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Abstract

Online planner selection is the task of choosing a solver out
of a predefined set for a given planning problem. As planning
is computationally hard, the performance of solvers varies
greatly on planning problems. Thus, the ability to predict
their performance on a given problem is of great importance.
While a variety of learning methods have been employed, for
classical cost-optimal planning the prevailing approach uses
Graph Neural Networks (GNNs). In this work, we continue
the line of work on using GNNs for online planner selection.
We perform a thorough investigation of the impact of the cho-
sen GNN model, graph representation and node features, as
well as prediction task. Going further, we propose using the
graph representation obtained by a GNN as an input to the
Extreme Gradient Boosting (XGBoost) model, resulting in a
more resource-efficient yet accurate approach. We show the
effectiveness of a variety of GNN-based online planner selec-
tion methods, opening up new exciting avenues for research
on online planner selection.

1 Introduction
Automated planning is a foundational discipline within the
field of Artificial Intelligence (AI) research (Russell and
Norvig 1995). The focus of planning lies in formulating
goal-oriented policies, or, in the deterministic case, se-
quences of actions to achieve predefined goals. Applica-
tions range from robotics and autonomous vehicles to indus-
trial automation (Ghallab, Nau, and Traverso 2004; Rogalla,
Fay, and Niggemann 2018; Karpas and Magazzeni 2020;
Chakraborti et al. 2020).

Given the inherent complexity of classical planning, as
described by (Bylander 1994), there is unlikely to be a sin-
gle planning algorithm that can work well across diverse
planning problems. Over the years, a variety of planners
were developed, tackling various aspects that make plan-
ning problems challenging. Consequently, there is a growing
interest in the development of portfolio-based approaches
(Seipp et al. 2012; Vallati 2012; Cenamor, De La Rosa, and
Fernández 2013; Seipp et al. 2015) where multiple plan-
ners are aggregated and out of this portfolio, a single plan-
ner or a schedule of planners are selected. Portfolio-based
planning can be divided into offline and online methods.
While offline methods (Helmert, Röger, and Karpas 2011;
Seipp et al. 2012) construct a single invocation schedule

ahead of time which is anticipated to perform well across
many domains, online methods (Cenamor, De La Rosa, and
Fernández 2013; Katz et al. 2018; Ma et al. 2020; Ferber
and Seipp 2022) adapt by learning to select the most suit-
able planner for each specific task.

Focusing our attention on the online methods, a variety
of deep learning based approaches were recently developed.
There are Convolutional Neural Networks (CNNs) based ap-
proaches (Katz et al. 2018; Sievers et al. 2019), with the
planner Delfi winning the cost-optimal track of the Interna-
tional Planning Competition (IPC) 2018, where each plan-
ning problem is represented by an image. However, these
images are obtained by first converting the planning prob-
lem to a graph, for instance as a problem description graph
(PDG) (Pochter, Zohar, and Rosenschein 2011), or as an ab-
stract structure graph (ASG) (Sievers et al. 2017). Therefore,
following the success of Delfi, a first attempt was made to
use Graph Neural Networks to directly learn on the graphs
and capture structural information (Ma et al. 2020).

In our work, we continue the line of work on using GNNs
directly for online planner selection. We focus on exploring
four GNN architectures, two graph representations, various
dataset features and multiple prediction tasks. We also com-
bine the advantages of GNNs and Extreme Gradient Boost-
ing (XGBoost) (Chen and Guestrin 2016). Our main contri-
butions are as follows: We explore the strengths and weak-
nesses of the GNN architectures for online planner selection.
We investigate two graph representations, namely the lifted
and grounded representation, in combination with additional
node features. We focus on different ways to pick a plan-
ner including predicting the probability that a planner solves
a task and the time it takes a planner for solving the task.
Additionally, we experiment with the use of graph represen-
tations obtained by the GNNs for other ML-based methods
like XGBoost.

2 Related Work
In this section, we embed our work into related approaches
by highlighting and comparing them to ours. We provide
an overview of recent ML-based approaches as well as ap-
proaches using Graph Neural Networks (GNNs). We incor-
porate related methods solving various tasks in the planning
domain, including approaches using the IPC dataset for au-
tomatic planner selection.



