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Abstract

Landmarks (LMs) are facts or actions contained in every so-
lution to a planning problem. They are used to guide a search
and are generated along with ordering relations defining in
which order they need to be included. Most orderings come
directly from the LM generation method, but so-called rea-
sonable orderings (ROs) are generated in a post-processing.
A RO l1

r−→ l2 describes that when achieving l2 before l1,
l2 needs to be achieved for a second time, and it is thus rea-
sonable to achieve l1 before l2. Generation of RO comes with
low computational costs, and in certain domains they increase
performance of LM-based heuristics. However, existing RO
generation methods need a ground model, and the recently
introduced lifted LM techniques cannot use them. We present
a RO generation method for lifted planning. We show that
generation time is negligible even on hard-to-ground models,
and that it helps to guide search empirically. Further, we in-
vestigate the theoretical connection to the present method.

1 Introduction
Landmarks (LMs) are elements – usually facts or actions
– contained in every solution to a planning problem (Hoff-
mann, Porteous, and Sebastia 2004). They are generated
along with ordering relations defining in which order they
need to be included and have proven to be a valuable source
of information when guiding a search. While some ordering
relations are directly generated by the landmark generation
method(s), the class of reasonable orderings (RO) (Koehler
and Hoffmann 2000) is generated in a post-processing step.
A reasonable ordering l1

r−→ l2 describes that – when the LM
l2 is achieved before l1 – l2 needs to be reached for a sec-
ond time, and it is reasonable to reach l1 before l2. Reason-
able orderings are not helpful in every domain, but in some,
they increase the performance of LM-based heuristics. But
their generation comes with low computational costs and
thus they are used by state-of-the-art LM-based heuristics
like the one of LAMA (Richter and Westphal 2010).

While the work on solvers of the last decades has mainly
been based on ground models, recently, approaches have
been introduced that avoid the (sometimes) expensive step of
grounding (Ridder and Fox 2014; Corrêa et al. 2020, 2021,
2022; Lauer et al. 2021; Wichlacz, Höller, and Hoffmann
2021, 2022; Wichlacz et al. 2023; Lauer et al. 2024) and
solve planning problems directly on the lifted input model.

One line of research on guiding a lifted search is based on
landmarks (Wichlacz, Höller, and Hoffmann 2021, 2022).
While some steps of existing RO generators are also appli-
cable on a lifted model, some need a ground representation
and need to be replaced to work in lifted planning. Thus,
LM-based heuristics in lifted planning cannot exploit rea-
sonable ordering relations.

In this paper, we make the following contributions:
• We present a generation method for reasonable ordering

in lifted planning.
• We investigate the theoretical connection to the present

method.
• We show empirically that generation time is negligible

even on large models, that the generated orderings can
be helpful in lifted planning, and that our method is as
good as existing ones in a direct comparison.

We next introduce the background in lifted planning, be-
fore we come to the generation methods, its theoretical prop-
erties, and the evaluation.

2 Background
A lifted planning problem is a tuple Π = (P,O,A, I,G)
where P is a set of (first-order) predicates, O is a set of ob-
jects, A is a set of action schemas, I is the initial state, and
G is the goal definition. Predicates P ∈ P come with an ar-
ity k, i.e. P has k parameters, written P (x1, . . . , xk), where
each xi is a variable. Let X be the set of all variables used in
Π. Parameters can be grounded (instantiated) with objects
O. We write P (u1, . . . , uk) to denote a partially grounded
predicate along with its arguments ui ∈ X ∪ O. If ui ∈ O
for all i then P (u1, . . . , uk) is a ground atom or fact, which
we write as p. States are sets of ground atoms. We also as-
sume I to be grounded. The goal also is a set of ground
atoms.

An action schema A is a tuple (XA, pre(A), add(A),
del(A)) with a set of parameter variables XA as well as pre-
condition, add list, and delete list, all of which are sets of
predicates parameterized with variables from XA. The arity
of A is |XA|. We can instantiate action schemas by replac-
ing each x ∈ XA by some o ∈ O to obtain ground actions
a. The set of ground actions, or actions for short, is AO.

