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Abstract

Parallelization of Greedy Best First Search (GBFS) has been
difficult because straightforward parallelization can result in
search behavior which differs significantly from sequential
GBFS, exploring states which would not be explored by se-
quential GBFS with any tie-breaking strategy. Recent work
has proposed a class of parallel GBFS algorithms which con-
strains search to exploration of the Bench Transition System
(BTS), which is the set of states that can be expanded by
GBFS under some tie-breaking policy. However, enforcing
this constraint is costly, as such BTS-constrained algorithms
are forced to spend much of the time waiting so that only
states which are guaranteed to be in the BTS are expanded.
We propose an improvement to parallel search which decou-
ples state generation and state evaluation and significantly im-
proves state evaluation rate, resulting in better search perfor-
mance.

1 Introduction
Parallelization of combinatorial search algorithms is impor-
tant in order to maximize search algorithm performance
on modern, multi-core CPUs. In the case of cost-optimal
search, parallelization of the standard A* algorithm (Hart,
Nilsson, and Raphael 1968) is somewhat well understood,
and viable, practical approaches have been proposed. The
optimality requirement imposes a relatively strong con-
straint on the set of states which must be expanded by any
parallel A* (all nodes with f -values less than the optimal
path cost C∗ must be expanded), so previous work has fo-
cused on approaches for expanding those required states
while minimizing synchronization and communication over-
heads and avoiding expansion of non-required states (Burns
et al. 2010; Kishimoto, Fukunaga, and Botea 2013; Phillips,
Likhachev, and Koenig 2014; Fukunaga et al. 2017).

For satisficing search where the object is to quickly find
any valid solution path (regardless of path cost), paral-
lelization is not well understood. Greedy Best First Search
(GBFS; Doran and Michie (1966)) is a widely used satisfic-
ing search algorithm. However, the performance of straight-
forward parallelizations of GBFS is non-monotonic with re-
spect to resource usage – there is a significant risk that us-
ing k threads can result in significantly worse performance

than using fewer than k threads. It has been shown experi-
mentally that parallel GBFS can expand orders of magnitude
more states than GBFS (Kuroiwa and Fukunaga 2019), and
it has been shown theoretically that KPGBFS, a straightfor-
ward parallelization of GBFS, can expand arbitrarily many
more states than GBFS (Kuroiwa and Fukunaga 2020).

Unlike parallel cost-optimal search, there is no obvious
set of states which a parallel satisficing search must explore
in order to be considered a “correct” parallelization of the se-
quential algorithm. Recent theoretical analysis of GBFS has
yielded a promising direction for determining which states
should be expanded. Heusner, Keller, and Helmert (2017)
identified the Bench Transition System (BTS ), the set of
all states that can be expanded by GBFS under some tie-
breaking policy (conversely, if a state is not in the BTS, there
does not exist any tie-breaking strategy for GBFS which will
expand that state). Limiting search to states in the BTS pro-
vides a natural constraint for parallel GBFS.

Recent work has proposed parallel GBFS algorithms
which expand states from Open only if some constraint is
satisfied. Kuroiwa and Fukunaga (2020) proposed PUHF, a
parallel GBFS which guarantees that only states which are in
the BTS will be expanded. However, this guarantee comes
at a cost in performance. Since PUHF prevents expansion
of any state unless it is certain that the state is in the BTS ,
threads can be forced to be idle while they wait until a state
which is guaranteed to be in the BTS become available, re-
sulting in significantly worse performance than KPGBFS.
Improved versions of PUHF with looser constraints (which
still guarantee that only states in the BTS are expanded) have
been proposed (Shimoda and Fukunaga 2023), but these still
have a significantly lower state evaluation rate than parallel
GBFS without expansion constraints.

In this paper, we propose Separate Generation and Eval-
uation (SGE), which decouples state expansion and evalu-
ation so that instead of waiting for a single thread to fully
expand a state (generating and evaluating its successors),
multiple threads can be used to evaluate the successors. We
show that this significantly improves the state evaluation rate
in parallel GBFS with expansion constraints.