Cenamor, De La Rosa, and Fernández (2016) focus on
creating a configurable portfolio which adapts to a given
planning task. First, a number of candidate planners is se-
lected with a filtering method. After that, predictive models
estimate the time it takes to solve a task. Based on the com-
bined results of the predictive models, it is decided which
planners to include in the portfolio. Instead of creating port-
folios, our work focuses on the task of directly choosing a
planner for a given planning problem. In addition, we use
GNNs to perform the prediction task.

The Delfi planner (Katz et al. 2018) makes use of graphi-
cal representations of a planning task in combination with
deep learning techniques. Each planning problem is con-
verted to an image and a CNN is used to make predictions.
By applying it to new benchmarks, the authors show a good
generalization of the proposed model. We use the same data,
but instead of CNNs, experiment with GNNs.

Sievers et al. (2019) further pursue the method of con-
verting planning problems to images and applying a CNN
model. They analyze the shortcomings of the current meth-
ods and present possible solutions. Their main findings in-
clude the need for methods working well with non-IID (in-
dependent and identically distributed) data and exploring al-
ternative network architectures. They especially analyze the
shortcomings and possible solutions of existing CNN-based
approaches. However, we mainly analyze how we can use
GNNs to solve the automatic planner selection task.

Another related work is by Ferber and Seipp (2022), who
explore graph features which are used during training simple
machine learning models, for instance, linear regression or
random forests. The authors analyze the features and their
importance for the training process. We distinguish our-
selves by exploring different features when using different
GNN models.

The closest to our work is the previous work on us-
ing GNNs for Automatic Planner Selection is by Ma et al.
(2020). The authors propose using two GNN architectures,
namely GCN (Graph Convolutional Network) and GGNN
(Gated Graph Neural Network), to select candidate plan-
ners. Their experiments with the IPC dataset show that their
graph-based approach outperforms previous image-based
ones. They highlight the ability of GNNs to capture struc-
tural information of a planning graph and address the lack
of node-level information in previous approaches. The au-
thors show that the lifted representation is favored over the
grounded one as it produces more consistent results. How-
ever, it should be noted that the lifted representation contains
much more nodes in the graphs and therefore scalable train-
ing approaches are needed. We distinguish ourselves by not
only including two GNN architectures, but a set of four rep-
resentative architectures with different focuses. In addition,
we explore the use of node features for GNN training and
combine GNNs with a simpler ML-based method.

Chen, Trevizan, and Thiébaux (2023) propose an ap-
proach based on the Weisfeiler-Lehman graph isomorphism
test for learning heuristics for planning. Compared to GNN-
based methods, they show a better performance in terms of
coverage and evaluation time. Our task is different, we aim
to predict the planner performance and not heuristic values

for states.
Another work experiments with the representation of

planning tasks (Chen, Thiébaux, and Trevizan 2024). After
thoroughly analyzing the grounded and lifted representation,
they propose novel representations to overcome shortcom-
ings of the previous ones by augmenting the graphs. Our
work is tangential to the work on new representations.

3 Preliminaries
The following covers important preliminaries our experi-
ments are based on. This includes GNNs and its variants in
Section 3.1. , as well as XGBoost in Section 3.2.

3.1 Graph Neural Networks
Graph Neural Networks are used in numerous domains and
capture the given graph structure. Node-level, edge-level or
graph-level tasks can be solved. The training incorporates
two main steps, namely aggregate and update. First,
the node representations of all neighboring nodes are aggre-
gated according to

a(t+1)
v = AGGREGATE(t+1)(ht

u : u ∈ N(v)) (1)

with the node representations at the t-th layer ht
u and the

set of neighbors of target node v Nv . Thereafter, the node
representations are combined and the target node is updated
using

h(t+1)
v = UPDATE(t+1)(h(t)

v , a(t+1)
v ) (2)

The main difference between different GNN archi-
tectures is the choice of AGGREGATE(t+1)(.) and
UPDATE(t+1)(.) (Hamilton 2020). Various methods have
been developed, we will cover four of them in the following.

