et al. (2016), where 
Hotshot was applied to a large-scale testing effort for a ve-
hicle model update. This effort was not considered manage-
able using the existing manual scheduling process, so there 



is no direct comparison to the pre-existing scheduling pro-
cess.  
 As this system has been in continuous use since the initial 
publication, this case study focuses on the challenges en-
countered, updated implementation, and lessons learned 
from six years of operational use. Related work is presented 
first, followed by operational challenges, updated imple-
mentation, and a concluding section. 

Related Work 
The current version of the software extends prior work  on 
the Hotshot system (Ludwig et al., 2014, 2016), which 
demonstrated the ability to generate a valid testing schedule 
with a significant reduction in the number of vehicles re-
quired relative to the existing planning process.  
 Schwindt & Zimmerman (Schwindt & Zimmermann, 
2015) provide a thorough review of related work aimed at 
creating test schedules that respect testing constraints and 
minimize the number of prototype vehicles required.  
 The work presented in this paper is most similar to that of 
Limtanyakul and Schwiegelshohn (Limtanyakul & 
Schwiegelshohn, 2007, 2012). They use constraint program-
ming to solve nearly the same problem of creating a test 
schedule for prototype vehicles. Both papers work towards 
a valid test schedule that meets the same scheduling con-
straints described previously (temporal, resource, ordering, 
build pitch, etc.), minimizes how many vehicles are built, 
determines the vehicle types to build, and determines the or-
der in which the prototypes should be built according to a 
build pitch.  
 Bartels and Zimmerman (Bartels & Zimmermann, 2009) 
also worked on the problem of scheduling tests on prototype 
vehicles meeting temporal, resource, and ordering con-
straints while minimizing the number of vehicles required. 
Initially they use a mixed integer linear program model for 
smaller schedules, moving to a heuristic scheduling method 
to find solutions for larger schedules. They found that dy-
namic, multi-pass heuristics produced the best results. These 
are the same type of prioritization heuristics used in Aurora. 
 Zakarian (Zakarian, 2010) took a different approach in 
their prototype scheduling work for General Motors. They 
focused on developing a scheduling and decision support 
tool that considers the uncertainty in the test process, such 
as duration of tests, possibility of failure, and prototype 
availability. The tool helps users trade off between compet-
ing goals such as completing the tests according to schedule, 
quality of testing, and number of prototype vehicles re-
quired. Similar to their work, Aurora will highlight con-
flicted tests that cannot be scheduled because of insufficient 
resource availability in the given time frame. 

 Work done for Ford (Shi et al., 2017) on prototype vehicle 
test scheduling is also highly related, not only in the sched-
uling constraints but also in how engineers from each test 
department define the tests required in Excel spreadsheets. 
Their work reports good results from their pilot program us-
ing a Fit-and-Swap heuristic algorithm combined with an 
integer programming model for grouping crash tests on the 
same vehicle.  
 Glos et. al., (Glos et al., 2022) solve a similar problem as 
part of the BMW Quantum Computing Challenge "Optimiz-
ing the Production of Test Vehicles", though their particular 
problem focuses on configuration of test vehicles. Their ap-
proach is to formulate the schedule model as a satisfiability 
problem and then use hybrid constrained quantum annealing 
to minimize the number of vehicles required for testing. 
Their approach found results similar to classical solvers but 
required more time than classical solvers. 
 One primary difference from previous research is that our 
work focuses on domain specific customization of a general-
purpose scheduling framework already in use in other appli-
cations. A scheduling framework takes advantage of the 
large degree of commonality among the scheduling pro-
cesses required by different domains, while still accommo-
dating their significant difference. This is accomplished by 
breaking parts of the scheduling process into discrete com-
ponents that can easily be replaced and interchanged for new 
domains.  
 Framinan and Ruiz (Framinan & Ruiz, 2010) present a 
design for a general scheduling framework for manufactur-
ing. Aurora, used in our work, is one example of an imple-
mented scheduling framework (Kalton, 2006). Aurora dis-
tills the various operations involved in most scheduling 
problems into reconfigurable modules that can be ex-
changed, substituted, adapted, and extended to accommo-
date new domains (Ludwig et al., 2017). The OZONE 
Scheduling Framework (Smith et al., 1996) is another ex-
ample of a system that provides the basis of a scheduling 
solution through a hierarchical model of components to be 
extended and evolved by end-developers. Becker (Becker, 
1998) describes the validation of the OZONE concept 
through its application to a diverse set of real-world prob-
lems, such as transportation logistics and resource-con-
strained project scheduling.  
 Another difference from existing research is that the 
scope of the work presented in this paper extends beyond 
the prior work in several ways. The work presented in this 
paper is part of a deployed system that includes visualiza-
tion, analysis, and integration with existing processes; is 
currently in use by novice planners; includes methods to 
identify and automatically resolve common types of model-
ing errors created by novice planners; and includes methods 
to transition the testing schedule from planning stage to ex-
ecution phase.  