The rest of the paper is structured as follows. Section 2
reviews background and previous work. Section 3 presents



Constrained Parallel GBFS (CPGBFS), which unifies KPG-
BFS and all previous versions of PUHF as instances of a
class of search algorithms with various state expansion con-
straints. Section 4 discusses the state expansion bottlenecks
in CPGBFS. Section 5 proposes SGE. Section 6 experimen-
tally evaluates SGE and compares them to PUHF and KPG-
BFS. Section 7 concludes with a discussion and directions
for future work.

2 Preliminaries and Background
State Space Topology State space topologies are defined
following Heusner, Keller, and Helmert (2018).
Definition 1. A state space is a 4-tuple S =
⟨S, succ, sinit, Sgoal⟩, where S is a finite set of states, succ :
S → 2S is the successor function, sinit ∈ S is the initial
state, and Sgoal ⊆ S is the set of goal states. If s′ ∈ succ(s),
we say that s′ is a successor of s and that s → s′ is a (state)
transition. ∀s ∈ Sgoal, succ(s) = ∅. A heuristic for S is a
function h : S → N0 and ∀s ∈ Sgoal, h(s) = 0. A state
space topology is a pair ⟨S, h⟩, where S is a state space.

We call a sequence of states ⟨s0, ..., sn⟩ a path from s0
to sn, and denote the set of paths from s to s′ as P (s, s′).
pi is the i th state in a path p and |p| is the length of p. A
solution of a state space topology is a path p from sinit to
a goal state. We assume at least one goal state is reachable
from sinit, and ∀s ∈ S, s /∈ succ(s).

Best-First Search Best-First Search (BFS) is a class of
search algorithms that use an evaluation function f : S →
R and a tie-breaking strategy τ . BFS searches states in the
order of evaluation function values (f -values). States with
the same f -value are prioritized by τ . In Greedy Best-First
Search (GBFS; Doran and Michie (1966)), f(s) = h(s).

K-Parallel GBFS (KPGBFS) K-Parallel BFS (Vidal,
Bordeaux, and Hamadi 2010) is a straightforward, baseline
parallelization of BFS. All threads share a single Open and
Closed . Each thread locks Open to remove a state s with the
lowest f -value in Open , locks Closed to check duplicates
and add succ(s) to Closed , and locks Open to add succ(s)
to Open. KPGBFS is KPBFS with f(s) = h(s).

The set of states explored by KPGBFS may be very differ-
ent from those explored by GBFS. Kuroiwa and Fukunaga
(2020) showed that straightforward parallelizations of GBFS
with shared Open and/or Closed , including KPGBFS, can
expand arbitrarily more states than GBFS.

Bench Transition Systems Heusner et al. (2017) defined
bench transition system (BTS ) in order to characterize the
behavior of GBFS, building upon the definition of high-
water marks by Wilt and Ruml (2014). The BTS is defined
as the set of all states which can be expanded by GBFS with
some tie-breaking policy, i.e., a state s is in the BTS if there
exists some tie-breaking policy under which s is expanded.
Conversely, states not in the BTS will not be expanded by
GBFS under any tie-breaking policy.

BTS-Constrained Search Restricting the search to only
expand states which are in the BTS is a natural constraint
for parallel GBFS.

Definition 2. A search algorithm is BTS -constrained if it
expands only states which are in the BTS (Shimoda and
Fukunaga 2023).

PUHF: A BTS-Constrained Parallel GBFS Kuroiwa
and Fukunaga (2020) proposed Parallel Under High-water
mark First (PUHF), a BTS -constrained parallel GBFS.
PUHF marks states which are guaranteed to be in the BTS
as certain, and only expands states marked as certain. The
criterion used by PUHF to mark states as certain was a re-
strictive, sufficient (but not necessary) condition for being
in the BTS. Recently, looser sufficient conditions for mark-
ing states as certain were proposed, resulting in PUHF2–4,
which significantly improved performance over PUHF (Shi-
moda and Fukunaga 2023).