Action a is applicable in state s if pre(a) ⊆ s. Applying a
to s results in the state (s\del(a))∪add(a). A plan for Π is a



sequence π of ground actions that is successively applicable
in I and results in a state s′ such that G ⊆ s′.

A ground atom p is a ground landmark of Π if, for every
plan π for Π, there exists a state s traversed by π where
p ∈ s. A partially ground atom p is true in a state s, written
s |= p, iff there is an instantiation p′ of p with p′ ∈ s.

For the following, consider the execution of a plan as a
sequence π = (s0, a1, s1, a2, . . . , sn−1, an, sn) of actions
ai and states si resulting from executing the plan with s0 =
I and si the state resulting from the application of ai in si−1.

Definition 1 (Lifted Landmarks) A partially grounded
atom p = P (u1, . . . , uk) is a lifted landmark of Π if and
only if for every plan π = (s0, a1, s1, a2, . . . , sn−1, an, sn)
for Π, there exists a state si where si |= p.

Lifted LMs are a special case of disjunctive landmarks (a
list of facts from which one must be in every solution), with
a disjunction over possible values of unset parameters.

A landmark l1 is added at time i iff si |= l1 and (i = 0
or si−1 ̸|= l1). We write first(l1, π) and last(l1, π) for the
first and last time that l1 is added in a plan π. Let l1 and l2
be landmarks of Π, then:
• l1 is ordered naturally before l2 iff in the execution π of

every plan for Π, first(l1, π) < first(l2, π).
• l1 is ordered greedy-necessarily before l2 iff in the exe-

cution π of every plan for Π, sfirst(l2,π)−1 |= l1.
• l1 is ordered necessarily before l2 iff in the execution
π of every plan for Π, whenever l2 is added at time i,
si−1 |= l1.

Note that necessary and greedy-necessary orderings are
special cases of natural orderings.

There are three methods to generate LMs on the lifted
model: One uses a back-chaining approach starting from
state features in the goal (which are LMs). It intersects the
preconditions of all actions adding these LMs, which results
in a LM. This is continued until convergence (Wichlacz,
Höller, and Hoffmann 2022). The second method uses FAM
groups (Fišer 2020). FAM groups capture how values of a
variable can change. Based on them, one can build a graph
in which cuts between the current value of a variable and
one that must be reached (e.g. a LM) must be crossed (Wich-
lacz, Höller, and Hoffmann 2022). The third method resem-
bles the (ground) LM-Cut heuristic (Helmert and Domshlak
2009) in the lifted setting (Wichlacz et al. 2023).

Be aware that the LM generation is out of scope for this
paper – we are aiming at generating reasonable orderings.

3 Generating Reasonable Orderings
Reasonable orderings have originally been introduced by
Koehler and Hoffmann (2000) in the context of goal order-
ing, not LM ordering. The authors identified sufficient con-
ditions to show that, when a goal fact l2 is established be-
fore another l1, l2 is deleted while achieving l1. This is e.g.
the case when all actions adding l1 also delete l2 or have a
(direct or indirect) precondition mutex with l2. In such sit-
uations, the authors introduce an ordering l1

r−→ l2 meaning
that it is reasonable to achieve l1 before l2.

Hoffmann, Porteous, and Sebastia (2004) adapted the
concept from goals to LMs. Reasonable ordering relations

have a slightly different meaning than other orderings used
for LMs: while an ordering l1 → l2 as introduced in Sec-
tion 2 meant that it is not possible to achieve l2 before l1,
now it might even be that, though l1

r−→ l2 holds, l2 is actually
achieved before l1 in every plan. However, we know that in
this case, l2 needs to be deleted and re-achieved afterwards.
This can be exploited in heuristics calculated based on the
LMs (Richter and Westphal 2010; Büchner et al. 2023).

The basic definition is as follows (Hoffmann, Porteous,
and Sebastia 2004, Lem. 1/Thm. 6):

Definition 2 (Reasonable Orderings on LMs) Let l1 and
l2 be LMs. There is a Reasonable Ordering l1

r−→ l2 if
(i) l2 is in the aftermath of l1 and

(ii) l1 interferes with l2.