Graph Convolutional Network (GCN) One commonly
used GNN architecture is the Graph Convolutional Network
(GCN) (Kipf and Welling 2016). Inspired by convolutions
used for images, GCN use convolution filters that operate
directly on the graph structure. In contrast to images, the
neighborhood size of a node within a graph varies. There-
fore, a parameter matrix transforms the node representations
obtained from the previous layer. The transformed represen-
tations are weighted according to the graph adjacency matrix
(Kipf and Welling 2016; Ma et al. 2020). When using GCN,
an update step is defined as

H(t+1) = σ(ÂH(t)W (t)) (3)

where H(t+1) denotes the matrix with stacked node repre-
sentations ht

v , v is a node and t stands for the current layer.
σ is an activation function (e.g., ReLU), the adjacency ma-
trix A is normalized to Â and W is the parameter matrix.
GCN uses a shared weight for all edges, making the model
relatively simple. In case of more complex graph structures,
this approach might be less expressive.

Gated Graph Neural Network (GGNN) Gated Graph
Neural Networks (GGNNs) (Li et al. 2016) distinguish
themselves from other architectures by incorporating gated



recurrent units (GRUs) (Cho et al. 2014) in their propaga-
tion module. The current state of the nodes is updated by
the GRU which views the nodes and their representations
as a dynamic system. The node representation is updated as
follows:

h(t+1)
v = GRU(h(t)

v ,m(t+1)
v ) (4)

Here, m(t+1)
v is a message which is aggregated in order to

update the state of the node. This formulation allows for
deploying selective updates of the node representations de-
pending on the information aggregated from the neighbors.
Besides local information, long-range dependencies within
the graph can be captured.

Graph Attention Network (GAT) Instead of graph con-
volutions, Graph Attention Networks (GATs) (Veličković
et al. 2018) use masked self-attentional layers. Different
weights are assigned to different neighbors when aggregat-
ing the neighboring features. This enables the nodes to focus
on the more relevant neighbors and helps the model to cap-
ture complex relationships in the graph. Another advantage
of this approach is that the importance of the neighboring
nodes is determined without knowing the graph structure be-
forehand. The update node representations can be obtained
with

h(t+1)
v = σ(

1

K

K∑
k=1

∑
u∈Nv

αk
vuWkh

t
u) (5)

with the normalized attention coefficient αk
vu for the k-th

attention head and the weight matrix W . By employing at-
tention, the model is particularly effective for detecting local
dependencies.

Graph Isomporhism Network (GIN) Another variant is
the Graph Isomorphism Network (GIN) (Xu et al. 2018)
which makes use of multi-layer perceptrons (MLPs) to learn
the parameters of the update function. It is inspired by the
Weisfeiler-Lehman (WL) graph isomporhism test (Leman
and Weisfeiler 1968) which determines how similar two
graphs are. A node update is defined by

h(t+1)
v = MLP (t+1)((1+ ϵ(t+1))∗h(t)

v +
∑

u∈N(v)

h(t)
u ) (6)

where ε is a learnable parameter. GIN uses a simple sum
operator to aggregate the features which makes it computa-
tionally efficient. Through the learnable parameter, it is able
to adapt well to various graph structures and can effectively
capture graph-level features making it a common choice for
solving graph-level tasks.

3.2 Extreme Gradient Boosting
XGBoost, short for Extreme Gradient Boosting, is a ma-
chine learning technique combining multiple decision trees
to create a strong model (Chen and Guestrin 2016). The de-
cision trees often have limited depth and the predictions of
each tree are added up to obtain the final prediction. With the
help of an objective function, gradient optimization is per-
formed and a learner is fitted with respect to the current pre-
dictions. The objective function is minimized during training

and comprises the loss function and a regularization term. A
series of decision trees is built sequentially, with each tree
correcting the errors of the combined model up to that point.
The objective function at the t-th iteration is given through

L(t) =

n∑
(i=1)

l(yi, ŷ
(t−1)
i + ft(xi)) + Ω(ft) (7)

where the loss is calculated according to a loss function l
based on the prediction ŷi and the target yi at the i-th in-
stance. The tree structure ft which gains the most improve-
ment of the model is added. The regulariztaion term Ω(ft)
ensures the model is kept as simple as possible. In gen-
eral, XGBoost combines the strengths of decision trees with
an optimization process to efficiently and effectively handle
complex datasets.