3 Constrained Parallel GBFS
As described above, the original proposing PUHF and
PUHF2–4 presented these algorithms as marking states
guaranteed to be in the BTS as certain, and only expanding
nodes marked as certain. The stage in the algorithm where
states were marked as certain were specific to the specific
algorithm (PUHF, PUHF2–4). However, the the similarities
and differences among KPGBFS, PUHF, and PUHF2–4 can
be clarified by reframing this behavior in terms of satisfying
an algorithm-specific expansion constraint.

We present a unified framework, Constrained Parallel
GBFS (CPGBFS) (Algorithm 1), which subsumes KPG-
BFS, PUHF, and PUHF2–4. CPGBFS is a schema for a class
of parallel search algorithms based on KPGBFS, which only
expands nodes which satisfy some algorithm-specific con-
straint in line 7, where satisfies(s) is a function which re-
turns true if and only if s satisfies the algorithm-specific
expansion constraint.

KPGBFS is a special case of CPGBFS where satisfies(s)
always returns true. The previously proposed BTS-
constrained search algorithms (PUHF and PUHF2–4) are in-
stances of CPGBFS where the satisfies(s) function imple-
ments a check for the sufficient constraint which guarantees
that s is in the BTS – the specific implementation details of
satisfies depend on whether the algorithm is PUHF, PUHF2,
PUHF3, or PUHF4. In addition, algorithm-specific auxiliary
computations related to satisfies are omitted for clarity.

4 State Expansion Bottlenecks in
Constrained Parallel Search

Previous work has shown that CPGBFS (all of the PUHF
variants) have a significantly lower state evaluation rate than
unconstrained parallel search (KPGBFS). There are two, re-
lated reasons for the low state evaluation rate in CPGBFS:
(1) the expansion constraint, and (2) eager evaluation policy.

Expansion Constraint Bottleneck Unconstrained paral-
lel search algorithms such as KPGBFS will unconditionally
expand the top states in Open . Threads in unconstrained par-
allel search algorithms are only idle when waiting for a mu-
tex lock for the shared Open and Closed structures. If the
shared Open/Closed data structures are implemented effi-
ciently (e.g., using sharding to internally partition the data



Algorithm 1: CPGBFS: Constrained Parallel GBFS Tem-
plate

1: Open ← {sinit},Closed ← {sinit}; ∀i, si ← NULL

2: for i← 0, ..., k − 1 in parallel do
3: loop
4: lock(Open)
5: if Open = ∅ then
6: if ∀j, sj = NULL then unlock(Open); return NULL

7: else if satisfies(top(Open)) = true then
8: si ← top(Open); Open ← Open \ {si}
9: unlock(Open)

10: if si = NULL then continue

11: if si ∈ Sgoal then return Path(si)

12: for s′i ∈ succ(si) do
13: lock(Closed)
14: if s′i /∈ Closed then
15: Closed ← Closed ∪ {s′i}
16: unlock(Closed)
17: children(si)← children(si) ∪ {s′i}
18: evaluate(s′)
19: else
20: unlock(Closed)

21: lock(Open)
22: for s′i ∈ children(si) do
23: Open ← Open ∪ {s′i}

24: unlock(Open)
25: si ← NULL

Figure 1: Example for SGE

structures), then waiting mutual exclusion overhead can be
greatly reduced.

In contrast, constrained parallel GBFS algorithms such
as PUHF force threads to be idle in order to guarantee
that only states which satisfy the search constraints are ex-
panded – even if there is a state in Open and the mu-
tex lock is available, CPGBFS can not expand the top
state top(Open) unless the expansion constraint is satisfied
(satisfies(top(Open)) = true).

One approach to decreasing idle time is to improve the ex-
pansion constraint to be closer to a necessary constraint, as
the previously proposed expansion constraints are all suf-
ficient (overly restrictive) constraints for a state to be in
the BTS. Previous work used this approach to improving
the expansion constraint for PUHF, resulting in significantly
improved evaluation rate (Shimoda and Fukunaga 2023).
While this approach can be effective, finding safe improve-
ments to the expansion constraint can be nontrivial.