The “aftermath” relation says that, when there is a state
in a solution where l1 holds and l2 has not been true yet,
there must be a state in the remainder where l1 and l2 both
hold simultaneously or l2 holds at a later point during the
execution of every plan (Hoffmann, Porteous, and Sebastia
2004, p. 222). While this property is hard to prove in gen-
eral (2004, Thm. 4), the authors introduce an approxima-
tion (2004, Lem. 1) that we also use in the following:

Definition 3 (Aftermath Approximation) Let l1 and l2 be
LMs, l2 is in the aftermath of l1 if

(i) l2 is in the goal condition, or
(ii) there is a chain of natural orderings l1 = L1 → . . . →

Ln, n > 1, Ln−1 ̸= l2 and l2
gn→ Ln (where

gn→ denotes
a greedy necessary ordering).

Since this definition is based on LMs and their ordering
relations, it is not only applicable in the grounded, but also
in the lifted setting.

Next let us consider Condition (ii) of Def. 2 and define
“interference”. What is tested is whether two facts can ap-
pear together in a state. Hoffmann et al. call this property
(in-)consistence, we will call two facts that cannot appear
together to be mutex. The mutex relation is hard to compute
exactly even in the ground setting. Therefore Hoffmann et
al. used approximation methods, e.g. based on the mutex
relation of the (non-relaxed) planning graph, which is still
hard to compute – even on domains like those used in the
International Planning Competition (IPC). Recent systems
like Fast Downward (FD) compile a finite domain repre-
sentation (FDR) in a preprocessing, which is (among other
things) used in the RO computation. To detect more cases
where two facts cannot appear together, interference further
checks if the actions adding l1 necessarily delete l2.

Since most recent systems use a FDR, we also define in-
terfere based on FDR models (the same condition is also
used by FD):

Definition 4 (Interference) A fact l1 interferes with l2 if

1. l1 and l2 are mutex, or
2. the effects of all actions making l1 true also contain some

fact x which is mutex with l2.

The original definition for a non-FDR model was intro-
duced by Hoffmann, Porteous, and Sebastia (2004, Def. 6).



3.1 Lifted RO Inference
While the aftermath approximation can also be used in the
lifted setting, we need to come up with a different method
to approximate the mutex relation. Our method is based on
Lifted Fact-Alternating Mutex (FAM) groups as introduced
by Fišer (2020).

Definition 5 (FAM Groups) A Lifted Fact-Alternating Mu-
tex (FAM) group is a tuple ν = (Vfix , Vcnt , atoms)
with Vfix ∩ Vcnt = ∅. For the set of atoms atoms =
{P1(v

1
1 , . . . , v

1
k1
), . . . , Pl(v

l
1, . . . , v

l
kl
)}, all variables are

from Vfix ∪ Vcnt .
For a given assignment of fixed variables, the full ground-

ing of the counted variables forms a mutex group.

Consider e.g. a FAM group with Vfix = {p}, Vcnt =
{t, l}, atoms = {in(p, t), at(p, l)}, where p is a package,
t is a truck, and l a location. in states that a package is in a
truck and at that it is at some location. Then the semantics
is that for a given package, all assignments to truck and lo-
cation are mutex to each other, or: a package can only be at
a single location or in a single truck.

In the lifted setting, we need to ensure that the mutex re-
lation holds for all groundings of an atom, i.e., two partially
grounded atoms p and q are mutex iff all of its groundings
are pairwise mutex. I.e., they need to be part of the same mu-
tex group, but with different counted variables. When they
are in different mutex groups, they can occur together in a
state.

Definition 6 (Lifted Mutex Relation) Let P (v1, . . . , vn)
and Q(w1, . . . , wm) be two partially grounded atoms.
There is a lifted mutex relation between P and Q when the
following conditions hold:
1. They are not unifiable, i.e., there is no assignment of the

variables that make them equal.
2. There exists a lifted FAM group g including P and Q such

that for every assignment of fixed variables, they are in
the same ground mutex group.

Theorem 1 (Soundness) When the condition in Def. 6
holds, the atoms are mutex.