Operational Challenges 

Challenge 1: Manually Entered Request Data 
The test information and corresponding vehicle require-
ments are entered manually into individual Excel spread-
sheets by many department project managers and then com-
bined on import. This data entry process results in several 
pitfalls, including poorly formatted data, missing data, and 
data that is logically incompatible with other information in 
the request. 

For example, a master spreadsheet indicates which vehi-
cle types are available for the current test cycle. Individual 
departments independently enter information about the tests 
they need to perform, and which vehicle types would work 
for those tests. The department information can be correctly 
formatted and accurate, but if there is no overlap between 
their required vehicles and the available vehicles, they have 
effectively defined a test that cannot be satisfied. 

Checks for these types of data issues have been added in-
crementally. In each case the verification process now in-
cludes a default data repair and notification for the user. The 
goal with this challenge is to allow the user to proceed with-
out manually repairing the data, while still warning them 
that some of the results may be problematic. 

Challenge 2: Model Consistency Complications 
There are a range of model issues that are not data entry is-
sues, but instead reflect a collision between the defined 
model constraints and reality. This category of issue cannot 
readily be identified as part of the import process. They only 
become apparent when the model is scheduled or analyzed. 
A few examples include: 

The number of vehicles required to support testing cannot 
be built with the specified build pitch, within the bounds de-
fined for the project. In this case, the user needs to extend 
the project bounds, increase the build rate, or eliminate test 
duration. 

A series of inter-constrained tests will not fit within the 
bounds defined by the earliest possible availability of a ve-
hicle type option and the project end. In this case, the test 
series would be treated as an exception to the project end 
(effectively violating the target end), but the user would be 
informed of the override. 

A series of tests are supposed to be performed on the same 
vehicle, but the actual referenced vehicle types are incom-
patible. 

Test 1 requires vehicle type A or B. 
Test 2 requires vehicle type B or C. 
Test 3 requires vehicle type C. 
This set of requirements may pass a preliminary check, 

but on further analysis, the intersection of (A | B), (B | C), 
and C is empty. 

As with challenge 1, the goal is to ensure that the user can 
get preliminary results as quickly as possible, while still be-
ing notified of the model issues. When possible, the model 
is repaired with a default strategy and the user is notified of 
the change. Otherwise, the user must address the model is-
sue in the excel spreadsheets before continuing. 

Challenge 3: Shifting User Goals 
In the original Hotshot implementation, the dominant use 
case was for the user to define the desired vehicle types, and 
the maximum number of vehicles of each type. Within those 
constraints, Hotshot would then attempt to find a solution 
involving as few individual vehicles as possible. However, 
more recently the focus has shifted to determining whether 
a defined test set can be accomplished with a given overall 
number of vehicles.  

On the surface, this seems like a very similar problem, but 
it has some fundamental differences. The two most signifi-
cant differences are that vehicle types can be added (an op-
eration that was not supported in the original implementa-
tion), and the optimization target is different (meeting a total 
number of types, while taking secondary criteria into ac-
count). 

This shift in focus also reflects a wish to be able to check 
whether the target vehicle count is attainable quickly, easily, 
and with rough data. This reflects both the common data is-
sues noted in the first two challenges, as well as the human 
tendency to over-ask. That is, the first set of requests is usu-
ally too demanding and so the user needs a fast analysis to 
determine whether to follow up with the department project 
managers to reduce and fine-tune their demands. 

Updated Implementation 
The original implementation, which was based on heuristic 
iterative optimization using repeated scheduling cycles to 
reduce vehicles, was computationally intensive, and could 
take many minutes for a large model. Conflicts caused by 
data issues discussed in challenges 1 and 2 also prevented 
some aspects of the optimization from working properly, 
since normally it uses the presence or absence of conflicts to 
determine whether the vehicle reduction is feasible. As such, 
it is not well suited to quickly answering the new question 
of whether the test requests are feasible with the target vehi-
cle count, with data that may be preliminary or problematic. 