Furthermore, even an ideal constraint (e.g., a neces-
sary and sufficient expansion constraint for the BTS),

would not eliminate idle threads. For example, in Fig-
ure 1 the only states in the BTS are the circular nodes
(s0,s1,1, s2,1, s3,1, sgoal), so any BTS-constrained algorithm
can only expand one of these states at a time, while all other
threads must wait.

Batch Successor Insertion Bottleneck A second, closely
related bottleneck is caused by the requirement that CPG-
BFS needs to insert successor states into Open in a single
batch. Consider Figure 1. In a standard, single-thread im-
plementation of best-first search with eager evaluation, the
expansion of s1,1 includes (1) generating succ(s1,1) and (2)
evaluating all states in succ(s1,1) = s2,1, s

1
2,2, . . . , s

x
2,2 with

a heuristic evaluation function, and (3) inserting succ(s1,1)
in Open . In many cases, computing the heuristic evaluation
function consumes the majority of time spent expanding the
state, and the full expansion of a single state such as s1,1 can
take a significant amount of time due to the evaluation of all
of its successors.

A constrained parallel search which seeks to expands a
similar set of nodes as GBFS has an additional requirement
not present in single-threaded search: the successors of a
state s are all simultaneously inserted in Open only after all
successors of state s are evaluated (Algorithm 1, lines 21–
24). This ensures that the successors of s are expanded in
best-first order – without this batch insertion (e.g., if states
were inserted one at a time directly into Open immediately
after being evaluated), a state s′ with a worse f -value than
its sibling s′′ might be inserted into Open and expanded by
another thread before s′′ has been evaluated into Open .

In the case of unconstrained parallel search such as KPG-
BFS, the overall evaluation rate is not significantly affected
by whether the successors are inserted in a single batch or
one at a time, because available threads can freely expand
the top states from Open .

However, in CPGBFS, the combination/interaction of the
expansion constraint and the batch successor insertion re-
quirement causes a significant bottleneck. For example, in
Figure 1, in Algorithm 1, if a thread starts to expand s1,1, all
other threads must stop and wait until all of succ(s1,1) have
been fully evaluated and inserted into Open .

5 Separate Generation and Evaluation
(SGE)

In this section, we propose SGE, an approach for increasing
the state evaluation rate in constrained best-first search al-
gorithms such as PUHF. SGE alleviates the batch successor
insertion bottleneck described above.

Continuing the example from the previous section, in the
case of Figure 1, instead of waiting idly while one thread
expands s1,1 (which includes computing all of the heuris-
tic values for s2,1, s12,2, .., s

x
2,2), it would be more efficient to

parallelize the evaluation of s2,1, s12,2, .., s
x
2,2 among avail-

able threads.
We propose Separate Generation and Evaluation (SGE),

which parallelizes state evaluations in addition to expan-
sions. The main idea is to decompose the expansion of state
s into separate units of work which can be parallelized:



Algorithm 2: Constrained Parallel GBFS with SGE Tem-
plate

1: Open ← {sinit},Closed ← {sinit}; ∀i, si ← NULL

2: for i← 0, ..., k − 1 in parallel do
3: loop
4: lock(Unevaluated)
5: if Unevaluated ̸= ∅ then
6: si ← top(Unevaluated)

7: Unevaluated ← Unevaluated \ {si}
8: unlock(Unevaluated)
9: evaluate(si) ▷ using a hashtable to prevent reevaluation of states

10: if all siblings of si has been evaluated then
11: lock(Open), lock(Closed)
12: for s′i ∈ siblings of si do
13: if s′i /∈ Closed then
14: Closed ← Closed ∪ {s′i}
15: Open ← Open ∪ {s′i}

16: unlock(Open), unlock(Closed)

17: else
18: unlock(Unevaluated), lock(Open)
19: if Open = ∅ then
20: unlock(Open)
21: if ∀j, sj = NULL then
22: return NULL

23: else if satisfies(top(Open)) = true then
24: si ← top(Open); Open ← Open \ {si}
25: unlock(Open)

26: if si = NULL then continue

27: if si ∈ Sgoal then
28: return Path(si)

29: lock(Unevaluated)
30: Unevaluated ← Unevaluated ∪ succ(s′i)

31: unlock(Unevaluated)

32: si ← NULL

(1) successor generation, which generates succ(s), the suc-
cessors of s, and (2) successor evaluation, which evaluates
succ(s).