Proof: From the definition of FAM groups, we know that
two facts are mutex when they share the fixed variables and
differ in the counted variables. Since we want to show that
all groundings of the partial lifted atom are mutex, the ex-
istence of a single assignment of a fixed variable suffices to
make them potentially non-mutex. However, condition 2 en-
sures that the atoms need to end up in the same mutex group.

Given that the two facts are in the same mutex group, we
know that they cannot occur in the same state (i.e., are mu-
tex) except when they are unifiable, since then, we can unify
them and obtain a single ground fact.

Having a lifted definition of the mutex relation at hand,
we can now define lifted interference. We do this based on
the condition by Koehler and Hoffmann (2000):
Definition 7 (Lifted Interference) Two partially grounded
facts l1 and l2 interfere if one of the following holds:
1. l1 and l2 are mutex.
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Figure 1: Coverage on the HTG domains.

2. When for all partial instantiations of action schemas that
add l1 one of the following criteria holds:
(a) one of its preconditions is mutex with l2, or
(b) one of its add effects is mutex with l2.

Now we have a method directly applicable on the lifted
model. It inherits the incompleteness of the ground ap-
proaches, e.g. from the aftermath approximation. But further
it adds more sources of incompleteness through its mutex re-
lation. Consider e.g. that two partially ground atoms might
be unifiable in our test, but no state where such a unification
is possible is reachable.

Next we want to investigate the theoretical connection be-
tween our method and the one used by FD. The aftermath
approximation is the same for both methods, but they differ
in the interference and mutex relations. For this theoretical
analysis, assume that we deal with a fully grounded problem
(otherwise, FD’s method is not applicable).

Interference Relation. First we compare the interference
relations defined in Definition 4 and Definition 7. Since the
latter is done on a ground model, for the first case of both
definitions, it holds that the method with the stronger mu-
tex relation might result in more reasonable orderings that
are detected. The second condition of FD checks all actions
adding the first atom and whether one of its effects is mutex
with the second. Our method further takes the preconditions
into account as suggested by (Koehler and Hoffmann 2000).
Again, whether we can find more orderings depends on the
mutex relation.

Mutex Relation. The inference of mutex groups by Fišer
used here is an extension of the one used by FD. In addi-
tion to the latter, it incorporates subtypes into its reason-
ing, which is not done by FD (Fišer 2020, 9839f). I.e., on
a ground model, it will find all mutex groups found by FD
and it might find more (Fišer 2020).

This leads us to the following proposition:
Proposition 1 On a ground model, our method finds at least
the reasonable ordering relations as FD’s method, but may
find more.
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Figure 2: Expansions of the FD system in the ground setting.

Be aware that this is a theoretical comparison, we are not
aiming at using our method on a pre-ground model, but want
to integrate it into a lifted planning system. Further, we have
no evidence that this case is included in commonly-used
planning benchmarks.

4 Evaluation
In this section, we investigate two objectives:

1. Can lifted search benefit from reasonable ordering rela-
tions?

2. How does our method compare to present ones?

We integrated1 our method into two systems: (1) the lifted
Powerlifted (PWL) system (Corrêa et al. 2020), and (2) the
grounded Fast Downward system (Helmert 2006). All ex-
periments ran on Intel Xeon E5-2650 CPUs with 2.30 GHz
with a time limit of 30 min and 4 GB memory limit.

4.1 Lifted Setting
In this setting, we use the hard to ground (HTG) bench-
marks2 also applied in recent evaluations of lifted sys-
tems (e.g. Corrêa et al. (2021); Lauer et al. (2021); Höller
and Behnke (2022)). We integrated our technique into the
PWL-based planner introduced by Wichlacz, Höller, and
Hoffmann (2022) that comes with an LM count heuristic
(LMC) and also a LAMA-like (Richter and Westphal 2010)
configuration, which we also use as baseline. We test two
configurations: greedy best-first search (GBFS) with LMC,
and the LAMA-like multi-fringe configuration that uses
GBFS, in one fringe with the lifted hadd heuristic (Bonet
and Geffner 2001; Corrêa et al. 2021), in a second fringe
with the LMC heuristic. For both configurations we com-
pare the results with and without ROs.