4 Experiments
In this section, we describe the methodology of our experi-
ments including the datasets, configurations, tasks and setup.
This is followed by the presentation and analysis of results
and their implications. Lastly, we summarize the main find-
ings and insights.

4.1 Methodology
Dataset and features We use the publicly available
dataset consisting of tasks from various International Plan-
ning Competitions (IPC), with their graph representations
and planners performance data (Ferber et al. 2019). It con-
sists of 2439 data points and provides splits for 10-fold cross
validation (2294/145 training+validation/testing). The split
can either be random or domain-preserving, making sure
that planning problems of the same domain are not split. In
the portfolio, there are 17 planners. For each planner, the tar-
get value is the time needed for solving the problem. In case
a planner exceeds the timeout limit of 1800 seconds, the tar-
get value is set to 10,000. There are two representations, the
grounded and the lifted representation. While the grounded
one is based on SAS+ (Bäckström and Nebel 1995) and di-
rected Problem Description Graphs (PDG) (Pochter, Zohar,
and Rosenschein 2011), the lifted representation is based on
the Planning Domain Definition Language (PDDL) (McDer-
mott 2000) and directed acyclic Abstract Structure Graphs
(ASG) (Sievers et al. 2017). Figure 1 illustrates the num-
ber of nodes and edges for each graph in the grounded and
lifted representation. We additionally present an aggregated
representation of the grounded representation where cer-
tain node types and sequences are combined. The grounded
graphs consist of up to 100,000 nodes and 800,000 edges.
The lifted graphs contain up to 250,000 nodes and 300,000
edges, meaning generally more nodes, but less edges than
the grounded representation. This is also reflected by the av-
erage node degree which is 12.26 for the grounded graphs
and 2.92 for the lifted ones. Most of the aggregated graphs
consist of up to 10,000 nodes and 100,000 edges with an av-
erage node degree of 9.69. The number of nodes per graph
in the grounded and aggregated representation is shown in
Figure 2. We can see that the number of nodes and edges per



Figure 1: Graph sizes of the grounded and lifted representa-
tions

Figure 2: Number of nodes and edges per graph of the
grounded and aggregated representation

graph is much smaller when using the aggregated represen-
tation.

As node features, the node type is used and encoded into
one-hot vectors. For the lifted representation, there are 15
different node types and for the grounded representation,
there are 6 individual node types. For instance, the type can
depict that the node represents a constant, an action,
or an effect. We analyse the average node degree per
node type, depicted in Figure 3. For both the grounded and
the lifted graphs, while there are high-degree node types
with an average degree of up to 70, the majority of node
types have an average degree of 3 to 8 for the grounded
graphs and 1 to 17 for the lifted ones.

Due to the difference of average node degree per node
type, we decide to enhance the initial node features with the
node degree. In addition, the type of the neighboring nodes
of a target node is important within planning problems to
get a more detailed context of the node within the graph.
Therefore, we also experiment with the type of the neighbors
as node feature.

Tasks and configurations We investigate multiple meth-
ods to select a planner. The first method is to predict the time
to solve the planning problem and choose the planner with
the best predicted time performance, henceforth denoted by
time. The second is to predict how likely it is for a planner
to solve the planning problem within the overall time bound

Figure 3: Average node degree per node type for the
grounded representation.

of 1800s and choose the planner with the highest probabil-
ity to solve within the bound, henceforth denoted by binary.
These two methods were explored in previous work with
CNNs (Sievers et al. 2019). Four GNN architectures are used
to obtain the predictions, namely GCN (Kipf and Welling
2016), GGNN (Li et al. 2016), GAT (Veličković et al. 2018)
and GIN (Xu et al. 2018). We mainly explore two additional
node features: the node degree and the type of the neighbor-
ing nodes. The third method has not been explored so far
in the context of online planner selection. We use the graph
representation obtained by the last layer of a GNN as input
to train a classification task with a XGBoost model (Chen
and Guestrin 2016).