Algorithm 2 shows Constrained Parallel GBFS with SGE.
After a thread selects a state for expansion from the shared
Open , it generates succ(s), and inserts succ(s) into the
shared Unevaluated queue. The evaluation of states in
Unevaluated is done in parallel, taking precedence over se-
lection of states for expansion (a thread will select a state
for expansion from Open only if Unevaluated is currently
empty (Algorithm 2, line 5)).

Evaluated states are not immediately inserted into Open .
Instead, we insert all of the successors of s simultaneously
into Open , after they have all been evaluated (lines 10-16).
This is so that the parallel search is able to prioritize succ(s)
similarly to GBFS (otherwise, succ(s) can be expanded in
a completely different order than by GBFS, which we are
trying to prevent).

Consider the search behavior of BTS-constrained parallel
search such as PUHF with SGE on the search space in Fig-
ure 1. First, a thread pops s0 from Open (satisfied(s0) =
true), and generates its successors (s1,1, s11,2, .., s

x
1,2), which

are inserted in Unevaluated . Available threads will pop
these successors from Unevaluated and evaluate them.

When all successors of s0 have been evaluated, they
are all inserted in Open . Next, some thread removes
s1,1 (satisfied(s1,1) = true), generates its successors
(s2,1, s12,2, .., s

x
2,2), and inserts them in Unevaluated . While

generating the successors of s1,1, other threads may try to
pop a state from Open , but since the top state at that time
(si1,2) is not in the BTS (satisfied(si1,2) = false), Open
will remain untouched. After the successors of s1,1 have
been inserted in Unevaluated , the available threads will
remove them from Unevaluated and evaluate them. The
search continues similarly until sgoal is found. Each time a
state’s successors are generated, multiple available threads
evaluate the successors in parallel. This clearly improves
thread utilization compared to BTS-constrained search with-
out SGE, which only uses one thread to expand (generate
and evaluate successors of) each state so that only 1 thread
is active throughout the search space in Figure 1.

The basic idea of decoupling state generation and state
evaluation is similar to that of ePA*SE, which decouples
state generation and edge evaluations in a parallel A*
(Mukherjee, Aine, and Likhachev 2022), where an edge
evaluation is the computation required to evaluate the appli-
cation of an operator, e.g., collision checking using a simu-
lation model in robot motion planning). In both cases, using
only a single thread to fully process a state expansion causes
a bottleneck forcing other threads to be idle, as search algo-
rithm constraints for constrained parallel GBFS and A* re-
quires waiting until that expansion is fully processed, so de-
composing the expansion process and parallelizing it among
the available threads leads to better processor utilization. Be-
cause the requirements and objectives of GBFS (satisficing
search) and A* (cost-optimal search) differ, the implemen-
tation of SGE is somewhat simpler (using an Unevaluated
queue instead of dummy/real edges as in ePA*SE).

SGE and Thread Utilization Consider a situation where
all threads are currently simultaneously available. In uncon-
strained parallel BFS with k threads, the top k nodes in
Open can be simultaneously expanded, so all k threads will
be utilized. On the other hand, in CPGBFS without SGE, if
there are currently a states which satisfy the expansion con-
straint, then the number of states which can be simultane-
ously expanded is min(a, k), and k−min(a, k) threads will
be idle until more states in Open satisfy the expansion con-
straint. With SGE, although there will be a brief time when
only min(a, k) threads are active (the generation phase), the
number of active threads while the successors of the a states
are being evaluated will be min(ab, k), where b is the aver-
age number of previously unevaluated successors per state.