Our first result is that the runtime of our RO inference
method is neglectable: the mean runtime is 0.0 seconds for

1fai.cs.uni-saarland.de/software.html
2https://github.com/abcorrea/htg-domains

every domain. The maximum runtime is 0.58 seconds for an
organic synthesis problem. However, even in this domain,
the mean runtime is 0.04 seconds across all instances.

The coverage results on the HTG benchmarks are given in
Table 1. The first two columns give coverage results for the
GBFS/LMC configuration, with and without RO relations. It
can be seen that it improves the coverage in the Blocksworld
domain, which is known to be a domain where such or-
derings are helpful. The following columns show the lifted
LAMA system, again with an improvement in Blocksworld.

We do not find ROs in the other domains. This is due to
two reasons. First, the benchmark set contains only few do-
mains with ROs. Second, the present LM techniques are less
successful in finding LMs than those from ground planning.
On groundable instances, FD finds additional ROs on Or-
ganic Synthesis and Logistics. Logistics is an example where
we cannot find ROs because a certain LM found on the
grounded model is not returned by the lifted LM generation.
However, our method will benefit from future developments
in this direction. But while we were only able to improve
coverage in one domain, we can see that our method works
fast even on large models.

4.2 Grounded Setting
To test our method in a setting with more domains where
RO can be found, we integrated our ordering relations into
the Fast Downward (FD) planning system. We use the pre-
processing and LM generation of FD. Then, we call our
method with the lifted model and these LMs. I.e., we use
the grounded landmarks and the lifted inference. We use the
resulting ordering relations in the search of FD. The motiva-
tion behind this is to test the two methods on the same set
of landmarks and in the same search to have a direct com-
parison. We use the benchmark sets from the IPCs 1998 to
2018. We first evaluated satisfying configurations on the re-
spective benchmarks. But using LAMA (coverage between
915 and 917 out of 1001 for all configurations) and GBFS
with LMC (coverage between 766 and 768), there was not



much to find in the results when comparing configurations
without RO, with FD’s RO, or ours. Instead, we combined
an A∗ search with an admissible LMC heuristic (Büchner
et al. 2023), evaluated them on the benchmarks from the op-
timal track, and show results on the expansions instead of
coverage. The results are shown in Figure 2, the left side
compares a configuration using our ROs and a configuration
not using ROs. It can be seen that there are instances where
ROs decrease the number of expansions (mainly in the do-
mains Miconic, Logistics00, and Blocks). The right side of
Figure 2 gives a comparison of the configuration using our
ROs and those generated by FD. The results are nearly iden-
tical, the two outlier instances are from the Scanalyzer do-
main, where we do not find ROs on the lifted model that
are found on the ground model. Please recall that Prop. 1
explicitly assumed to do the reasoning on a ground model,
which we do not have here. So this empirical result is not a
contradiction to Prop. 1.

5 Conclusion
A reasonable ordering l1

r−→ l2 means that, when achieving
LM l2 before l1, it needs to be achieved for a second time.
This information is used to compute more accurate heuris-
tic values. However, inferring ROs was so far only possi-
ble on the ground model. We presented an inference method
for lifted planning. Empirically, we show on a benchmark
set for lifted planning that (1) it is fast to compute even on
large models and that (2) there are problems where it in-
creases coverage. In a second evaluation directly comparing
it with FD’s (ground) method, we show that search guidance
is comparable, despite the fact that our method ran on the
lifted model, while FD’s ran on the ground one.
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Höller, D.; and Behnke, G. 2022. Encoding Lifted Classi-
cal Planning in Propositional Logic. In Proceedings of the
32nd International Conference on Automated Planning and
Scheduling (ICAPS), 134–144. AAAI Press.
Koehler, J.; and Hoffmann, J. 2000. On Reasonable and
Forced Goal Orderings and their Use in an Agenda-Driven
Planning Algorithm. Journal of Artificial Intelligence Re-
search (JAIR), 12: 338–386.
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Wichlacz, J.; Höller, D.; and Hoffmann, J. 2022. Landmark
Heuristics for Lifted Classical Planning. In Proceedings of
the 31st International Joint Conference on Artificial Intelli-
gence (IJCAI), 4665–4671. IJCAI organization.