Training details We choose the Deep Graph Library
(DGL) (Wang et al. 2019) based on PyTorch (Paszke et al.
2019) as a framework. The configurations are oriented on
(Ma et al. 2020) and we did a grid-search to find the best pa-
rameters. For training, we use the Adam optimizer (Kingma
and Ba 2015) with learning rate 0.001. The number of lay-
ers is set to 2, the size of the hidden dimension is 100 and
we train the model for 100 epochs. For regression tasks, the
MSE loss is used and for the other tasks, we choose the bi-
nary cross entropy loss. We run the experiments either on a
Nvidia P100 GPU or a Nvidia RTX A600 with two Intel(R)
Xeon(R) CPU E5-2640 v4 or two AMD EPYC 7282 CPU
nodes, respectively. Depending on the model, training takes
10 to 60 minutes. We set the number of estimators to 500,
the maximum depth to 5, and the learning rate to 0.01 when
using XGBoost. Training is done with early stopping after
20 epochs. Again, these parameters have been chosen based
on a hyper-parameter search.

4.2 Results

First, we present and analyze the results for all four GNN ar-
chitectures, the two tasks based on probability and time, and
the lifted and grounded representation in combination with
the random and domain-preserving split. Subsequently, we
explore how the results change when adding node features
to the data. We conclude by illustrating the accuracy changes
when combining a GNN model with XGBoost. It is impor-
tant to note that we repeat each experiment 10 times and
present the corresponding average accuracy with the stan-
dard deviation.



Figure 4: Results for all tasks and all GNN architectures

(a) grounded (b) lifted

Figure 5: Feature correlation matrix for the time- and binary-
based task for the grounded and lifted representation

Base experiments This experiment aims to investigate
how different GNN architectures perform combined with
the two graph representations and to find out how well the
planning problem is captured by them. Figure 4 gives an
overview of the results. For all four GNN architectures, we
plot the accuracy for the lifted and grounded representation
as well as the random and domain-preserving split. Over-
all, the task where we predict the time performs better than
the one predicting whether a planning problem is solvable.
Figure 5a shows the correlation of the node type to the
time- and binary-based labels. For the grounded representa-
tion, we can see a higher negative correlation between node
type and the time-based labels than the binary-based ones
with values of -0.39 and -0.19, respectively. Analogous to
the grounded representation, the correlation matrix for the
lifted representation (Fig. 5b) shows that the time-based la-
bels also have a higher correlation than the binary-based la-
bels which explains the better performance when predicting
the time. For almost all GNN architectures, the grounded
representation obtains better results than the lifted one, es-
pecially together with the domain-preserving split. This is
also reflected in the correlation matrices where the correla-
tion between the node type and the labels is higher for the
grounded graphs than the lifted ones (see Fig. 5). As shown
in Figure 1, the lifted graphs are smaller and more abstract
than the grounded ones. Due to the higher abstraction of the
lifted graphs, valuable information is not captured as good

Figure 6: Results for adding the in degree as a node feature

as by the grounded representation leading to a performance
decrease. This is further supported by our experiments with
the aggregated graphs. Here, the accuracy is similar to the
one obtained by the lifted representation. When looking at
the results, we see that the standard deviation is quite high,
especially for the experiments where the time is predicted.
Although the best performance can be obtained when pre-
dicting the time in most cases, it is also not as stable as pre-
dicting a probability. This lies in the nature of the problem.
Predicting the actual runtime of a planner is a very diffi-
cult task, but it is also a task working very well. To reduce
variance, one could incorporate the top-k predicted planners
and then refine the predictions for those by using simple ML
methods.