SGE and search behavior The state expansion order of
a parallel search algorithm A with SGE will differ from the
expansion order of A without SGE. Although it is nontrivial
to precisely characterize the difference between the expan-
sion order of an algorithm with and without SGE, a simple
approximation is that executing a parallel search algorithm
A with SGE on k threads is somewhat similar to executing
A without SGE on m < k threads, where each of the m
“threads” is faster than each of the actual k threads.

As a simple example, consider searching a state space



which is a tree with uniform branch factor 2, where the
heuristic evaluation function computation is the computa-
tional bottleneck, and assume that Open currently contains
many nodes. With k = 16 threads, KPGBFS will expand 16
states at a time – each thread expands 1 state, where the ex-
pansion includes generation and heuristic evaluation of the
state’s 2 successors. In contrast, KPGBFS with SGE would
be evaluating 16 states at a time – each thread, after quickly
generating the successors of a state, would then be assigned
to evaluate 1 successor state, essentially the same as KPG-
BFS without SGE expanding 8 states, i.e., similar to KPG-
BFS without SGE running on 8 threads.

SGE and expansion constraints The state expansion
constraints (i.e., the satisfies check) for the various CPG-
BFS algorithms known to date are defined based on: (a)
comparisons between the h-value of a state’s parent and the
h-values of the siblings of s (for PUHF), or (b) h(s) vs.
the h-values of other states currently being expanded (for
PUHF2, PUHF3, PUHF4). Therefore, distributing the eval-
uation of the successors of s among multiple threads has no
impact on the correctness of the expansion constraint (i.e.,
the guarantee that the node being expanded is in the BTS).

Overall effect on search performance SGE can be ap-
plied to any parallel best-first search algorithm such as
PUHF and KPGBFS. The impact on performance will de-
pend on the extent to which state expansion/evaluation is
a performance bottleneck. In the case of a constrained al-
gorithm such as PUHF, SGE should allow higher utiliza-
tion of threads that would otherwise be idle (waiting for a
state which satisfies expansion constraints), resulting in sig-
nificantly higher state evaluation rates, which should in turn
result in better overall search performance (more problems
solved within a given time limit).

On the other hand, in the case of an unconstrained algo-
rithm such as KPGBFS, the evaluation rate should be min-
imally affected, but search performance may be slightly af-
fected because of the different state expansion order due to
SGE.

6 Experimental Evaluation of SGE
In this section, we experimentally evaluate SGE. We empha-
size that the goal of this experimental study is to evaluate and
understand SGE as an implementation technique which can
be applied to a wide range of parallel best-first search algo-
rithms. Thus, we focus on comparing PUHF2 vs. PUHF2S

to evaluate the effect of SGE on constrained parallel best-
first search, and we compare KPGBFS vs. KPGBFSS to
evaluate the effect of SGE on unconstrained parallel best-
first search. Comparing constrained parallel search vs. un-
constrained parallel search (e.g., PUHF2S vs. KPGBFS) is
beyond the scope of this study.

To evaluate SGE, we use the satisficing instances of the
Autoscale-21.11 benchmark set (42 STRIPS domains, 30 in-
stances/domain, 1260 total instances) (Torralba, Seipp, and
Sievers 2021), an improved benchmark suite based on the
IPC classical planning benchmarks. All search algorithms
use the FF heuristic (Hoffmann and Nebel 2001). Each run

#threads 1 thread 4 threads 8 threads 16 threads
GBFS 5791 -
KPGBFS - 18502 33944 58790
KPGBFSS - 17683 32074 53880
PUHF2 - 14994 22716 33632
PUHF2S - 16350 26126 40097

(a) State evaluation rate (geometric mean)
#threads 1 thread 4 threads 8 threads 16 threads
GBFS 1123 -
KPGBFS - 1896 2559 3400
KPGBFSS - 1601 2016 2557
PUHF2 - 1631 2009 2422
PUHF2S - 1456 1634 1945