The original implementation’s strength is that it was 
based on a more general scheduling system, and so it could 
handle novel situations in the data, in many cases without 
any code modification or tailoring. However, it could not 
truly take advantage of the dominant structure of the do-
main. Also, it could not take shortcuts to produce the sort of 
analysis that would allow the user to produce a rough but 
reasonable schedule with dirty data. 



To answer this new need, without losing the generality 
presented by the original implementation, we implemented 
a pre-optimization analyzer. Its goal is to take advantage of 
the problem’s structure to quickly give a preview of likely 
vehicle utilization. Although it will miss edge cases that the 
full optimizer can cover, it can provide the user with a vehi-
cle utilization preview in seconds instead of in many 
minutes. Achieving this goal is a four-step process. 

Combine Related Tasks 
A number of the tests are series of tests that are supposed to 
be performed sequentially on the same vehicle. Combining 
many tests into a single meta-test chunk makes reasoning 
significantly easier. An example of this is shown in Figure 
1, where ten tests are combined into a single test for  
Vehicle 2. 

Construct a Graph of Task Chunks and Vehicle 
Types 
This graph-based model allows each task chunk to know 
what vehicle type(s) it could use, and each vehicle type to 
know which task(s) want to use it. The graph-based structure 
makes it easy to move tests from one vehicle type to another. 
The process of producing this graph also provides useful sta-
tistics about overall type-based utilization that can help 
guide the assignment process. An example of this is shown 
in Figure 2. 

Iteratively Assign and Refine Vehicle Instances 
The algorithm then iteratively adds test tasks to vehicle in-
stances, starting with the longest and/or most restrictive test 
tasks. Tasks may be added to vehicle instances that are al-
ready in use, or they may require a vehicle to be added to 

the build list. As tasks are added, the algorithm checks for 
issues and bottlenecks, and may potentially reallocate an 
earlier task, change the vehicle build order (moving test time 
from one vehicle to another), or make other common, minor 
model fixes. 

The graph structure makes these changes computationally 
inexpensive and allows the model to remain fluid. This 
makes it easier to perform localized optimization at different 
points in the process and makes it easier to pursue secondary 
goals (e.g., keep a vehicle for a specific department, rather 
than switching among three departments). 

Preview and Reporting 
When the analysis is complete, the schedule model is up-
dated to show the version of the schedule that the analyzer 
produced. This is then used to prime the regular scheduling 
process, which allows the regular scheduling algorithm to 
give the same outcome if there are no significant edge cases 
missed by the analyzer. It also provides the user with de-
tailed utilization information. 

This reporting makes it easier for the user to determine 
whether there is significant flexibility in the schedule. For 
example, if they were hoping to use 75 vehicles, and the 
analysis produced a preview scheduling using 76 vehicles, 
all of which are at 80% load, it is unlikely that 75 vehicles 
is actually feasible without adjusting the test parameters. 

However, they might then look at the vehicle statistics, 
and see that one department has requested 400 days of test 
time. If that is double what they used in the last test cycle, 
then the user can go back and double-check the data with the 
department. The objective throughout is to allow the user to 
check the feasibility of their goal quickly, easily, and ro-
bustly. 

 
Figure 1. Combining individual tasks into chunks. Colors note departments. 

 
 
 



Conclusion 
The primary lesson learned over the last few years is that the 
project team greatly underestimated the difficulties that de-
partments would have in using the Excel input format. Even 
with a plethora of data checks embedded in the Excel file, 
and even more checks during the import process, it is simply 
too easy to create the ill-defined scheduling models de-
scribed in Challenges 1 and 2. This is especially true in a 
task like this that is not done very often so no expertise is 
developed. The result was a burden on the scheduler, who 
needs to work with each department to update their portion 
of the schedule. The updated solution that highlights the is-
sues, repairs as best as possible, and lets the scheduler get 
on with their job of creating a rough estimate is a significant 
usability improvement. 
 Challenge 3, shifting user goals, is not a lesson learned so 
much as another example of an old adage – the only constant 
is change. In this case, the modular architecture of the Au-
rora scheduling framework allowed us to pivot and respond 
to the client’s needs while limiting the scope of the required 
changes. 
 In the short term, the initial scheduling and optimization 
process is still used to ensure all edge cases are covered. Our 
ongoing work focuses on adding the more common of those 
edge cases to the analysis step, making follow-on schedul-
ing less and less necessary. 
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