In general, GCN and GGNN show a similar performance
with an accuracy slightly over 0.7 for the time-based task.
GIN and GAT obtain an even higher accuracy around 0.77,
again for the time-based task. GIN is based on the WL graph
isomorphism test (Section 3.1) to check how similar two
graphs are. GIN has been proven to be especially effec-
tive for graph-level tasks which is supported by our experi-
ments. GAT emphasizes more important nodes by applying



Figure 7: Results for adding the in and out degree as a node
feature

its attention mechanism, while GGNN tries to incorporate
far away neighbors. The results illustrate that GGNN is not
as effective as GAT at capturing a planning problem. A rea-
son can be that far away neighbors are not as relevant as
direct neighbors for the graph-level predictions. To obtain
the graph-level predictions, we apply a pooling layer. By in-
cluding far away neighbors on the node-level, no additional
information is gained as the information is pooled in the end
anyways.

Enhancing the node features In the following, we en-
hance the dataset with hand-picked features and investigate
how they influence the results. Before diving into the exper-
iments, we investigate the feature correlation. Figure 5 gives
an overview of the correlation of node type, average degree,
incoming and outgoing neighbor type with the target labels
(either time- or solvable-based). We can see that the average
degree has a correlation of -0.19 for the lifted representation,
however nearly no correlation is detected in the grounded
representation. The type of the neighboring nodes has a up
to -0.32 for the grounded representation, whereas the corre-
lation in the lifted datset is relatively low. A reason for these
differences are the different representations and their char-
acteristics. Another reason could be that we correlate each
graph with the output labels and then average the values to
be able to use numeric values for the calculations. Thus, this
might not be completely representative, but gives a direction
of the correlation. To verify this theory, we need to look at
the experimental results.

First, we add the node degree as node feature. We inves-
tigate adding the in-degree, the out-degree and both. Within
a planning problem which is modeled as a directed graph,
the subsequent transitions are explicitly known through the
formal description of the planning problem. The preceding
transitions, on the other hand, are only implicitly known.
Therefore, we suspect an improvement of the results espe-
cially when incorporating the in-degree of each node. We

Figure 8: Results for adding the in- and out-going neighbor
type

model the feature as a one-hot encoded vector and append it
to the vector describing the node type. As shown in Figure 6,
including the in-degree improves the results to an accuracy
up to 0.81 when using the GCN with the grounded repre-
sentation. It is interesting to see that the accuracy with GAT
slightly decreases compared to using only the node type as a
feature (Fig. 4). As GAT already captures local information
very well, redundant information is added when using the
node degree as feature leading to a performance decrease.
GGNN and GIN do not show any remarkable changes.

Looking at the results with in- and out-degree as node
feature (see Fig. 7), the most outstanding result is the in-
crease of accuracy for the GCN rising up to 0.87 with the
grounded representation. GGNN also shows some improve-
ment up to an accuracy of 0.8 (grounded representation). Lo-
cal node characteristics can influence surrounding and far
away nodes, as in a planning problem, a transition not only
influences the following steps, but also further steps in the
future. Therefore, when using GGNN, the node degree as
feature enhances the training as it emphasizes sequences and
not only local neighborhoods.

For each step in a planning task, it is important to know
what type of node follows or precedes another one. There-
fore, we include the type of the neighboring nodes as node
feature. In Fig. 8, we see can see a higher accuracy for GCN
when using the node type only. Although there are some
changes compared to the results of the basic experiments,
the improvements are not as high as with adding the node
degree. This can be explained by how GNNs work in gen-
eral. In each epoch, each node passes its current information
to its neighbors. Among other things, the node type is trans-
mitted. Thus, the neighboring node type is captured any-
ways, without needing to add it as a feature. By adding it,
we emphasize the importance of the node type, but do not
necessary gain new information or insights for model train-
ing. Further, when looking at the feature correlation matrix
(Fig. 5), the correlation of the neighbor type especially for



Figure 9: Results for combining GNNs with XGBoost

the lifted representation is much lower compared to the node
degree.

Combining GNNs with XGBoost Instead of training a
single GNN model, we combine the strengths of GNNs and
gradient boosting in the following experiments. We use the
GNN to obtain a graph representation as one strength of
GNNs is the ability to capture graph structures. This rep-
resentation is 100-dimensional and is used as input for train-
ing an expressive XGBoost model. We train XGBoost mod-
els in the following three ways: predict the probability and
then pick the planner with the highest probability, predict
the time and pick the planner which uses the least amount
of time, directly pick one of the 17 planners through multi-
class classification. We use the default features provided by
the dataset, namely the node type.