(b) Number of states expanded (geometric mean)
#threads 1 thread 4 threads 8 threads 16 threads
GBFS 1.2605 -
KPGBFS - 0.672 0.497 0.385
KPGBFSS - 0.588 0.401 0.302
PUHF2 - 0.723 0.595 0.498
PUHF2S - 0.601 0.426 0.334

(c) Search time (geometric mean)
#threads 1 thread 4 threads 8 threads 16 threads
GBFS 1.0 -
KPGBFS - 3.17 10.22 12.69
KPGBFSS - 3.06 8.29 12.38
PUHF2 - 2.38 5.22 6.67
PUHF2S - 3.81 7.02 11.03

(d) Speedup (Search time[GBFS]/Search time , arithmetic mean)

Table 1: Comparison on Autoscale-21.11 IPC-based plan-
ning benchmark set. Means for 412 instances solved by all
algorithms

has a run time limit of 5 minutes and 3 GB RAM/thread
(e.g., 24 GB total for a 8-thread run) limit on a Intel(R)
Xeon(R) CPU E5-2670 v3 @ 2.30GHz processor.

All tie-breaking is First-In-First-Out.
We evaluate all algorithms on k ∈ {4, 8, 16} threads. We

also report some results for single-threaded GBFS as a base-
line.

Table 1a and Figure 2 compares the state evaluation rates
of the algorithms. Table 1b and Figure 3 compares the num-
ber of states expanded by the algorithms. Table 1c and Fig-
ure 4 compares search time by the algorithms. Table 1d
shows the speedup compared to single-threaded GBFS.

Table 2a shows the number of instances solved by each
algorithm, and Table 2b shows the number of problems
solved by algorithm x but not by algorithm y for x, y ∈
{KPGBFS,KPGBFSS ,PUHF2,PUHF2S}.

In Tables 1a-1d, we include only the 412 instances solved
by all algorithms so that means can be computed. Figures 2–
4 show all instances – instances which were not solved (due
to either timeout or memory exhaustion) are shown as either
x = fail or y = fail .



#threads 1 thread 4 threads 8 threads 16 threads
GBFS 448 -
KPGBFS - 510 534 567
KPGBFSS - 507 529 565
PUHF2 - 500 517 547
PUHF2S - 507 524 551

(a) Number of instances solved
KPGBFS KPGBFSS PUHF2 PUHF2S

KPGBFS - 34 41 43
KPGBFSS 32 - 38 33
PUHF2 21 20 - 20
PUHF2S 27 19 24 -

(b) For k = 16 threads, number of problems solved by algorithm (row)
but not by algorithm (column), e.g., KPGBFS solved 41 problems not
solved by PUHF2

Table 2: Coverage results on Autoscale-21.11 IPC-based
planning benchmark set.

Evaluation Rates First, comparing the state evaluation
rates of KPGBFS and PUHF2 (Table 1a, Figure 2), we con-
firm that as shown in previous work (Shimoda and Fuku-
naga 2023), PUHF2 has a significantly lower evaluation rate
than KPGBFS. The only difference between KPGBFS and
PUHF2 is that KPGBFS can always expand the top state in
Open while PUHF2 only expands the top node in Open if a
more restrictive constraint is satisfied in Algorithm 1. Thus,
the lower state evaluation rate in PUHF2 is due to threads
waiting idly when top(Open) does not satisfy the constraint.

Comparing the state evaluation rates (states/second) of
PUHF2S and PUHF2 (Table 1a, Figure 2), we see that for
k ∈ {4, 8, 16} threads, PUHF2S has a significantly higher
evaluation rate than PUHF2. This shows that SGE success-
fully achieves the goal of improving the evaluation rate for
constrained parallel best-first search.

Comparing KPGBFS and KPGBFSS , the evaluation rate
of KPGBFSS is somewhat lower than that of KPGBFS for
k ∈ {4, 8, 16} threads. Thus, management of the overhead
of a separate Unevaluated queue introduced by SGE im-
poses a noticeable penalty – in the comparison of KPGBFS
vs KPGBFSS in Figure 2, the effect of this overhead is no-
ticeable for the problems with the highest evaluation rate
(top right).

Number of States Expanded The number of states ex-
panded to solve an instance measures search efficiency. For
all values of k, PUHF2S expanded fewer states than PUHF2,
and KPGBFSS expanded fewer states than KPGBFS, so
SGE has the effect of reducing the search required to solve
problem instances for both constrained and unconstrained
parallel GBFS.

A possible explanation for this is that as explained in Sec-
tion 5, an algorithm with SGE tends to behave as if there
were fewer threads, and previous work has shown that as the
number of threads increases, the search efficiency of parallel
search tends to decrease (Kuroiwa and Fukunaga 2019), so
behaving as if there were fewer threads leads to better search

efficiency.

Search Time and Speedup The wall-clock runtime re-
quired to find a solution (search time) is a measure of overall
performance.

As a result of higher state evaluation rate and compara-
ble search efficiency, PUHF2S has significantly lower search
time than PUHF2. On the other hand, KPGBFSS only runs
slightly faster than KPGBFS, because the improved number
of states expanded due to SGE is offset by the lower evalua-
tion rate.

Speedup compared to single-threaded search (GBFS)
measures how successful a method is as a parallelization
technique. Comparing PUHF2S and PUHF2, we observe
that PUHF2S achieves almost k-fold speedup relative to
single-threaded GBFS, while the speedup for PUHF2 is far
from k.

Coverage Table 2a shows that applying SGE improves the
number of instances solved by PUHF2, but slightly lowers
the number of instances solved by KPGBFS. Table 2b shows
that for k = 16 threads, each algorithm (PUHF2, PUHF2S ,
KPGBFS, KPGBFSS) solves some instances not solved by
other algorithms (similar for 4 and 8 threads, not shown due
to space).

7 Discussion and Conclusion
We proposed SGE, an approach to increase state evaluation
rates in constrained parallel search algorithm by separating
successor generation and evaluation. We showed SGE sig-
nificantly increases the state evaluation rate of PUHF2, re-
sulting in improved overall performance for PUHF2S com-
pared to PUHF2. Preliminary experiments with PUHF and
PUHF3 have yielded similar results, suggesting that SGE
consistently yields performance improvements for parallel
GBFS algorithms with state expansion constraints. For un-
constrained search such as KPGBFS, SGE results in a de-
crease in evaluation rate, as there are no bottlenecks in un-
constrained search, and the additional complexity of SGE
imposes an overhead.

We also showed that SGE results in more efficient search
(fewer expansions to solve an instance) for both PUHF2
(constrained search) as well as for KPGBFS (unconstrained
search). While we hypothesize that this is because SGE with
k threads behaves as if there were fewer, faster threads as ex-
plained in Section 5, a deeper experimental investigation of
the expansion order with and without SGE is an avenue for
future work.

The batch successor insertion state bottleneck addressed
by SGE (Section 4) is a byproduct of implementing a par-
allel search algorithm which is limited to expanding a set
of states similar to the states expanded by single-threaded
GBFS with a standard eager evaluation policy, where states
are evaluated immediately after they are generated and be-
fore being inserted in Open . In lazy (deferred) evaluation
(Richter and Helmert 2009), where states are not evaluated
before insertion into Open and are inserted into Open based
on their parent’s f -value (and later evaluated when they are
expanded), the batch successor insertion bottleneck would



not apply. Search with lazy evaluation behaves quite differ-
ently than search with eager evaluation, and parallel satisfic-
ing search with lazy evaluation is an avenue for future work.
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Figure 2: State evaluation rates (states/second), diagonal lines are y = 0.1x, y = x, and y = 10x

Figure 3: Number of states expanded, “fail”= out of time/memory, diagonal lines are y = 0.1x, y = x, and y = 10x

Figure 4: Search time (seconds) “fail”= out of time/memory, diagonal lines are y = 0.1x, y = x, and y = 10x