In Fig. 9, the accuracy for the experiments with all four
GNN architectures and all three tasks is shown. GCN and
GAT obtain the overall best results, especially for the time-
based and classification-based task with values of slightly
under 0.8 for both GNNs. Again, the results with the
grounded representation are better than the lifted one which
is caused by the higher correlation between the features
(e.g., node type) and the labels. When using GCN, predict-
ing the time produces the best results, but the classification
task is comparable. In case of GAT, the classification works
best. Here, the grounded representation and the domain-
preserving split are used. Using a GNN for the classification
task could not produce satisfactory results with accuracies of
under 0.5. However, the combination of GNNs and XGBoost
shows a much better performance and is similar to the results
with GNNs only and the time-based task (Fig. 4). Another
benefit of combining GNNs with XGBoost is the resource-
utilization. While we have to train the GNN-only experi-
ments on GPUs, we do not necessarily need GPU-training
for XGBoost. Training the GNN plus XGBoost method on
our CPU takes a similar amount of time on the CPU as the
GNN-only experiments on our GPU.

grounded lifted
domain random domain random

CNN-based CNN - - 82.1 86.1

Ma et al. GCN - - 85.6 87.2
GGNN - - 76.6 74.4

basic

GCN 72.2 66.9 68.9 66.5
GGNN 68.0 64.9 71.5 68.5

GIN 76.4 77.9 66.9 65.5
GAT 76.9 73.9 66.0 75.3

inoutdegree

GCN 87.2 83.4 66.3 62.8
GGNN 66.6 78.7 65.7 64.6

GIN 72.7 71.1 66.3 66.1
GAT 63.0 62.6 64.7 68.1

inoutneighbor

GCN 80.7 74.3 70.4 66.4
GGNN 63.9 65.1 68.3 68.4

GIN 71.9 77.8 69.1 66.8
GAT 77.1 75.0 68.2 73.4

xgboost

GCN 76.4 76.8 70.8 68.9
GGNN 66.9 69.7 73.6 73.2

GIN 67.0 64.5 59.2 62.4
GAT 74.8 70.1 67.1 69.5

Table 1: Accuracy of related approaches compared to our
work (domain and random split)

Comparison to Related Approaches We quantitatively
compare the performance of the different approaches to re-
lated methods, namely the CNN-based approach by (Katz
et al. 2018) and (Sievers et al. 2019) as well as the GNN-
based approach by (Ma et al. 2020) (see Table 1). We re-
port our results based on the time-based task. For XGBoost
we present the accuracy for the direct classification. To split
the data, the domain-preserving and random split are used.
We can see that we perform especially well with GCN on
the grounded representation and the in- and out-degree as
node features. The accuracy lies at 87.2 with the domain-
preserving split and 83.4 when using the random split, re-
spectively. For the lifted dataset, one of the highest accura-
cies is around 71.5 which can be explained through the dif-
ferences of the representations. As shown above, valuable
information is lost when compressing the grounded graphs
leading to a decrease in terms of performance.

5 Discussion and Conclusions
5.1 Discussion & Insights
We have seen that GNNs are able to effectively capture plan-
ning problems. The best performing way to pick a planner
is by predicting the time and then choosing the best plan-
ner based on the predictions. Without adding additional fea-
tures, GIN and GAT prove to work well with an accuracy
of up to 0.87. It is shown that by adding simple graph fea-
tures like the node degree, the accuracy can be improved up
to 0.9. The type of the neighbor is also important, but intro-
duces redundant information for some models not reaching
the performance obtained with the node degree.

GNNs combined with XGBoost are good at directly pick-
ing a planner without having to predict things like the time.
Although the accuracy is only comparable to our basic



GNN-only experiments, training XGBoost can be done on
CPUs instead of GPUs in a similiar amount of time. Thus,
this method produces good results and proves to be more
resource efficient. Further, multiple GNNs can be used to
add different graph representations which helps to capture a
planning problem of different perspectives. The results indi-
cate that there is potential, but still room for improvement.

5.2 Future Work
This section gives an overview of future research directions
based on our findings. First, we use quite simple graph-based
features for training like the node type and the node degree.
To further improve the results, one could include more fea-
tures like the node centrality, information about clusters or
learned node embeddings with tools like node2vec.

Another possible direction could be to use a mixture of
experts model (Shazeer et al. 2017) or to train a separate
GNN for each of the 17 target planners to make them more
specialized and better at deciding whether a planner solves a
task or not. Alternatively, the process of selecting a planner
could be divided into two phases: first, the top-k planners are
chosen and then, the selection is refined by focusing only on
the top-k planners instead of all 17.

We use standard GNN architectures for our experiments
which work on a variety of tasks. However, they are not
adapted to automatic planner selection. Important is the abil-
ity to directly select a planner without the need to predict
other features like the time first. Ideas of the well-working
GNNs in our experiments can be combined with knowledge
of how planning problems are formally described and trans-
formed to graphs. For instance, most planning problems are
directed acyclic graphs. This knowledge could be a large
benefit for the resulting specialized architectures.

When training the GNN models for XGBoost, one could
use the enhanced datasets with richer node features. This
could help getting a more precise graph representation
which would then increase the results of XGBoost. Instead,
graph-level features could be included leading to a more
concrete description of the graph. Possible graph features are
the size of the graph, the clustering coefficient, the majority
node type, the diameter or the strongly connected compo-
nents.

5.3 Conclusions
Automatic planner selection can be tackled using different
ML-based approaches, including GNNs. In our work, we in-
vestigated the use of different GNNs for choosing a plan-
ner for a given planning problem. We explore four GNN ar-
chitectures, two graph representations, various node features
and different ways to pick a planner. Overall, the grounded
dataset showed a better performance than the lifted one
which is due to the higher feature correlation. Further, pre-
dicting the time and then picking a planner based on that led
to an accuracy of up to 0.87 when using a GCN model. We
analyse the characteristics of the four models to understand
what is important for improving automatic planner selection.
Further, we investigate the influence of different node fea-
tures. It is shown that by adding the node degree, the results

can easily be improved. Combining GNNs with XGBoost al-
lows to train a classification task where a planner is directly
chosen instead of first predicting the time and then make the
decision based on that. Our results show a similar accuracy
to the ones obtained in our basic GNN-only experiments, but
there is no need for GPUs in contrast to GNN training. In ad-
dition, we combine multiple graph representations obtained
from multiple GNNs to improve the results of XGBoost. To
conclude, automatic planner selection with GNNs shows a
good performance and can be done in different ways. We
obtain the best results with an accuracy of up to 0.87 with
the GCN, the grounded representation and the node degree
as a feature.
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Bäckström, C.; and Nebel, B. 1995. Complexity results for
SAS+ planning. Computational Intelligence, 11(4): 625–
655.
Bylander, T. 1994. The computational complexity of propo-
sitional STRIPS planning. Artificial Intelligence, 69(1-2):
165–204.
Cenamor, I.; De La Rosa, T.; and Fernández, F. 2013. Learn-
ing predictive models to configure planning portfolios. In
Proceedings of the 4th workshop on Planning and Learning
(ICAPS-PAL 2013), 14–22. Citeseer.
Cenamor, I.; De La Rosa, T.; and Fernández, F. 2016. The
IBaCoP planning system: Instance-based configured portfo-
lios. Journal of Artificial Intelligence Research, 56: 657–
691.
Chakraborti, T.; Isahagian, V.; Khalaf, R.; Khazaeni, Y.;
Muthusamy, V.; Rizk, Y.; and Unuvar, M. 2020. From
Robotic Process Automation to Intelligent Process Automa-
tion: –Emerging Trends–. In Business Process Management:
Blockchain and Robotic Process Automation Forum: BPM
2020 Blockchain and RPA Forum, Seville, Spain, September
13–18, 2020, Proceedings 18, 215–228. Springer.
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